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the Kullback-Leibler divergence measure, we compare the output of two different net-
works after evidence propagation: the original network, and a network with perturbations
representing uncertainties in the quantitative parameters. We describe two methods for
analyzing the sensitivity and robustness of a Gaussian Bayesian network on this basis.

o § In the sensitivity analysis, different expressions are obtained depending on which set of
Decision support system K . . X . . .
Gaussian Bayesian network parameters is considered maccur.ate. This fact makes it possible to determme the set of
Sensitivity analysis parameters that most strongly disturbs the network output. If all of the divergences are
Robustness analysis small, we can conclude that the network output is insensitive to the proposed perturba-
tions. The robustness analysis is similar, but considers all potential uncertainties jointly.
It thus yields only one divergence, which can be used to confirm the overall sensitivity
of the network. Some practical examples of this method are provided, including a complex,
real-world problem.

Keywords:

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A Bayesian network (BN) is a probabilistic graphical model used to study a set of variables with a known dependence
structure. Probabilistic graphical models are framed in the field of Al to model uncertainty and numerous techniques have
been developed to improve models and its learning. Learning an optimal Bayesian network classifier is an NP-hard problem
then some algorithms has been developed to propose improvements to the traditional models (see [17]). Schemes to refine
rules and methods to develop learning algorithms reducing computational cost and improving learning accuracy can be
found in [31,32]. Computational intelligence techniques, as neural networks, support vector machines and extreme learning
machine (see [15]), have been used in many applications. Our interest models, BNs, are revealed to be one of the best tech-
nique to study this type of real world problems in a number of complex domains, including medical diagnosis or dynamic
systems, for example.

A BN has two components, as shown in Definition 1. The qualitative part is a directed acyclic graph (DAG) showing the
dependence structure of the variables. The quantitative part consists of conditional probability distributions assigned to the
problem variables giving their parents in the DAG.

* Corresponding author.
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Building a BN is a complex task because it requires the specification of a large number of parameters subject to cognitive
biases [2]. The parameters are generally estimated from statistical data or assessed by human experts in the domain of
application. “Experts are often reluctant to assess all the parameters required, feeling that they are unable to give assess-
ments with a high level of accuracy” [6]. As a consequence of incompleteness of data and partial knowledge of the domain,
the assessments obtained inevitably are inaccurate [30]. With inaccurate parameters, network output after evidence prop-
agation may also be inaccurate, depending on the sensitivity of the model. Then, sensitivity analyses in BNs are necessary to
evaluate the effect of uncertainty in the network and to determine the values of the parameters to get accurate network
outputs.

Sensitivity analysis is a general technique for investigating the robustness of the output of a mathematical model and is
performed for various different purposes. The practicability of conducting such an analysis of a probabilistic network has
recently been studied extensively, resulting in a variety of new insights and effective methods. A survey with some of these
research results is in van der Gaag et al. [30].

Authors like Laskey [21], Coupé et al. [6,7], Chan and Darwiche [5] or Bednarski et al. [1] have studied the sensitivity in
discrete BNs, where the parameters are the conditional probabilities of variables given its parents in the DAG. Moreover, all
the papers mentioned above deal with variations in one parameter at a time holding the other fixed and with only one inter-
est variable, being the network output the probability distribution of the interest variable given the evidence.

An analysis considering the effects of variations in values of only one parameter, holding the other fixed, is called one way
sensitivity analysis. Then, next sensitivity analyses are one way sensitivity analyses.

Laskey [21] presents a methodology for analytic computation of sensitivity values in discrete BNs when there is only one
variable of interest in the problem. These sensitivity values measure the impact of small changes in the parameter on the
probability value of interest computing partial derivatives of output probabilities with respect to inaccurate parameters.

Coupé et al. [6] provide an elicitation procedure to assess values to the parameters in which, alternatively, sensitivity
analyses are performed and parameters assessments redefined. Given the highly time-consuming in [7] parameters that can-
not affect the output are studied.

Moreover, for discrete BNs, where parameters are conditional probabilities, [5] propose a distance measure between two
probability distributions to compute the amount of change that occurs when moving from one distribution to another. They
contrast the proposed measure with classical measures as the Kullback-Leibler (KL) divergence [20] and show that belief
change between two states of belief can be unbounded, even when their KL divergence tends to zero. They show, however,
that KL divergence can be used to compute the average change in beliefs. Despite this inappropriate behavior in discrete BN
it is shown [9] that KL measure is a good one to describe the effects of parameter perturbations in Gaussian models.

Finally, Bednarski et al. [1] focus their one way sensitivity analysis in identifying the set of sensibilities that affects the
variable of interest.

When the interest is about a set of parameters, then, the objective is to analyze the effects of variations in values of a set of
parameters at the same time, this analysis is called n-way sensitivity analysis. Authors like KJerulff and van der Gaag [19] or
Chan et al. [4] introduce n-way sensitivity analyses to identify multiple parameters changes in discrete BNs. In [4] only one
interest variable is considered while authors in [19] work with a set of interest variables.

Literature about sensitivity analysis in Gaussian Bayesian networks (GBNs) is not extensive. Authors like Castillo and
KJeerulff [3] or Gomez-Villegas et al. [9,10] have studied the problem of uncertainty in parameters assignments in GBNs.

In [3] a one way sensitivity analysis based on [21] is proposed. Then the impact of small changes in the network param-
eters is studied evaluating local aspects of the distribution such as location and dispersion. In this analysis only one variable
of interest is considered. Moreover, the analysis also focuses on small changes about the parameters of the network and eval-
uates the impact of uncertainty on mean vector and covariance matrix.

In [9] a one way sensitivity analysis is proposed to evaluate the effects of small and large changes in the network param-
eters considering a global sensitivity measure. As in [5] this is a distance measure between two probability distributions, but
in this context - GBNs - the measure used is the KL divergence.

Moreover, in [10], the expressions obtained for the sensitivity analysis were evaluated in the limit, considering extreme
changes in the network parameters.

All the papers mentioned above deal with variations in one parameter at a time holding the others fixed. Then, both anal-
yses are one way sensitivity analysis.

The present paper aims to generalize the sensitivity analysis presented in [9] in two ways. First, by developing an n-way
version of the sensitivity analysis we hope to study the effects of perturbations in a set of parameters. Second, considering a
GBN with several variables of interest and evidential variables.

