
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

The effect of block parameter perturbations in Gaussian Bayesian
networks: Sensitivity and robustness

Miguel A. Gómez-Villegas a, Paloma Main a,⇑, Rosario Susi b

a Departamento de Estadística e Investigación Operativa, Universidad Complutense de Madrid, 28040 Madrid, Spain
b Departamento de Estadística e Investigación Operativa III, Universidad Complutense de Madrid, 28040 Madrid, Spain

a r t i c l e i n f o

Article history:
Received 14 December 2010
Received in revised form 2 July 2012
Accepted 3 August 2012
Available online 17 August 2012

Keywords:
Decision support system
Gaussian Bayesian network
Sensitivity analysis
Robustness analysis

a b s t r a c t

In this work we study the effects of model inaccuracies on the description of a Gaussian
Bayesian network with a set of variables of interest and a set of evidential variables. Using
the Kullback–Leibler divergence measure, we compare the output of two different net-
works after evidence propagation: the original network, and a network with perturbations
representing uncertainties in the quantitative parameters. We describe two methods for
analyzing the sensitivity and robustness of a Gaussian Bayesian network on this basis.

In the sensitivity analysis, different expressions are obtained depending on which set of
parameters is considered inaccurate. This fact makes it possible to determine the set of
parameters that most strongly disturbs the network output. If all of the divergences are
small, we can conclude that the network output is insensitive to the proposed perturba-
tions. The robustness analysis is similar, but considers all potential uncertainties jointly.
It thus yields only one divergence, which can be used to confirm the overall sensitivity
of the network. Some practical examples of this method are provided, including a complex,
real-world problem.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

A Bayesian network (BN) is a probabilistic graphical model used to study a set of variables with a known dependence
structure. Probabilistic graphical models are framed in the field of AI to model uncertainty and numerous techniques have
been developed to improve models and its learning. Learning an optimal Bayesian network classifier is an NP-hard problem
then some algorithms has been developed to propose improvements to the traditional models (see [17]). Schemes to refine
rules and methods to develop learning algorithms reducing computational cost and improving learning accuracy can be
found in [31,32]. Computational intelligence techniques, as neural networks, support vector machines and extreme learning
machine (see [15]), have been used in many applications. Our interest models, BNs, are revealed to be one of the best tech-
nique to study this type of real world problems in a number of complex domains, including medical diagnosis or dynamic
systems, for example.

A BN has two components, as shown in Definition 1. The qualitative part is a directed acyclic graph (DAG) showing the
dependence structure of the variables. The quantitative part consists of conditional probability distributions assigned to the
problem variables giving their parents in the DAG.
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Building a BN is a complex task because it requires the specification of a large number of parameters subject to cognitive
biases [2]. The parameters are generally estimated from statistical data or assessed by human experts in the domain of
application. ‘‘Experts are often reluctant to assess all the parameters required, feeling that they are unable to give assess-
ments with a high level of accuracy’’ [6]. As a consequence of incompleteness of data and partial knowledge of the domain,
the assessments obtained inevitably are inaccurate [30]. With inaccurate parameters, network output after evidence prop-
agation may also be inaccurate, depending on the sensitivity of the model. Then, sensitivity analyses in BNs are necessary to
evaluate the effect of uncertainty in the network and to determine the values of the parameters to get accurate network
outputs.

Sensitivity analysis is a general technique for investigating the robustness of the output of a mathematical model and is
performed for various different purposes. The practicability of conducting such an analysis of a probabilistic network has
recently been studied extensively, resulting in a variety of new insights and effective methods. A survey with some of these
research results is in van der Gaag et al. [30].

Authors like Laskey [21], Coupé et al. [6,7], Chan and Darwiche [5] or Bednarski et al. [1] have studied the sensitivity in
discrete BNs, where the parameters are the conditional probabilities of variables given its parents in the DAG. Moreover, all
the papers mentioned above deal with variations in one parameter at a time holding the other fixed and with only one inter-
est variable, being the network output the probability distribution of the interest variable given the evidence.

An analysis considering the effects of variations in values of only one parameter, holding the other fixed, is called one way
sensitivity analysis. Then, next sensitivity analyses are one way sensitivity analyses.

Laskey [21] presents a methodology for analytic computation of sensitivity values in discrete BNs when there is only one
variable of interest in the problem. These sensitivity values measure the impact of small changes in the parameter on the
probability value of interest computing partial derivatives of output probabilities with respect to inaccurate parameters.

Coupé et al. [6] provide an elicitation procedure to assess values to the parameters in which, alternatively, sensitivity
analyses are performed and parameters assessments redefined. Given the highly time-consuming in [7] parameters that can-
not affect the output are studied.

Moreover, for discrete BNs, where parameters are conditional probabilities, [5] propose a distance measure between two
probability distributions to compute the amount of change that occurs when moving from one distribution to another. They
contrast the proposed measure with classical measures as the Kullback–Leibler (KL) divergence [20] and show that belief
change between two states of belief can be unbounded, even when their KL divergence tends to zero. They show, however,
that KL divergence can be used to compute the average change in beliefs. Despite this inappropriate behavior in discrete BN
it is shown [9] that KL measure is a good one to describe the effects of parameter perturbations in Gaussian models.

Finally, Bednarski et al. [1] focus their one way sensitivity analysis in identifying the set of sensibilities that affects the
variable of interest.

When the interest is about a set of parameters, then, the objective is to analyze the effects of variations in values of a set of
parameters at the same time, this analysis is called n-way sensitivity analysis. Authors like KJærulff and van der Gaag [19] or
Chan et al. [4] introduce n-way sensitivity analyses to identify multiple parameters changes in discrete BNs. In [4] only one
interest variable is considered while authors in [19] work with a set of interest variables.