When analyzing the sensitivity of the network, we normally select a set of parameters to be reviewed. But it could also be
necessary to determine the simultaneous impact of all inaccuracies over the whole network. With this aim, we propose a
robustness analysis. This paper therefore offers two analysis methods: one for sensitivity, and another for robustness.

Other works have focused on uncertainty about the arcs of the DAG that describes the network. Authors like Renooij [28]
for discrete BNs or G6mez-Villegas et al. [11] for GBNs develop analyses to study the effect of adding or removing an arc of
the DAG, changing the dependence structure of the network. In both cases, the KL divergence is used to compare probability
distributions.

Thus, in a general framework we compute the KL divergence of the network output after evidence propagation under two
different models, the original and the perturbed, to evaluate the effect of inaccuracies in the assigned parameters.
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If all the divergences are small we can conclude that the network is not sensitive to the proposed perturbations. A similar
methodology for the robustness analysis is developed, but working with only one perturbed model where all inaccuracies
are considered at the same time.

Both analyses are applied to a GBN with various types of uncertainty. A complex, practical problem dealing with structure
reliability of a building is also studied.

This paper is organized as follows. In Section 2 we introduce BNs and GBNs. In Section 3, we describe our proposed meth-
odology for evaluating the sensitivity and robustness of a GBN. In Section 4 we present the results of these methods. In Sec-
tion 5 we introduce a simple GBN, and study its sensitivity and robustness under two different cases of uncertainty. In
Section 6, we apply the proposed methodology to a complex network. Finally, Section 7 summarizes our conclusions and
proofs with details about calculations of the proposed results are given in Appendix A.

2. GBNs and evidence propagation

Throughout this paper, random variables will be denoted by capital letters and their values by lowercase letters. In the
multidimensional case, boldface characters will be used.

Definition 1 (Bayesian network (BN)). ABN is a couple (G, P), where G is a DAG in which the nodes represent ordered random
variables X = {Xj,...,X,} and the edges represent probabilistic dependencies and P = {P(X;|pa(X1)), ...,P(Xa|pa(Xn))} is a set
of conditional probability distributions, where pa(X;) is the set of parents of node X; in G, pa(X;) C {X1,...,Xi_1}.

The set P defines the associated joint probability distribution:

P(X) = [ ,P(Xilpa(X)). (1)

Among others, BNs have been studied by Pearl [26], Lauritzen [22], Cowell et al. [8] and Jensen et al. [16].

Definition 2 (Gaussian Bayesian network (GBN)). A GBN is a BN where the joint probability density associated with the
variables X = {X3,...,X;} is a multivariate normal distribution N(x,X) given by

fx) = 2m) "2 exp {‘%0‘ ~WE (X~ u>}~

uis the n-dimensional mean vector and X is the n x n positive definite covariance matrix. The conditional probability density
for X; (i=1...,n) that satisfies (1) is the univariate normal distribution given by

i-1
Xilpa(Xi) ~ N(,Ui + Zﬁﬁ(xj — 1), Vi) (2)
Jj=1

where y; is the mean of X;, f; is the regression coefficient of X; when X; is regressed on its parents, and #; is the conditional
variance of X; given its parents.

It can be pointed out that if f; = 0 then there is no link from X; to X;. To get the covariance matrix X from {#} and {;;} we
refer to the algorithm proposed by Shacker and Kenley [29] where the matrices D and B are defined next. Let D be a diagonal
matrix with the conditional variances v;, D = diag(v). Let B be a strictly upper triangular matrix with the regression coeffi-
cients fj; where X; is a parent of X;, for the variables in Xwith j <i. Then, the covariance matrix X can be computed as

r=[1-B)'|'DI-B)" 3)

For the calculations, the open source programming language and environment for statistical computing and graphics R [27],
is used.

Example 1. This problem models the amount of time that a machine will function before failing. The machine is made up of
5 elements, connected as shown in the DAG of Fig. 1, where the numbers of the edges are the coefficients ;;. For example, the
time before failing of X3 depends on the time to fail of both, X; and X5, with coefficients 2 and 1 respectively. Their joint
working time is assumed to be normally distributed, as is the working time of each element. Experts are interested in
predicting how long elements 3, 4 and 5 will continue working before they fail. Therefore, our main interest is in variables X5,
X4 and X5.
The quantitative part of the network, given by the conditional distributions in (2), is defined by

X1 ~N(2,3)

X; ~N(3,2)

X3‘X1 = X],Xz =Xy ~ N(3 + 2(X1 — 2) + 1(X2 — 3), 1)

X4 ~N(4,2)

X5‘X3 = X3,X4 = X4 ~ N(5 + l(X3 — 3) + 2(X4 — 4),3)
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Fig. 1. DAG of Example 1.

The joint probability distribution of X = {X1,X5,X3,X4,X5} is therefore given by a multivariate normal distribution X ~ N(u,X),
with

2 30 6 0 6
3 02 2 0 2
u=131]; =16 2 15 0 15
4 00 0 2 4
5 6 2 15 4 26

where the elements of the mean vector pare y; for all X; and the matrix has been calculated using (3).

As can be seen, all the connected variables have a nonzero value in the covariance matrix X. In addition to the arcs that
appear in the DAG that collect relations between parents and children, there are connections in serie between the variables
X, and X5 through X3 as well as between X, and Xs. Also, two convergent connections exist because X; and X, have a common
effect, X, as well as X5 and X4 have a common child, Xs. Consequently, X; and Xs are independent given X5 and so are X, and
Xs. However, X; and X; are conditionally dependent given X5 as well as X3 and X, are also conditionally dependent given Xs.
More information about connections in DAGs can be found in [16].

2.1. Evidence propagation in GBNs

The main result associated with BNs is the inference process known as evidence propagation. If there exists evidence or
information about the value of a variable in the problem, this mechanism updates the probability distribution of other vari-
ables in the network.

Several algorithms have been developed to propagate evidence in BNs. For GBNs, some of these are based on methods
developed for discrete BNs. Two examples are the algorithm introduced by Xu and Pearl [34], and the propagation method
proposed by Normand and Tritchler [25] using Pearl’s polytree algorithm [26].

Otherwise, evidence propagation in GBNs is generally based on computing the conditional probability distribution of a
multivariate normal distribution given a set of evidential variables, i.e., given a set of variables with known states. Then,
we can consider X = (Y,E), where Y is the set of variables of interest and E is the set of evidential variables. e is the evidence
about the variables in E.

For simple and efficient propagation, an incremental method is used to update one evidential node at a time [3]. After
the evidence propagation the network output is given by the distribution of Y|E, being Y|E ~ N(uYE, £Y¥) with parameters:

1B = fy + DveXeg (€ — fig)

4
TYE — Yy — TyeXp) Tey @

A particular situation is given in the following example.

Example 2. Working with the GBN introduced in Example 1, presume that we have evidence about the values of X; and X>.
Let E = {X; = 2, X, = 4} represent this evidence.
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The incremental method considers X; = 2, computes the distribution for X5, X3, X4, X5/X; =2, and only then considers
X, = 4. After evidence propagation, the probability distribution of the variables of interest Y = (X3,X4,Xs), given the evidence
E={X; =2, X, =4}, i.e. the network output, is Y|E ~ N(u¥'®, =YE) with parameters

4 1 0 1
WE=141], xE=-|0 2 4
6 1 4 12

3. Sensitivity and robustness

The methods developed in this work essentially consist of comparing the network output under two different models, the
original model and the perturbed model.

The original model is given by the initial parameters associated with the quantitative part of the GBN, i.e., the initial val-
ues estimated from statistical data or assigned by experts to y and X. The perturbed model quantifies uncertainty in the
parameters by introducing two sets of additive perturbations: ¢ for the mean, and A for the covariance matrix.

Thus, to achieve an n-way sensitivity analysis, we must compare five different types of perturbed models to the original
model. The type of model depends on which parameters are thought to be inaccurate. This construction generalizes the re-
sult reported by [9]. To obtain the five perturbed models, consider the following partition of the perturbations

0 Ayy A
= () A= (3
Ok Ary  Age
e When there is uncertainty in the mean of the variables of interest, the perturbed model is X ~ N(u°,X) with

o _ My*éY)
K ( Hg

e When there is uncertainty in the mean of the evidential variables, the perturbed model is X ~ N(u, X) being

O _ ,uY )
K (.UEJF‘sE

e When there is uncertainty in the variances and covariances between the variables of interest, the perturbed model is
X ~ N(u, %), The covariance matrix £ must be positive definite, and is given by

s _ (EYY + Ayy ZYE)
Xy X

e When there is uncertainty in the variances and covariances between the evidential variables, the perturbed model is
X ~ N(u, £*=), The covariance matrix £** must be positive definite, and has the following form:

yhm _ (Ew XyE >
Tey Xee + Age

e When there is uncertainty in the covariances between the variables of interest and the evidential variables, the perturbed
model is X ~ N(u, £*®). The covariance matrix £** must be positive definite, and has the following form:

The _ < Zyy Xy + AYE)
Yy + A\T(E Y

The KL divergence is used to compare the network output of the perturbed model, obtained as shown before, with the net-
work output of the original model. Obviously outputs of the networks are obtained after evidence propagation. We thereby
obtain five different divergence measures, one for each of the perturbed models considered.

If all the divergences are close to zero, it can be concluded that the network is not sensitive to any of the proposed per-
turbations. In this case, the network is said to be robust to the proposed perturbations. Of course, even in this case the diver-
gences could be useful to compare different networks or sensitivity to different sets of perturbations in the same network.

This paper also develops a method for analyzing the global robustness that considers only one perturbed model. This
analysis evaluates the effects of uncertainty and inaccuracy in all parameters simultaneously. Specifically, the perturbed
model is obtained by adding all perturbations, X ~ N(u’,£4) = N(u + §,X + A), where & is a perturbation to the mean vector
and A is a perturbation to the covariance matrix. Evidence propagation is then performed and their outputs are compared
using the KL divergence, as with the sensitivity analysis. This divergence provides a global measure of the difference between
two probability distributions, rather than comparing their local features, and it is useful for comparisons with other uncer-
tain situations.
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The KL divergence evaluates the amount of information available to discriminate between two probability distributions,
and it is used to compare the overall behavior of the considered probability distributions. Furthermore, this measure is useful
when researcher has no idea about which characteristics of the variables of interest are most representative.

4. Main results

The original network output is given by the conditional probability density f of the distribution Y|E ~ N(uYE, £YE). The
perturbed network output is given by the conditional probability density f® of the distribution Y|E, p; ~ N(uYE®i, TYER)),
Comparing the two with the KL divergence, the expectation with respect to the density f is as follows,

KLP (f?|f) = E; {lnfipj} = % [— In|xYE (ZY‘E“’J’)J\ + trace (ZY‘E (ZY‘E‘PJ'Y]) — dim(Y)]

. % [ (1VER — ) (2VER ) (VER _ uvwﬁ)} (5)

For calculations as well as some other interesting aspects of this divergence measure for Gaussian distributions see [33].
Also it can be pointed that direct evaluation of KL divergence for Gaussian distributions has a computational complexity
of order O(q>) being q the dimension of Y, the vector of interest variables. Therefore, the difference in usage between single
perturbation variable and a set of perturbation variables depends on the size of the set of variables of interest because that is
the dimension of the square matrices involved in calculations.
The next subsections give a detailed analysis of the different types of perturbations with some comparisons of the output
effects they can produce. For the proofs see Appendix A.

4.1. Uncertainty about the mean vector

In Proposition 1 we detail the KL divergence when uncertainty is displayed only in the mean vector and may be in the
mean of Y or the mean of E. Then, in Proposition 2 we introduce an upper limit for such measures, so that will limit the val-
ues of KL divergence for any value delta perturbation.

Proposition 1. Let (G, P) be a GBN with X ~ N(u, X), where X = {Y, E}, Ybeing the set of variables of interest and E being the set of
evidential variables. For 6, the perturbation of the mean vector é = (3y, dg)", the following results hold.

1. When the perturbation dy is added to the mean vector of the variables of interest, after evidence propagation the perturbed
model is Y|E, oy ~ N(uY®o xYE) with uYEo = yYE 4 5y, and the KL divergence is given by

KL (FH|f) = % [53(2Y%) 5]

2. When the perturbation Jg is added to the mean vector of the evidential variables, the perturbed model after evidence propaga-
tion is Y|E, g ~ N(uYIE% xYE) with Y% = yYE ¥ ¥ o15g, and the KL divergence is

KL (felf) = o [oF (Eveed) (2%) " (Zveed ) e

When the uncertainty is only about the mean vector, the expression in (5) is reduced to the mean vector components.
Therefore both expressions in Proposition 1 are similar in the sense that the KL divergence is half the product of the trans-
posed perturbation by some components of the covariance matrix by the perturbation (dy or é¢). In both cases the inverse of
the covariance matrix appears after evidence propagation. To fully understand the expressions described in Proposition 1, a
single perturbation can be considered in the vector 8y or &g, so that vector consists of zeros except a value nonzero. In that
case, it is observed that the perturbation appears in quadratic form, being the KL divergence a parabola centered at zero
(when there is no perturbation). For a more detailed analysis of divergences when uncertainty appears in the mean of a sin-
gle node in the network, you can see [10].