Literature about sensitivity analysis in Gaussian Bayesian networks (GBNs) is not extensive. Authors like Castillo and
KJærulff [3] or Gómez-Villegas et al. [9,10] have studied the problem of uncertainty in parameters assignments in GBNs.

In [3] a one way sensitivity analysis based on [21] is proposed. Then the impact of small changes in the network param-
eters is studied evaluating local aspects of the distribution such as location and dispersion. In this analysis only one variable
of interest is considered. Moreover, the analysis also focuses on small changes about the parameters of the network and eval-
uates the impact of uncertainty on mean vector and covariance matrix.

In [9] a one way sensitivity analysis is proposed to evaluate the effects of small and large changes in the network param-
eters considering a global sensitivity measure. As in [5] this is a distance measure between two probability distributions, but
in this context – GBNs – the measure used is the KL divergence.

Moreover, in [10], the expressions obtained for the sensitivity analysis were evaluated in the limit, considering extreme
changes in the network parameters.

All the papers mentioned above deal with variations in one parameter at a time holding the others fixed. Then, both anal-
yses are one way sensitivity analysis.

The present paper aims to generalize the sensitivity analysis presented in [9] in two ways. First, by developing an n-way
version of the sensitivity analysis we hope to study the effects of perturbations in a set of parameters. Second, considering a
GBN with several variables of interest and evidential variables.

When analyzing the sensitivity of the network, we normally select a set of parameters to be reviewed. But it could also be
necessary to determine the simultaneous impact of all inaccuracies over the whole network. With this aim, we propose a
robustness analysis. This paper therefore offers two analysis methods: one for sensitivity, and another for robustness.

Other works have focused on uncertainty about the arcs of the DAG that describes the network. Authors like Renooij [28]
for discrete BNs or Gómez-Villegas et al. [11] for GBNs develop analyses to study the effect of adding or removing an arc of
the DAG, changing the dependence structure of the network. In both cases, the KL divergence is used to compare probability
distributions.

Thus, in a general framework we compute the KL divergence of the network output after evidence propagation under two
different models, the original and the perturbed, to evaluate the effect of inaccuracies in the assigned parameters.
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If all the divergences are small we can conclude that the network is not sensitive to the proposed perturbations. A similar
methodology for the robustness analysis is developed, but working with only one perturbed model where all inaccuracies
are considered at the same time.

Both analyses are applied to a GBN with various types of uncertainty. A complex, practical problem dealing with structure
reliability of a building is also studied.

This paper is organized as follows. In Section 2 we introduce BNs and GBNs. In Section 3, we describe our proposed meth-
odology for evaluating the sensitivity and robustness of a GBN. In Section 4 we present the results of these methods. In Sec-
tion 5 we introduce a simple GBN, and study its sensitivity and robustness under two different cases of uncertainty. In
Section 6, we apply the proposed methodology to a complex network. Finally, Section 7 summarizes our conclusions and
proofs with details about calculations of the proposed results are given in Appendix A.

2. GBNs and evidence propagation

Throughout this paper, random variables will be denoted by capital letters and their values by lowercase letters. In the
multidimensional case, boldface characters will be used.

Definition 1 (Bayesian network (BN)). A BN is a couple (G;P), where G is a DAG in which the nodes represent ordered random
variables X = {X1, . . . ,Xn} and the edges represent probabilistic dependencies and P ¼ fPðX1jpaðX1ÞÞ; . . . ; PðXnjpaðXnÞÞg is a set
of conditional probability distributions, where pa(Xi) is the set of parents of node Xi in G; paðXiÞ# fX1; . . . ;Xi�1g.

The set P defines the associated joint probability distribution:

PðXÞ ¼
Yn

i¼1
PðXijpaðXiÞÞ: ð1Þ

Among others, BNs have been studied by Pearl [26], Lauritzen [22], Cowell et al. [8] and Jensen et al. [16].

Definition 2 (Gaussian Bayesian network (GBN)). A GBN is a BN where the joint probability density associated with the
variables X = {X1, . . . ,Xn} is a multivariate normal distribution N(l,R) given by

f ðxÞ ¼ ð2pÞ�n=2jRj�1=2 exp �1
2
ðx� lÞ0R�1ðx� lÞ

� �
:

lis the n-dimensional mean vector and R is the n � n positive definite covariance matrix. The conditional probability density
for Xi (i = 1 . . . ,n) that satisfies (1) is the univariate normal distribution given by

XijpaðXiÞ � N li þ
Xi�1

j¼1

bjiðxj � ljÞ;v i

 !
ð2Þ

where li is the mean of Xi, bji is the regression coefficient of Xj when Xi is regressed on its parents, and vi is the conditional
variance of Xi given its parents.

It can be pointed out that if bji = 0 then there is no link from Xj to Xi. To get the covariance matrix R from {vi} and {bji} we
refer to the algorithm proposed by Shacker and Kenley [29] where the matrices D and B are defined next. Let D be a diagonal
matrix with the conditional variances vi, D = diag(v). Let B be a strictly upper triangular matrix with the regression coeffi-
cients bji where Xj is a parent of Xi, for the variables in Xwith j < i. Then, the covariance matrix R can be computed as

R ¼ ½ðI� BÞ�1�T DðI� BÞ�1 ð3Þ

For the calculations, the open source programming language and environment for statistical computing and graphics R [27],
is used.

Example 1. This problem models the amount of time that a machine will function before failing. The machine is made up of
5 elements, connected as shown in the DAG of Fig. 1, where the numbers of the edges are the coefficients bji. For example, the
time before failing of X3 depends on the time to fail of both, X1 and X2, with coefficients 2 and 1 respectively. Their joint
working time is assumed to be normally distributed, as is the working time of each element. Experts are interested in
predicting how long elements 3, 4 and 5 will continue working before they fail. Therefore, our main interest is in variables X3,
X4 and X5.

The quantitative part of the network, given by the conditional distributions in (2), is defined by

X1 � Nð2;3Þ
X2 � Nð3;2Þ
X3jX1 ¼ x1;X2 ¼ x2 � Nð3þ 2ðx1 � 2Þ þ 1ðx2 � 3Þ;1Þ
X4 � Nð4;2Þ
X5jX3 ¼ x3;X4 ¼ x4 � Nð5þ 1ðx3 � 3Þ þ 2ðx4 � 4Þ;3Þ
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The joint probability distribution of X = {X1,X2,X3,X4,X5} is therefore given by a multivariate normal distribution X � N(l,R),
with

l ¼

2

3

3

4

5

0
BBBBBBBB@

1
CCCCCCCCA

; R ¼

3 0 6 0 6

0 2 2 0 2

6 2 15 0 15

0 0 0 2 4

6 2 15 4 26

0
BBBBBBBB@

1
CCCCCCCCA

where the elements of the mean vector lare li for all Xi and the matrix has been calculated using (3).
As can be seen, all the connected variables have a nonzero value in the covariance matrix R. In addition to the arcs that

appear in the DAG that collect relations between parents and children, there are connections in serie between the variables
X1 and X5 through X3 as well as between X2 and X5. Also, two convergent connections exist because X1 and X2 have a common
effect, X3, as well as X3 and X4 have a common child, X5. Consequently, X1 and X5 are independent given X3 and so are X2 and
X5. However, X1 and X2 are conditionally dependent given X3 as well as X3 and X4 are also conditionally dependent given X5.
More information about connections in DAGs can be found in [16].

2.1. Evidence propagation in GBNs

The main result associated with BNs is the inference process known as evidence propagation. If there exists evidence or
information about the value of a variable in the problem, this mechanism updates the probability distribution of other vari-
ables in the network.

Several algorithms have been developed to propagate evidence in BNs. For GBNs, some of these are based on methods
developed for discrete BNs. Two examples are the algorithm introduced by Xu and Pearl [34], and the propagation method
proposed by Normand and Tritchler [25] using Pearl’s polytree algorithm [26].

Otherwise, evidence propagation in GBNs is generally based on computing the conditional probability distribution of a
multivariate normal distribution given a set of evidential variables, i.e., given a set of variables with known states. Then,
we can consider X = (Y,E)0, where Y is the set of variables of interest and E is the set of evidential variables. e is the evidence
about the variables in E.

For simple and efficient propagation, an incremental method is used to update one evidential node at a time [3]. After
the evidence propagation the network output is given by the distribution of YjE, being YjE � NðlYjE; RYjEÞ with parameters:

lYjE ¼ lY þ RYER
�1
EE ðe� lEÞ

RYjE ¼ RYY � RYER
�1
EE REY

ð4Þ

A particular situation is given in the following example.

Example 2. Working with the GBN introduced in Example 1, presume that we have evidence about the values of X1 and X2.
Let E = {X1 = 2, X2 = 4} represent this evidence.

Fig. 1. DAG of Example 1.

442 M.A. Gómez-Villegas et al. / Information Sciences 222 (2013) 439–458



Author's personal copy

The incremental method considers X1 = 2, computes the distribution for X2, X3, X4, X5jX1 = 2, and only then considers
X2 = 4. After evidence propagation, the probability distribution of the variables of interest Y = (X3,X4,X5), given the evidence
E = {X1 = 2, X2 = 4}, i.e. the network output, is YjE � NðlYjE; RYjEÞ with parameters

lYjE ¼
4
4
6

0
B@

1
CA; RYjE ¼

1 0 1
0 2 4
1 4 12

0
B@

1
CA

3. Sensitivity and robustness

The methods developed in this work essentially consist of comparing the network output under two different models, the
original model and the perturbed model.

The original model is given by the initial parameters associated with the quantitative part of the GBN, i.e., the initial val-
ues estimated from statistical data or assigned by experts to l and R. The perturbed model quantifies uncertainty in the
parameters by introducing two sets of additive perturbations: d for the mean, and D for the covariance matrix.

Thus, to achieve an n-way sensitivity analysis, we must compare five different types of perturbed models to the original
model. The type of model depends on which parameters are thought to be inaccurate. This construction generalizes the re-
sult reported by [9]. To obtain the five perturbed models, consider the following partition of the perturbations

d ¼
dY

dE

� �
D ¼

DYY DYE

DEY DEE

� �

� When there is uncertainty in the mean of the variables of interest, the perturbed model is X � NðldY ;RÞ with

ldY ¼
lY þ dY

lE

� �

� When there is uncertainty in the mean of the evidential variables, the perturbed model is X � NðldE ;RÞ being

ldE ¼
lY

lE þ dE

� �

� When there is uncertainty in the variances and covariances between the variables of interest, the perturbed model is
X � Nðl;RDYY Þ. The covariance matrix RDYY must be positive definite, and is given by

RDYY ¼
RYY þ DYY RYE

REY REE

� �

� When there is uncertainty in the variances and covariances between the evidential variables, the perturbed model is
X � Nðl;RDEE Þ. The covariance matrix RDEE must be positive definite, and has the following form:

RDEE ¼
RYY RYE

REY REE þ DEE

� �

� When there is uncertainty in the covariances between the variables of interest and the evidential variables, the perturbed
model is X � Nðl;RDYE Þ. The covariance matrix RDYE must be positive definite, and has the following form:

RDYE ¼
RYY RYE þ DYE

REY þ DT
YE REE

� �

The KL divergence is used to compare the network output of the perturbed model, obtained as shown before, with the net-
work output of the original model. Obviously outputs of the networks are obtained after evidence propagation. We thereby
obtain five different divergence measures, one for each of the perturbed models considered.