The KL divergence obtained for the inaccurate mean vector of the evidential variables is the same as the divergence mea-
sure for a perturbation of the evidence vector e. This gives us a tool to evaluate the influence of extreme evidence on the
network output.

To establish some bounds on these divergence measures we can use the Cauchy-Schwarz inequality that gives rise to the
Maximization Lemma for positive definite matrices [18].

Proposition 2. For perturbations in the mean vector next maximum values for the divergence measure can be obtained

1. If the mean vector of the variables of interest is perturbed with some perturbations &y such that its Euclidean norm
|6y |5 = ovdy < r? it can be shown

2
KL”"(f”‘{Lf) < [ovll3 < i (6)
S 20, 2
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if 21 > --- = Jq are the ordered eigenvalues of T¥. Also the maximum is attained with r x e, being e, the corresponding
eigenvector.
2. For the case of perturbations &g in the mean vector of evidence variables such that,

| Zve e 3|2 = [Byiedell? < 1

it holds

Byidel; _ 2
e (g ) < IBYIEGENl _

if 21 = --- = 2q are the ordered eigenvalues of Y Also it can be pointed that By = TygZgy is the matrix of regression
coefficients of Y on E.

The expressions introduced in Proposition 2 lead us to calculate an upper bound for the KL divergence. These results are
useful because they may set an upper bound to the divergence given the uncertainty.

4.2. Uncertainty about the covariance matrix

In Propositions 3 and 4 we studied uncertainty, with the KL divergence, when the inaccurate parameters are in the covari-
ance matrix. For uncertainties related to the covariance matrix, the covariance matrices of the perturbed models have to be
positive definite. Moreover, Proposition 4 leads us to fix an upper limit for expressions obtained in Proposition 3, so that will
limit the values of KL divergence for some perturbations associated to uncertainty of the covariance matrix.

Proposition 3. Let (G,P) be a GBN with X ~ N(u, X) and X ={Y,E}, Y being the set of variables of interest and E being the set of
evidential variables. The perturbed covariance matrix A is

A A
Ao ( YY YE)
Apy Age
All the covariance matrices considered in this framework have to be positive definite. The results are as follows:

1. When a perturbation Ayy is added to the variances and covariances of the variables of interest, the perturbed model
after evidence propagation is given by Y|E, Ayy ~ N(uYE, £YEAw) with £YEAw — yYE L Ay and the KL divergence is
given by

KL (f2w |f) = % —In [EYE(EZYEA) T 4 trace(ZYE(EVEAW) ) — dim(Y)}

2. When a perturbation Agg is added to the variances and covariances of the evidential variables, the perturbed model after
evidence propagation is given by Y|E, Agg ~ N(uYEAee yYEAw) wyith pYEAe — 1 4 Yyp(See + Age) (€ — p) and
SYIE Aw =3 0 Syp(Zee + Age) ' Xey. The KL divergence is

KL= ()= 3 [ I Y8 (254 | trace (£ B (£ ) ) —dim(¥)] -4 (05 — )T (2B ) Ve V)

3. When a perturbation Ayg is added to the covariances between Y and E, the perturbed model af ter evidence propagation
is YIE, Aye ~ N(u¥EAve xYEMe) with pYEAe — 1y + (Eyg + Aye)Egg (€ — ptg) and EVBA =Ty — (Eyg + Ayg) Tpe |
(Xgy + Agy). The KL divergence is

KLEe (o) — 1 [~ In[EYE(ZYES) ) 4 race(zYE(EVE) ) — dim(Y)]

1 ]
50— )" (Ze) A (25) T AveXe (e — )

\S}

As can be seen in Proposition 3, when the uncertainty is between the variances and covariances of Y, i.e., Ayy is nonzero,
the covariance matrix after the evidence propagation is the only element to be disturbed. However, for the remaining cases,
perturbation is reflected both in the mean vector and in the covariance matrix after the evidence propagation.

Therefore, the first expression of Proposition 3 corresponds only to the first part of the expression in (5), depending on the
logarithm of the product of the inverse of the covariance matrix given the uncertainty by the matrix covariance without
uncertainty, in both cases after the evidence propagation and depending on the trace of this product. Moreover, this expres-
sion depends on the dimension of Y.

In all other expressions of Proposition 3, corresponding to uncertainty covariance of E, then Agg # 0, and between covari-
ance of Y and E, where Ayg # 0, in addition to the terms discussed above, it also shows the average component of (5).
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To establish some bounds for the cases of covariance submatrices perturbations some concepts have to be fixed because
we have to obtain positive definite covariance matrices. Firstly, for additive perturbations the notion of interval matrix can
be used [12]. Let X* and A be symmetric real n x n matrices, A > 0. The set of matrices

Yo AT A= (X -ASIZ<I +A}

where the inequalities are to be understood componentwise, is called a symmetric interval matrix. As a first step, conditions
of positive definiteness of interval matrices [13,14] are given by

p(|IZ1A) < 1 or
P(A) < Zmin(E")

being p() and Amin() the spectral radius and the minimum eigenvalue of a matrix. Thus, we can consider interval covariance
matrix as the set of perturbed covariance matrices {E¥+A’} with 0<A’<A and then [|A'|; <|A|7 =r* being
|A||2 = trace(AA") the Euclidean norm applied to matrices that is usually called the Frobenius norm. With these conditions,
next results give upper bounds for the Kullback-Leibler divergences in Proposition 4.