If all the divergences are close to zero, it can be concluded that the network is not sensitive to any of the proposed per-
turbations. In this case, the network is said to be robust to the proposed perturbations. Of course, even in this case the diver-
gences could be useful to compare different networks or sensitivity to different sets of perturbations in the same network.

This paper also develops a method for analyzing the global robustness that considers only one perturbed model. This
analysis evaluates the effects of uncertainty and inaccuracy in all parameters simultaneously. Specifically, the perturbed
model is obtained by adding all perturbations, X � N(ld,RD) = N(l + d,R + D), where d is a perturbation to the mean vector
and D is a perturbation to the covariance matrix. Evidence propagation is then performed and their outputs are compared
using the KL divergence, as with the sensitivity analysis. This divergence provides a global measure of the difference between
two probability distributions, rather than comparing their local features, and it is useful for comparisons with other uncer-
tain situations.
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The KL divergence evaluates the amount of information available to discriminate between two probability distributions,
and it is used to compare the overall behavior of the considered probability distributions. Furthermore, this measure is useful
when researcher has no idea about which characteristics of the variables of interest are most representative.

4. Main results

The original network output is given by the conditional probability density f of the distribution YjE � NðlYjE; RYjEÞ. The
perturbed network output is given by the conditional probability density f pj of the distribution YjE, pj � NðlYjE;pj ; RYjE;pj Þ.
Comparing the two with the KL divergence, the expectation with respect to the density f is as follows,

KLpj ðf pj jf Þ ¼ Ef ln
f

f pj

� �
¼ 1

2
� ln jRYjE RYjE;pj

� 	�1j þ trace RYjE RYjE;pj
� 	�1


 �
� dimðYÞ

h i

þ 1
2

lYjE;pj � lYjE� 	T
RYjE;pj
� 	�1 lYjE;pj � lYjE� 	h i

ð5Þ

For calculations as well as some other interesting aspects of this divergence measure for Gaussian distributions see [33].
Also it can be pointed that direct evaluation of KL divergence for Gaussian distributions has a computational complexity

of order O(q3) being q the dimension of Y, the vector of interest variables. Therefore, the difference in usage between single
perturbation variable and a set of perturbation variables depends on the size of the set of variables of interest because that is
the dimension of the square matrices involved in calculations.

The next subsections give a detailed analysis of the different types of perturbations with some comparisons of the output
effects they can produce. For the proofs see Appendix A.

4.1. Uncertainty about the mean vector

In Proposition 1 we detail the KL divergence when uncertainty is displayed only in the mean vector and may be in the
mean of Y or the mean of E. Then, in Proposition 2 we introduce an upper limit for such measures, so that will limit the val-
ues of KL divergence for any value delta perturbation.

Proposition 1. Let ðG;PÞ be a GBN with X � N(l,R), where X = {Y,E}, Ybeing the set of variables of interest and E being the set of
evidential variables. For d, the perturbation of the mean vector d = (dY,dE)T, the following results hold.

1. When the perturbation dY is added to the mean vector of the variables of interest, after evidence propagation the perturbed
model is YjE, dY � NðlYjE;dY ; RYjEÞ, with lYjE;dY ¼ lYjE þ dY , and the KL divergence is given by

KLlY ðf lY jf Þ ¼ 1
2

dT
Y RYjE� 	�1

dY

h i
2. When the perturbation dE is added to the mean vector of the evidential variables, the perturbed model after evidence propaga-

tion is YjE, dE � NðlYjE;dE ; RYjEÞ, with lYjE;dE ¼ lYjE � RYER
�1
EE dE, and the KL divergence is

KLlE ðf lE jf Þ ¼ 1
2

dT
E RYER

�1
EE

� 	T
RYjE� 	�1

RYER
�1
EE

� 	
dE

h i
When the uncertainty is only about the mean vector, the expression in (5) is reduced to the mean vector components.

Therefore both expressions in Proposition 1 are similar in the sense that the KL divergence is half the product of the trans-
posed perturbation by some components of the covariance matrix by the perturbation (dY or dE). In both cases the inverse of
the covariance matrix appears after evidence propagation. To fully understand the expressions described in Proposition 1, a
single perturbation can be considered in the vector dY or dE, so that vector consists of zeros except a value nonzero. In that
case, it is observed that the perturbation appears in quadratic form, being the KL divergence a parabola centered at zero
(when there is no perturbation). For a more detailed analysis of divergences when uncertainty appears in the mean of a sin-
gle node in the network, you can see [10].

The KL divergence obtained for the inaccurate mean vector of the evidential variables is the same as the divergence mea-
sure for a perturbation of the evidence vector e. This gives us a tool to evaluate the influence of extreme evidence on the
network output.

To establish some bounds on these divergence measures we can use the Cauchy–Schwarz inequality that gives rise to the
Maximization Lemma for positive definite matrices [18].

Proposition 2. For perturbations in the mean vector next maximum values for the divergence measure can be obtained

1. If the mean vector of the variables of interest is perturbed with some perturbations dY such that its Euclidean norm
kdYk2

2 ¼ dT
YdY 6 r2 it can be shown

KLlY ðf lY jf Þ 6 kdYk2
2

2kq
6

r2

2kq
ð6Þ
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if k1 P � � �P kq are the ordered eigenvalues of RYjE. Also the maximum is attained with r ⁄ eq being eq the corresponding
eigenvector.

2. For the case of perturbations dE in the mean vector of evidence variables such that,

RYER
�1
EE dE

�� ��2

2 ¼ kBYjEdEk2
2 6 r�2

it holds

KLlE ðf lE jf Þ 6 kBY jEdEk2
2

2kq
6

r�2

2kq
ð7Þ

if k1 P � � �P kq are the ordered eigenvalues of RYjE. Also it can be pointed that BYjE ¼ RYER
�1
EE is the matrix of regression

coefficients of Y on E.

The expressions introduced in Proposition 2 lead us to calculate an upper bound for the KL divergence. These results are
useful because they may set an upper bound to the divergence given the uncertainty.

4.2. Uncertainty about the covariance matrix

In Propositions 3 and 4 we studied uncertainty, with the KL divergence, when the inaccurate parameters are in the covari-
ance matrix. For uncertainties related to the covariance matrix, the covariance matrices of the perturbed models have to be
positive definite. Moreover, Proposition 4 leads us to fix an upper limit for expressions obtained in Proposition 3, so that will
limit the values of KL divergence for some perturbations associated to uncertainty of the covariance matrix.

Proposition 3. Let (G,P) be a GBN with X � N(l,R) and X = {Y,E}, Y being the set of variables of interest and E being the set of
evidential variables. The perturbed covariance matrix D is

D ¼
DYY DYE

DEY DEE

� �

All the covariance matrices considered in this framework have to be positive definite. The results are as follows:

1. When a perturbation DYY is added to the variances and covariances of the variables of interest, the perturbed model
after evidence propagation is given by YjE, DYY � NðlYjE; RYjE;DYY Þ, with RYjE;DYY ¼ RYjE þ DYY, and the KL divergence is
given by

KLRYY ðf RYY jf Þ ¼ 1
2
� ln jRYjEðRYjE;DYY Þ�1j þ traceðRYjEðRYjE;DYY Þ�1Þ � dimðYÞ
h i

2. When a perturbation DEE is added to the variances and covariances of the evidential variables, the perturbed model after
evidence propagation is given by YjE, DEE � NðlYjE;DEE ; RYjE;DEE Þ, with lYjE;DEE ¼ lY þ RYEðREE þ DEEÞ�1ðe� lEÞ and
RYjE, DEE = RYY � RYE(REE + DEE)�1REY. The KL divergence is

KLREE ðf REE jf Þ¼1
2
�ln jRYjEðRYjE;DEE Þ�1jþ traceðRYjEðRYjE;DEE Þ�1Þ�dimðYÞ
h i

þ1
2
½ðlYjE;DEE�lYjEÞTðRYjE;DEE Þ�1ðlYjE;DEE �lYjEÞ�

3. When a perturbation DYE is added to the covariances between Y and E, the perturbed model af ter evidence propagation
is YjE, DYE � NðlYjE;DYE ; RYjE;DYE Þ, with lYjE;DYE ¼ lY þ ðRYE þ DYEÞR�1

EE ðe� lEÞ and RYjE,DYE = RYY � (RYE + DYE) REE
�1

(REY + DEY). The KL divergence is

KLRYEðf RYE jf Þ ¼ 1
2
� ln jRYjEðRYjE;DYE Þ�1j þ traceðRYjEðRYjE;DYE Þ�1Þ � dimðYÞ
h i
þ 1

2
ðe� lEÞ

T R�1
EE

� 	T
DT

YE RYjE;DYE
� 	�1

DYER�1
EE ðe� lEÞ

h i
:

As can be seen in Proposition 3, when the uncertainty is between the variances and covariances of Y, i.e., DYY is nonzero,
the covariance matrix after the evidence propagation is the only element to be disturbed. However, for the remaining cases,
perturbation is reflected both in the mean vector and in the covariance matrix after the evidence propagation.

Therefore, the first expression of Proposition 3 corresponds only to the first part of the expression in (5), depending on the
logarithm of the product of the inverse of the covariance matrix given the uncertainty by the matrix covariance without
uncertainty, in both cases after the evidence propagation and depending on the trace of this product. Moreover, this expres-
sion depends on the dimension of Y.

In all other expressions of Proposition 3, corresponding to uncertainty covariance of E, then DEE – 0, and between covari-
ance of Y and E, where DYE – 0, in addition to the terms discussed above, it also shows the average component of (5).
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To establish some bounds for the cases of covariance submatrices perturbations some concepts have to be fixed because
we have to obtain positive definite covariance matrices. Firstly, for additive perturbations the notion of interval matrix can
be used [12]. Let R⁄ and D be symmetric real n � n matrices, D P 0. The set of matrices

RI ¼ ½R� � D;R� þ D� ¼ fR; R� � D 6 R 6 R� þ Dg

where the inequalities are to be understood componentwise, is called a symmetric interval matrix. As a first step, conditions
of positive definiteness of interval matrices [13,14] are given by

qðjR��1jDÞ < 1 or
qðDÞ < kminðR�Þ

being q() and kmin() the spectral radius and the minimum eigenvalue of a matrix. Thus, we can consider interval covariance
matrix as the set of perturbed covariance matrices {R ± D0} with 0 6 D0 6 D and then kD0k2

F 6 kDk
2
F ¼ r2 being

kAk2
F ¼ traceðAATÞ the Euclidean norm applied to matrices that is usually called the Frobenius norm. With these conditions,

next results give upper bounds for the Kullback–Leibler divergences in Proposition 4.

Proposition 4. Let us consider perturbations in the submatrices of the original covariance matrix with interval covariance
matrices. Let f ðxÞ ¼ lnð1þ xÞ � x

1þx, then

1. If a perturbation DYY is added to RYY satisfying next condition,

qðDYYÞ < minfkminðRYYÞ; kminðRYjEÞg ð8Þ

then, the perturbed covariance matrices RYY + DYY and RYjE,DYY are positive definite. Also it can be shown

KLRYY ðf RYY jf Þ 6 1
2

dimðYÞmaxff ðkmaxðDYYðRYjEÞ�1ÞÞ; f ðkminðDYYðRYjEÞ�1ÞÞg:

2. If a perturbation DEE is added to REE satisfying next conditions

qðDEEÞ < kminðREEÞ; and

q D�EE

� 	
< kminðRYjEÞ

ð9Þ

with DEE
⁄ = BYjEDEE(REE + DEE)�1REY then, the perturbed covariance matrices REE + DEE and RYjE,DEE are positive definite.