Proposition 4. Let us consider perturbations in the submatrices of the original covariance matrix with interval covariance

matrices. Let f(x) = In(1 +x) — 1%, then

1. If a perturbation Ayy is added to Xyy satisfying next condition,
P(Ayy) < Min{Zmin(Zyy), Zmin(Z¥F)} (8)

then, the perturbed covariance matrices Xyy + Ayy and XYEAY gre positive definite. Also it can be shown

1, _ -
KL (f*|f) < 5 dim(Y) max{f (Amax (Avy (Z) 1), f (i (Awy (EY) 1)}
2. If a perturbation Agg is added to Xgg satisfying next conditions
P(Age) < Zmin(Xee), and
P(Age) < Jmin (ZV'F)

with Age” = ByrAee(Zee + Age) ' ey then, the perturbed covariance matrices Xgg + Age and XY'®* are positive definite.
Also it can be shown

9

KLE (£51f) < & dim(¥) max{f s (Aga(E"5) 1)), flimin(Ase(25) )} + 5 [(05e) (21 + Age) " ()]

for gg* = ByrApe(Zge + Ape) (€ — UE).
3. If a perturbation Ayg is added to Xy satisfying next condition

P(Agg) < Fmin(EYE) (10)

with Ay = f(AYEB)T,‘E + ByjeAy: + AveXgp Ary), then XYEA¥ s positive definite and

KL (7)< 5 dim() max {F (mas (425 ")). (o (525 ) )} 5 [(50)" (27 + ) (550)|

for ove* = Ave(Xee) ' (€ — pig).

With the results presented in Proposition 4 it is possible to set an upper bound for the KL divergences introduced in Prop-
osition 3, given certain conditions shown in this Proposition 4.

If there exist some inaccuracies in the parameters describing a GBN, it is possible to carry out the proposed sensitivity
analysis using the expressions given in Propositions 1 and 3.

If we compare the expressions obtained in both propositions we see that the expressions in Proposition 1 only depend on
changes in the mean vector. The first expression of Proposition 3 only depends on changes in the covariance matrix. Finally,
in the last two expressions of Proposition 3, mean, variances and covariances are perturbed. Therefore both expressions are
similar and depend on both the mean vector and the covariance matrix. In all cases, the considered parameters are the per-
turbed ones after the evidence propagation.

Then, by computing the KL divergence for each case, we can determine which set of parameters must be reviewed to de-
scribe the network more accurately.

Propositions 2 and 4 show upper bounds for the expressions computed in Propositions 1 and 3.
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4.3. Uncertainty about the mean vector and the covariance matrix

If in Propositions 1 and 3 all the divergences are close to zero, it is possible to conclude that the network is not sensitive to
the proposed perturbations. For this reason we have developed a simple method of analyzing robustness as well. The method
is based on comparing the original network output after evidence propagation, given by the conditional probability density f
of the distribution Y|E ~ N(uY'E,XYE), to the perturbed network output, given by the conditional probability density f** of
the distribution Y|E, , A ~ N(uYE>A £YESA) Thys, for this analysis only one perturbed model is considered. In this case
the KL divergence yields

KL(f**|f) = E {m f{—A]
1

= [_ In |EY\E(EY\E‘6,A)71| 1 trace <EY\E(EY\E,6‘A)71> _ dim(Y)] +% [( pYESA HY\E)T(EY\E,M)A (UYESA _ MY\E)}
(11)

By computing this expression, we can decide whether or not the GBN is robust under the considered perturbations.
McCulloch [24] introduces a calibration for the KL divergence that can be used as a guide to evaluate the value obtained
for the KL measure. Nevertheless, if the KL divergence is very close to zero, then the network is robust to these perturbations;
otherwise, it is necessary to review the parameters assigned to the quantitative part of the network in more detail. If we
consider interval covariance matrices for perturbations,

//LY\E,(j,A — ‘LLY\E + 5 (5,A)
EY\E.&,A _ ZY\E + A* (A)

then, similar results as those obtained previously for the upper bounds can be shown.
The sensitivity and robustness analyses introduced in this section are implemented with a polynomial algorithm that
computes the divergences from a set of uncertain parameters.

5. Application of results

We present two different examples, which make different assumptions about the degree of uncertainty. In both examples
the network is built and an expert, who has not been part of the process of building it, disagrees with some of the parameters
describing the model.

Example 3 shows some of the uncertainties more decisive for the expert that disagrees with the network. Example 4, in
addition to those uncertainties of Example 3, is regards more uncertainties in the parameters. Then, all the uncertainties
listed in Example 3 also appear in Example 4 together with some other more. Therefore, it is expected that the network’s
output of Example 4 is more sensitive than the network’s output of Example 3 for uncertainty introduced because all uncer-
tainty in Example 3 is in Example 4 and that the analyses proposed reflect this situation.

These perturbations are proposed by the expert as could have chosen any other perturbation given its experience. The
only one restriction is to keep the covariance matrix positive definite before the evidence propagation; this is the only
restriction on the setting of A, while for values of § there is no restriction. Then, the examples introduced in this Section are
characterized by perturbations collected in Example 3 and they are also in Example 4 together with some further perturba-
tions. Moreover, for all proposed perturbations to the covariance matrix, A, the perturbed matrices obtained after adding the
partition of A in the covariance matrix, must be positive definite.

Example 3. For the GBN in Example 1, assume that experts disagree on the values of some parameters. For example, the
mean of Xs could be either 4 or 5. They also offer different opinions about the variances of X,, X3 and Xs, and about the
covariance between X; and X;. When we quantify these uncertainties, the perturbed mean vector é and the perturbed
covariance matrix A are

0 0 0 -100
0 0 3000
s=l 0] A=l-10 2 00
0 0 00 00O
-1 0 0 0 02

Again, the set of variables of interest is Y = (X3,X4,Xs) and the set of evidential variables is E = {X; = 2,X5 = 4}.

As can be seen, there is uncertainty about some of the parameters describing the network. This uncertainty is reflected in
the vector ¢ and the matrix A. Then, we can now study the sensitivity of the network given the uncertainty 6 and A. We set
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0
0

oy=1 0 |; 5E:<0>

-1

2 00 —

00 1 0

Ayy: 0 0 0 5 AEE:<0 3>, AYE: O 0

0 0 2 0 0

The methodology proposed let us to evaluate different sets of uncertainty using the expressions shown in Propositions 1
and 3. With the obtained results, it is possible to compare different uncertainty situations and determine the set of param-
eters that must be described with great precision.

Then, next results are obtained

KL (f™|f) = 0.167
KL"&(f1e[f) = 0

KL™ (f*|f) = 0.338
KL (fXe |f) = 0.203
KL™E (f2v |f) = 0.447

Note that all the divergences are not too large, in the sense of [24]. Then with the uncertainty proposed we conclude the
network is not very sensitive to the proposed block perturbations.

Notice that KL"s(f*e|f) = 0, because there are no perturbations added to pg. Thus, & is zero.

With this sensitivity analysis it seems that the network is rather robust under the proposed perturbations. This can be
checked by computing expression (11). Then, the KL divergence is computed for the whole set of perturbations and therefore
the robustness of the network to these global perturbation can be studied.