Also it can be shown

KLREE ðf REE jf Þ 6 1
2

dimðYÞmaxff ðkmaxðD�EEðRYjEÞ�1ÞÞ; f ðkminðD�EEðRYjEÞ�1ÞÞg þ 1
2

d�EE

� 	T
RYjE þ D�EE

� 	�1
d�EE

� 	h i

for dEE
⁄ = BYjEDEE(REE + DEE)�1(e � lE).

3. If a perturbation DYE is added to RYE satisfying next condition

q D�YE

� 	
< kminðRYjEÞ ð10Þ

with D�YE ¼ �ðDYEBT
YjE þ BYjED

T
YE þ DYER

�1
EE DEYÞ, then RYjE,DYE is positive definite and

KLRYE ðf RYE jf Þ 6 1
2

dimðYÞmax f kmax D�YEðRYjEÞ�1

 �
 �

; f kmin D�YEðRYjEÞ�1

 �
 �n o

þ 1
2

d�YE

� 	T
RYjE þ D�YE

� 	�1
d�YE

� 	h i
for dYE

⁄ = DYE(REE)�1(e � lE).

With the results presented in Proposition 4 it is possible to set an upper bound for the KL divergences introduced in Prop-
osition 3, given certain conditions shown in this Proposition 4.

If there exist some inaccuracies in the parameters describing a GBN, it is possible to carry out the proposed sensitivity
analysis using the expressions given in Propositions 1 and 3.

If we compare the expressions obtained in both propositions we see that the expressions in Proposition 1 only depend on
changes in the mean vector. The first expression of Proposition 3 only depends on changes in the covariance matrix. Finally,
in the last two expressions of Proposition 3, mean, variances and covariances are perturbed. Therefore both expressions are
similar and depend on both the mean vector and the covariance matrix. In all cases, the considered parameters are the per-
turbed ones after the evidence propagation.

Then, by computing the KL divergence for each case, we can determine which set of parameters must be reviewed to de-
scribe the network more accurately.

Propositions 2 and 4 show upper bounds for the expressions computed in Propositions 1 and 3.

446 M.A. Gómez-Villegas et al. / Information Sciences 222 (2013) 439–458



Author's personal copy

4.3. Uncertainty about the mean vector and the covariance matrix

If in Propositions 1 and 3 all the divergences are close to zero, it is possible to conclude that the network is not sensitive to
the proposed perturbations. For this reason we have developed a simple method of analyzing robustness as well. The method
is based on comparing the original network output after evidence propagation, given by the conditional probability density f
of the distribution YjE � N(lYjE,RYjE), to the perturbed network output, given by the conditional probability density fd,D of
the distribution YjE, d, D � N(lYjE,d,D,RYjE,d,D). Thus, for this analysis only one perturbed model is considered. In this case
the KL divergence yields

KLðf d;Djf Þ ¼ Ef ln
f

f d;D

� �

¼ 1
2
� ln jRYjEðRYjE;d;DÞ�1j þ trace RYjEðRYjE;d;DÞ�1


 �
� dimðYÞ

h i
þ 1

2
ðlYjE;d;D � lYjEÞTðRYjE;d;DÞ�1ðlYjE;d;D � lYjEÞ
h i

ð11Þ

By computing this expression, we can decide whether or not the GBN is robust under the considered perturbations.
McCulloch [24] introduces a calibration for the KL divergence that can be used as a guide to evaluate the value obtained
for the KL measure. Nevertheless, if the KL divergence is very close to zero, then the network is robust to these perturbations;
otherwise, it is necessary to review the parameters assigned to the quantitative part of the network in more detail. If we
consider interval covariance matrices for perturbations,

lYjE;d;D ¼ lYjE þ d�ðd;DÞ
RYjE;d;D ¼ RYjE þ D�ðDÞ

then, similar results as those obtained previously for the upper bounds can be shown.
The sensitivity and robustness analyses introduced in this section are implemented with a polynomial algorithm that

computes the divergences from a set of uncertain parameters.

5. Application of results

We present two different examples, which make different assumptions about the degree of uncertainty. In both examples
the network is built and an expert, who has not been part of the process of building it, disagrees with some of the parameters
describing the model.

Example 3 shows some of the uncertainties more decisive for the expert that disagrees with the network. Example 4, in
addition to those uncertainties of Example 3, is regards more uncertainties in the parameters. Then, all the uncertainties
listed in Example 3 also appear in Example 4 together with some other more. Therefore, it is expected that the network’s
output of Example 4 is more sensitive than the network’s output of Example 3 for uncertainty introduced because all uncer-
tainty in Example 3 is in Example 4 and that the analyses proposed reflect this situation.

These perturbations are proposed by the expert as could have chosen any other perturbation given its experience. The
only one restriction is to keep the covariance matrix positive definite before the evidence propagation; this is the only
restriction on the setting of D, while for values of d there is no restriction. Then, the examples introduced in this Section are
characterized by perturbations collected in Example 3 and they are also in Example 4 together with some further perturba-
tions. Moreover, for all proposed perturbations to the covariance matrix, D, the perturbed matrices obtained after adding the
partition of D in the covariance matrix, must be positive definite.