KL(f*4|f) = 0.857

The divergence that determines the robustness of the model is small and consequently the network is considered robust
for uncertainty of the example.
We can also compare the effect of different individual perturbations

ox, N
oy = | Ox, |3 515:(5])
Sxs %

making calculations for each dx, from —1 to 1 by 0.001 when the remaining variables are not perturbed. Fig. 2 illustrates the
resulting divergences with large values for perturbations in X; and rather small for Xs perturbations.

@

o

@

[=]
|
4 < |

o

X4
N
[=}
X3
o | - 5
o
T T T T T
-1.0 -0.5 0.0 0.5 1.0

perturbations

Fig. 2. KL" divergence measures to perturbations in the individual components of the mean vector of Example 1.
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Using the upper bounds results for perturbations such that || |/? < 1 and the minimum eigenvalue of XYE given by
0.393314, we have

1
Ly —
KL* (f*f) < 2(03933140) 1.2712
-0.52
where the maximum is attained with dy = (—079), the corresponding eigenvector.
0.32
Perturbing the submatrices of the covariance matrix with symmetric interval matrix we obtain positive definite covari-
ance matrices after perturbations. This condition restrict perturbations to matrices with small values but preserving the
structure of the example perturbations.
In particular, the condition (8) holds for

036 0 0
AP, =018Aw=| 0O 0 0O
0 0 036

then for 0 < A}, < A%, with [|Ajy |2 < [|AL,||” = (0.51) we have
KL= (F5 |f) < 0.11.

As for the condition (9) the particular perturbation

00 0 0
P _ _
AEE_O'”(O 3)‘(0 0,51)

then for 0 < Ay, < A%, with [|Ag||2 < [|A%||2 = (0.51)* we have
KL (f*=|f) < 0.093.

Finally, given that the matrix Ay = AYEB§‘E + BY‘EA§E + AYEZEE Agy has to satisfy condition (10) we can use

-0.08 0
Ayg = 0 0
0 0
and the corresponding
0318 0 0.16
Ayg = 0 0 O
016 0 O

with [|Ay 2 = (0.392)?, to obtain
KL™ (f*=|f) < 0.059
With respect to the calibration of the KL divergences, the Table 1 in [24] could be considered.
Example 4. Working with the GBN given in Example 1, the experts now disagree on the values of more parameters. We

introduce uncertainty into the parameters that describe X, and X,, so that the perturbed mean vector 6 and perturbed
covariance matrix A are

0 01 -100
2 1 3 0 01
s=|l 0] A=|-10 2 00
1 00 0 12
-1 01 0 22

The variables of interest are still Y = (X3,X4,Xs), and the evidential variables E = {X; = 2,X, = 4}.

In this example the uncertainty of the parameters describing the network is larger than in the previous example. Now
there is uncertainty in all parameter sets (remember that in the above example there is no uncertainty associated with
the mean of the evidential variables). Again, we use the methodology proposed in this paper. Thus, to perform the proposed
sensitivity analysis, the new partitions are

0

X 0
by: l 3 552(2)

-1
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2 00 01 -1 0
AYY: 0 l 2 3 AEE—<1 3), AYE: O O
0 2 2 0 1

Computing expressions in Propositions 1 and 3, the KL divergences obtained are
KL* (f*|f)y = 1.75
KL'e(frelf) =2
KL™ (f*v|f) = 0.49
KL= (f*ee|f) = 0.383
KL™® (f=e|f) = 1.888

To evaluate the obtained values for the KL measure, McCulloch [24] introduces a calibration for the KL divergence. As can
be seen, in this example divergences are larger than in the previous one. If the KL divergence is close to zero the network is
not sensitive to these perturbations, otherwise experts should review the literature and databases again to be more precise
when defining the parameters.

In this case, some divergences are larger than 1. We can therefore conclude that the network is very sensitive to the pro-
posed perturbations. Then, the parameters of the mean vector and the covariances between interest and evidential variables
should be reviewed to describe the GBN more accurately.

When evaluating the robustness of the network, we obtain a very large value for the total KL divergence:

KL(f*A|f) = 17.022

For a better understanding of the problem, can be made some more general perturbations. Let
0

19
oy = 5X4 : g = <5X1 )
X2

S,

with [|dy||7 < 2 and |67 < 4. The calculations of the KL measure for simultaneous perturbations in an extremely fine grids
for (dx,,dx,) and (dx, , dx,) are presented in Figs. 3 and 4 respectively. Also it is obtained the maximum divergence for dy per-
turbations in the grid is 2.0868, attained for dx, = 1.3228 and dx, = —0.5. For 6 perturbations in the grid, the largest devi-
ation is 9.9994 for dx, = 1.792, 6x, = 0.904.

To explore Ayy perturbations satisfying the positive definiteness conditions required, we will use a uniform discrete grid
Of dyar(x;) and d,ar(x;) values from 0 to 2 by 0.005 representing perturbations in the variances of X3 and X5 with their KL mea-
sures in Fig. 5. Also a grid for perturbations in the variance of X, and the covariance of X; and X5 and the KL values are shown
in Fig. 6.

Also, Agg perturbations can be studied in some general scenarios. Then, a grid for perturbations in the variances of X; and
X, from 0 to 1 by 0.001 with the KL measures are illustrated in Fig. 7 and for perturbations in the variance of X, from 0 to 3 by
0.005 and in the covariance of X; and X from 0 to 1.5 by 0.001 in Fig. 8. In this last graphic, a very large increase is observed
for perturbations in the region dcoyx, x,) > 1 and d,ar(x,) close to zero.

Finally, the study of Ayg perturbations only for some small values that result in positive definite covariance matrices is
presented in Fig. 9 with perturbations in the covariance of X5 and X; and in the covariance of X5 and X, simultaneously. Some
interesting effects are observed with respect to the robustness of the network from this type of uncertainty.

Summing up, the KL divergence that evaluates the robustness of the network is not small. Again, we can conclude that
some parameters must be reviewed to describe the network more accurately, as we determined with the sensitivity analysis.
Specifically, mean vector uncertainty introduce a large fluctuation in the network output that is enlarged if we add some
other parameter perturbations.

If we study upper bounds in this case we have:

1. For general ¢, perturbations such that |5, |2 < ||dy||? = 2,

KL (f™ |f) < 2.542

-0.741
and the maximum is attained in [ —1.118
0.449

2. In this example, for & perturbations such that ||5; |7 < ||0||7 = 4 and ||Byz0||5 < ||Byizde|/> = 8 the upper bound is
KL (fe|f) < 10.17.