Example 3. For the GBN in Example 1, assume that experts disagree on the values of some parameters. For example, the
mean of X5 could be either 4 or 5. They also offer different opinions about the variances of X2, X3 and X5, and about the
covariance between X1 and X3. When we quantify these uncertainties, the perturbed mean vector d and the perturbed
covariance matrix D are

d ¼

0
0
0
0
�1

0
BBBBBB@

1
CCCCCCA

; D ¼

0 0 �1 0 0
0 3 0 0 0
�1 0 2 0 0
0 0 0 0 0
0 0 0 0 2

0
BBBBBB@

1
CCCCCCA

Again, the set of variables of interest is Y = (X3,X4,X5) and the set of evidential variables is E = {X1 = 2,X2 = 4}.
As can be seen, there is uncertainty about some of the parameters describing the network. This uncertainty is reflected in

the vector d and the matrix D. Then, we can now study the sensitivity of the network given the uncertainty d and D. We set
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dY ¼
0
0
�1

0
B@

1
CA; dE ¼

0
0

� �

DYY ¼
2 0 0
0 0 0
0 0 2

0
B@

1
CA; DEE ¼

0 0
0 3

� �
; DYE ¼

�1 0
0 0
0 0

0
B@

1
CA

The methodology proposed let us to evaluate different sets of uncertainty using the expressions shown in Propositions 1
and 3. With the obtained results, it is possible to compare different uncertainty situations and determine the set of param-
eters that must be described with great precision.

Then, next results are obtained

KLlY ðf lY jf Þ ¼ 0:167

KLlE ðf lE jf Þ ¼ 0

KLRYY ðf RYY jf Þ ¼ 0:338

KLREE ðf REE jf Þ ¼ 0:203

KLRYEðf RYE jf Þ ¼ 0:447

Note that all the divergences are not too large, in the sense of [24]. Then with the uncertainty proposed we conclude the
network is not very sensitive to the proposed block perturbations.

Notice that KLlE ðf lE jf Þ ¼ 0, because there are no perturbations added to lE. Thus, dE is zero.
With this sensitivity analysis it seems that the network is rather robust under the proposed perturbations. This can be

checked by computing expression (11). Then, the KL divergence is computed for the whole set of perturbations and therefore
the robustness of the network to these global perturbation can be studied.

KLðf d;Djf Þ ¼ 0:857

The divergence that determines the robustness of the model is small and consequently the network is considered robust
for uncertainty of the example.

We can also compare the effect of different individual perturbations

dY ¼
dX3

dX4

dX5

0
B@

1
CA; dE ¼

dX1

dX2

� �

making calculations for each dXi
from �1 to 1 by 0.001 when the remaining variables are not perturbed. Fig. 2 illustrates the

resulting divergences with large values for perturbations in X1 and rather small for X5 perturbations.

Fig. 2. KLl divergence measures to perturbations in the individual components of the mean vector of Example 1.
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Using the upper bounds results for perturbations such that kd0Yk
2
F 6 1 and the minimum eigenvalue of RYjE given by

0.393314, we have

KLlY ðf lY jf Þ 6 1
2ð0:3933140Þ ¼ 1:2712

where the maximum is attained with d�Y ¼
�0:52
�0:79
0:32

0
@

1
A, the corresponding eigenvector.

Perturbing the submatrices of the covariance matrix with symmetric interval matrix we obtain positive definite covari-
ance matrices after perturbations. This condition restrict perturbations to matrices with small values but preserving the
structure of the example perturbations.

In particular, the condition (8) holds for

DP
YY ¼ 0:18DYY ¼

0:36 0 0
0 0 0
0 0 0:36

0
B@

1
CA

then for 0 6 D0YY 6 DP
YY with D0YY

�� ��2
F 6 DP

YY

�� ��2

F ¼ ð0:51Þ2 we have

KLRYY ðf RYY jf Þ 6 0:11:

As for the condition (9) the particular perturbation

DP
EE ¼ 0:17

0 0
0 3

� �
¼

0 0
0 0:51

� �

then for 0 6 D0EE 6 DP
EE with D0EE

�� ��2
F 6 DP

EE

�� ��2

F ¼ ð0:51Þ2 we have

KLREE ðf REE jf Þ 6 0:093:

Finally, given that the matrix D�YE ¼ DYEBT
YjE þ BYjED

T
YE þ DYER

�1
EE DEY has to satisfy condition (10) we can use

DYE ¼
�0:08 0

0 0
0 0

0
B@

1
CA

and the corresponding

D�YE ¼
0:318 0 0:16

0 0 0
0:16 0 0

0
B@

1
CA

with kD�YEk
2
F ¼ ð0:392Þ2, to obtain

KLRYE ðf RYE jf Þ 6 0:059

With respect to the calibration of the KL divergences, the Table 1 in [24] could be considered.

Example 4. Working with the GBN given in Example 1, the experts now disagree on the values of more parameters. We
introduce uncertainty into the parameters that describe X4 and X2, so that the perturbed mean vector d and perturbed
covariance matrix D are

d ¼

0
2
0
1
�1

0
BBBBBB@

1
CCCCCCA

; D ¼

0 1 �1 0 0
1 3 0 0 1
�1 0 2 0 0
0 0 0 1 2
0 1 0 2 2

0
BBBBBB@

1
CCCCCCA

The variables of interest are still Y = (X3,X4,X5), and the evidential variables E = {X1 = 2,X2 = 4}.
In this example the uncertainty of the parameters describing the network is larger than in the previous example. Now

there is uncertainty in all parameter sets (remember that in the above example there is no uncertainty associated with
the mean of the evidential variables). Again, we use the methodology proposed in this paper. Thus, to perform the proposed
sensitivity analysis, the new partitions are

dY ¼
0
1
�1

0
B@

1
CA; dE ¼

0
2

� �
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DYY ¼
2 0 0

0 1 2

0 2 2

0
B@

1
CA; DEE ¼

0 1

1 3

 !
; DYE ¼

�1 0

0 0

0 1

0
B@

1
CA:

Computing expressions in Propositions 1 and 3, the KL divergences obtained are

KLlY ðf lY jf Þ ¼ 1:75

KLlE ðf lE jf Þ ¼ 2

KLRYY ðf RYY jf Þ ¼ 0:49

KLREE ðf REE jf Þ ¼ 0:383

KLRYEðf RYE jf Þ ¼ 1:888

To evaluate the obtained values for the KL measure, McCulloch [24] introduces a calibration for the KL divergence. As can
be seen, in this example divergences are larger than in the previous one. If the KL divergence is close to zero the network is
not sensitive to these perturbations, otherwise experts should review the literature and databases again to be more precise
when defining the parameters.