3. For 0 < A}y < Ay with [|Ajy|2 < [|A ||} = (0.41)* we have



M.A. Gomez-Villegas et al./Information Sciences 222 (2013) 439-458

KL™ (f*v[f) < 0.035
e 02 0 O

with Aly =01Ayy={ 0 0.1 02
0 02 02

For 0 < Ay, < A%, with || AL < ||AE|2 = (0.3)? we have
KL™ (f*e |f) < 0.134

' , _ 0 0.09
with Afg = 0.09Agg = (0,09 0.27)

. And for the last case, if we have ||Ay i = (0.445)*, it holds

KL™® (f*|f) < 0.088

—0.095 0
with Aj; = 0.095Ayg = 0 0 . Again the mean vector perturbations attain the larger bounds.
0 0.095
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Fig. 3. KL** divergence measures to simultaneous perturbations in the means of the variables of interest X, and Xs of Example 1 such that |dy|3 < 2.

Fig. 4. KL*® divergence measures to simultaneous perturbations in the means of the evidential variables X; and X, of Example 1 such that ||6g||3 < 4.
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—r 0.35

- 0.30

- 0.25

0.20

0.15

delta.varxs 99 7
0.00.0 delta.varx3

0.0

Fig. 5. KI™ divergence measures to simultaneous perturbations in the variances of X3 and X5 of the block Zyy of Example 1.
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06 r0.5
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0.00.0 delta.varx4 0.1

0.0

Fig. 6. KL™ divergence measures to simultaneous perturbations in the covariance of X, and Xs and the variance of X, of the block Xyy of Example 1.
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Fig. 7. KL™* divergence measures to simultaneous perturbations in the variances of X; and X, of the block Xgg of Example 1.
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—r 1.0

r0.8

+0.6

1.0
delta.varx2

delta.covx1x2 0.5
0.00.0

0.0

Fig. 8. KL™* divergence measures to simultaneous perturbations in the variance of X, and the covariance of X; and X, of the block Xgg of Example 1.
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Fig. 9. KL™® divergence measures to simultaneous perturbations the covariance of X3 and X; and the covariance of X5 and X, of the block Eyg of Example 1.

As seen in previous examples, the methodology proposed in this paper is useful to determine the parameters that must be
described accurately in a Gaussian Bayesian network. Furthermore, it is easy to use and allows to describe the network
accurately.

6. Case study: damage assessment of a reinforced concrete structure

In this section, we study a complex problem (see [3]). Its objective is to assess the extent of damage to a building’s rein-
forced concrete structures. Other authors [23] use this example to study sensitivity to kurtosis deviations from Gaussianity.

As shown in Table 1, 24 variables are necessary to describe the problem. Variables X;5,...,X>3 are intermediate, unobserv-
able variables defining some partial states of the structure. It is assumed that an expert can examine a given concrete beam
to sequentially obtain the values of Xj,...,X;s. We consider E = (X, .. .,Xj¢) to be evidential variables, and Y = (X;7,...,X24) to
be variables of interest.

The DAG that represents the dependence structure of the variables is shown in Fig. 10. The mean of every variable is zero.
The covariance matrix is computed using the coefficients f;; shown in the edges of Fig. 10. The conditional variances are set to
1 for observable variables, and to 10~ for other variables.

The evidence proposed is E={X; =1,...,X;6=1}. A complete description of this model and its evidence is given in [3].

There is uncertainty in some means and conditional variances of the network. Two of the evidential variables, X;5 and X,
are close to X, in value. The variable of interest X,4 is also defined with uncertainty. It is thus plausible to define a perturbed
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Table 1

Description of the case study variables.
X; Description
Xi Corrosion
Xo Shrinkage
X3 Number of flexure cracks
X4 Number of shear cracks
X5 Content of chlorine in the air
Xs pH value in the air
X7 Humidity
Xg Structure age
Xg Cover
Xio Length of the worst flexure cracks
X1 Breadth of the worst flexure crack
X1z Position of the worst flexure crack
X13 Breadth of the worst shear crack
Xia Position of the worst shear crack
Xis Deflection of the beam
Xi6 Weakness of the beam
X7 Corrosion state
Xis Worst cracking in flexure domain
X9 Shrinkage cracking
X20 Cracking state in flexure domain
X1 Steel corrosion
X5 Cracking state in shear domain
Xo3 Cracking state
Xo4 Damage assessment

Fig. 10. DAG for the damage assessment of reinforced concrete structure with g;; values.

model where the means of X5, X6 and X,4 are set to 1 instead of zero. The conditional variances of these variables are set to
1.5 instead of 1 (remember that X54 is an observable variable of interest) then we have a perturbation Ap for D.

To study the sensitivity and robustness of this network, first it is necessary to compute the joint probability distribution of
the perturbed model. Using (3) the perturbation of the covariance matrix, A, is obtained from

L+A=[I1-B)""(D+Ap)I-B)"

and then it is partitioned as follows:

A A
Ao ( YY YE)
Apy A

and with the previous results we have,
KL*™ (fv|f) = 0.5
KL*e(fFe|f) = 0.5
KL (f*v|f) = 0.0704
KL (¥ |f) = 0.0539
KL™E (fe(f) = 1.1272
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On the basis of these values, we conclude that the proposed uncertainties do not disturb too much the network output
after evidence propagation. Nevertheless, the parameters that describe covariances between evidential and interest variables
should be examined more carefully, because the divergence measure KL™ (f*«|f) is over 1.

To complete this example, we study the robustness of the network under the proposed uncertainties. The KL divergence
shows that the network is robust to these perturbations because the KL divergence has decreased to

KL(f*|f) = 0.03606

In fact, the global effect of different parameter perturbations is smaller than the particular deviations that can be ex-
plained if viewed as the result of opposing effects. Some perturbations dx,, and dx,,, for the means of X;5 and X;¢, in a grid
with values from —1 to 1 by 0.005 are considered and the corresponding KL measures presented in Fig. 11. Also we can study
the effect of d perturbation same in all the conditional variances of X5, X;5 and X>4 with d ranging from 0 to 0.5 by 0.05 and
make comparisons on the divergences related to perturbations in the different blocks as well as in the total covariance ma-
trix as it is shown in Fig. 12. As expected the highest values correspond to induced Xyg perturbations and the global KL is
always below.

—0.5

-0.4

-0.3

0.2

0.1

deltax16 -0.5

0.0

Fig. 11. KL/ divergence measures to simultaneous perturbations in the means of the evidential variables X;5 and X;6 of Case Study such that ||6g||2 < 2.
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Fig. 12. KL divergence measures to perturbations in the different blocks by d perturbation to be the same in all the conditional variances of X;s, X1 and Xza4.



456 M.A. Gémez-Villegas et al./Information Sciences 222 (2013) 439-458

Thus, we can say our proposed method is easy to calculate and apply even for complicated problems. It also allows further
study of the effects that uncertain parameters can have on the network output. Since then some of the decisions necessary to
define more accurately the most influential parameters can be taken.

7. Conclusions

This paper has presented a new method for analyzing the sensitivity and robustness of a GBN when some of the param-
eters describing the quantitative part of the network are inaccurate or uncertain. The KL divergence is used to compare the
overall behaviors of the original network and a perturbed network, thereby evaluating the effect of changes in the network
parameters after evidence propagation for the variables of interest. The proposed method is simple to calculate for any GBN,
and can handle any kind of perturbation or inaccuracy in the network parameters. Then, it is possible to study either large or
small perturbations in the uncertain parameters of the network.

The sensitivity analysis considers different sets of parameters, depending on which kinds of variables are perturbed
(interest or evidential), and whether the uncertainties lie in their mean vector or covariance matrix. Each case yields a dif-
ferent divergence, making it possible to know which set of variables most strongly disturbs the network output after evi-
dence propagation. When the divergences obtained by the sensitivity analysis are small, the network may be considered
robust under the proposed perturbations. To confirm this result, we also develop a robustness analysis method that evalu-
ates all the perturbations at the same time. There still is not an answer when KL divergence is sufficiently large. We consider
that until that divergence is not used more in practical contexts with different uncertainty situations an accurate answer to
that question cannot be given.
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Appendix A

Proof of Proposition 1. After the evidence propagation, the output of the original network is Y|E ~ N(uYE XYE)
and parameters of the perturbed models can be obtained directly taking into account the evidence propagation
process.

1. The output of the perturbed model is Y[E, oy ~ N(uY'E%, £YIE). The covariance matrix is the same in both models, original
and perturbed because, as follows from (4), the conditional covariance matrix XY does not depend on the mean vector,
unlike the conditional mean vector with respect to the covariance matrix, then is not affected by perturbations in the
mean vector and remains the same for both models regardless of the block mean vector to be perturbed. To compute
KL* (f*|f) we have that, trace (ZYE(XYE)1) = dim(Y), then

KL (FRv|f) = {(Mv\ﬁ,ay _ MY\E)T(EY\E>—1 (‘uvus,(sy _ MY\E)] :% [55(2\(\5)715‘{}

N —

2. In this case, the output of the perturbed model is Y|E, og ~ N(uY'E: % £YIE), The covariance matrix is the same in both mod-
els, again. Then

KL el = o [ (7 — 09) (28 (e — )] = [0k (Evei) (%) (Bvead) 06| O

N —

Proof of Proposition 2. Given that

KM (1) = 2 [53(¥) oy

and XYE is positive definite with ordered eigenvalues /; > --- > 2, > 0 and associated normalized eigenvectors ey, .. .,eq, we
have (ZYE)~! has eigenvalues 0 < % << % and the same eigenvectors then using the Maximization Lemma for positive
definite matrices [18]
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sy(XE) oy 1
maxw =—
oy #0 5ybY Aq

attained when Jy = e; and the result (6) holds.
Now we have

Kt f) = 5 [oF (Evezed) (1F) " (SveZed) o

and the previous Maximization Lemma for positive definite matrices is applied to sy*"(XYE)~1sy* being dy* = (ZyeZes ') O to
obtain (7). O

Proof of Proposition 3. After the evidence propagation, the output of the original network is Y|E ~ N(uYE XYIE),
In next cases, different perturbed models are considered. Parameters of the perturbed models can be obtained directly
taking into account the evidence propagation process. The KL divergence is calculated directly using the.

1. The output of the perturbed model is Y|E, Ayy ~ N(uY'E, ZYEAW) with XYEAw = 32YE 4 Ay In this case, the mean vector is
the same in both models, original and perturbed. Then,

KL= (f>w |f) = % [In [£YE(2YEAm) ) 4 frace (£YE(ZVEA) 1) — dim(Y)]

2. In this case, the expression associated with the KL divergence is the.
3. The KL divergence is

KL™ (e |f) = % [ln [EVE(£VE) 7| 4 trace(EYE(£VEA) ) dim(Y)]
‘l —

s [( gV VYT (YA ) (VB A MY\E)]

1

2

+

= [ln \EY‘E(ZY‘E’AW)71| + trace <2Y‘E(ZY‘E'AYE)71> - dim(Y)}

1 ,
5 [ = o) (Zad) AT (EVE) T AveZgl (e - )] O

Proof of Proposition 4. Since interval covariance matrix is considered for perturbations with the conditions assumed then
positive definite covariance matrices are obtained as desired. For all the cases studied it can be shown

LYER — (Y | 5YED,

YYD _ yYE | AVED;

Moreover, since

EYB(VER) ! SYE(EYE 4 AVER) ! = (1, + AVER(VE) )

with Igim(y) the identity matrix, it follows that the first summand in (5)

— In|ZYE(ZYER) 1| 1 trace (ZY‘E (EY‘E*"J')_l) —dim(Y)

1
=In| <Idim(Y) + AY‘E'pj(EY‘E)71)| + trace((’dim(Y) + AYEP, (EY‘E)A) - Idim(Y))

dim(Y) dim(Y)

=Y (1n(1+ii)+%2i—1) =3 (ln(1 +’1i)_]j_i~,)‘

i=1 i1 A

with {/;} the eigenvalues of AYEP(XYE)~1 Then, the upper bound is attained with Jmay(AYEP (EYE)™1) or Jmin (AYER (EYE) ),
substituting AYEP for the different types of perturbations.

The formula (5) when perturbations are added to Xgg or Lyg includes also the term with ¢YEP that can be bounded using
the Maximization Lemma for positive definite matrices that gives

|0VER |12

YEp; _ | YE\T yYEP;~1( YIER _ [ YIEY _ (SYEP\T EY|E+AY‘Eij ~1 (YD <
(0 — )T (20 T (R — ) = (8T ;) < v
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