In this case, some divergences are larger than 1. We can therefore conclude that the network is very sensitive to the pro-
posed perturbations. Then, the parameters of the mean vector and the covariances between interest and evidential variables
should be reviewed to describe the GBN more accurately.

When evaluating the robustness of the network, we obtain a very large value for the total KL divergence:

KLðf d;Djf Þ ¼ 17:022

For a better understanding of the problem, can be made some more general perturbations. Let

dY ¼
0

dX4

dX5

0
B@

1
CA; dE ¼

dX1

dX2

 !

with kdYk2
F 6 2 and kdEk2

F 6 4. The calculations of the KL measure for simultaneous perturbations in an extremely fine grids
for ðdX4 ; dX5 Þ and ðdX1 ; dX2 Þ are presented in Figs. 3 and 4 respectively. Also it is obtained the maximum divergence for dY per-
turbations in the grid is 2.0868, attained for dX4 ¼ 1:3228 and dX5 ¼ �0:5. For dE perturbations in the grid, the largest devi-
ation is 9.9994 for dX1 ¼ 1:792; dX2 ¼ 0:904.

To explore DYY perturbations satisfying the positive definiteness conditions required, we will use a uniform discrete grid
of dvarðX3Þ and dvarðX5Þ values from 0 to 2 by 0.005 representing perturbations in the variances of X3 and X5 with their KL mea-
sures in Fig. 5. Also a grid for perturbations in the variance of X4 and the covariance of X4 and X5 and the KL values are shown
in Fig. 6.

Also, DEE perturbations can be studied in some general scenarios. Then, a grid for perturbations in the variances of X1 and
X2 from 0 to 1 by 0.001 with the KL measures are illustrated in Fig. 7 and for perturbations in the variance of X2 from 0 to 3 by
0.005 and in the covariance of X1 and X2 from 0 to 1.5 by 0.001 in Fig. 8. In this last graphic, a very large increase is observed
for perturbations in the region dcovðX1 ;X2Þ > 1 and dvarðX2Þ close to zero.

Finally, the study of DYE perturbations only for some small values that result in positive definite covariance matrices is
presented in Fig. 9 with perturbations in the covariance of X3 and X1 and in the covariance of X5 and X2 simultaneously. Some
interesting effects are observed with respect to the robustness of the network from this type of uncertainty.

Summing up, the KL divergence that evaluates the robustness of the network is not small. Again, we can conclude that
some parameters must be reviewed to describe the network more accurately, as we determined with the sensitivity analysis.
Specifically, mean vector uncertainty introduce a large fluctuation in the network output that is enlarged if we add some
other parameter perturbations.

If we study upper bounds in this case we have:

1. For general d0Y perturbations such that kd0Yk
2
F 6 kdYk2

F ¼ 2;

KLlY ðf lY jf Þ 6 2:542

and the maximum is attained in
�0:741
�1:118
0:449

0
@

1
A

2. In this example, for d0E perturbations such that kd0Ek
2
F 6 kdEk2

F ¼ 4 and kBY jEd
0
Ek

2
2 6 kBYjEdEk2

2 ¼ 8 the upper bound is

KLlE ðf lE jf Þ 6 10:17:

3. For 0 6 D0YY 6 DP
YY with D0YY

�� ��2
F 6 DP

YY

�� ��2

F ¼ ð0:41Þ2 we have
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KLRYY ðf RYY jf Þ 6 0:035

with DP
YY ¼ 0:1DYY ¼

0:2 0 0
0 0:1 0:2
0 0:2 0:2

0
@

1
A:

4. For 0 6 D0EE 6 DP
EE with D0EE

�� ��2
F 6 DP

EE

�� ��2

F ¼ ð0:3Þ
2 we have

KLREE ðf REE jf Þ 6 0:134

with DP
EE ¼ 0:09DEE ¼

0 0:09
0:09 0:27

� �
5. And for the last case, if we have D��YE

�� ��2
F ¼ ð0:445Þ2, it holds

KLRYE ðf RYE jf Þ 6 0:088

with DP
YE ¼ 0:095DYE ¼

�0:095 0
0 0
0 0:095

0
@

1
A. Again the mean vector perturbations attain the larger bounds.

Fig. 3. KLlY divergence measures to simultaneous perturbations in the means of the variables of interest X4 and X5 of Example 1 such that jdYk2
2 6 2.

Fig. 4. KLlE divergence measures to simultaneous perturbations in the means of the evidential variables X1 and X2 of Example 1 such that kdEk2
2 6 4.
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Fig. 5. KLRYY divergence measures to simultaneous perturbations in the variances of X3 and X5 of the block RYY of Example 1.

Fig. 6. KLRYY divergence measures to simultaneous perturbations in the covariance of X4 and X5 and the variance of X4 of the block RYY of Example 1.

Fig. 7. KLREE divergence measures to simultaneous perturbations in the variances of X1 and X2 of the block REE of Example 1.
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As seen in previous examples, the methodology proposed in this paper is useful to determine the parameters that must be
described accurately in a Gaussian Bayesian network. Furthermore, it is easy to use and allows to describe the network
accurately.

6. Case study: damage assessment of a reinforced concrete structure

In this section, we study a complex problem (see [3]). Its objective is to assess the extent of damage to a building’s rein-
forced concrete structures. Other authors [23] use this example to study sensitivity to kurtosis deviations from Gaussianity.

As shown in Table 1, 24 variables are necessary to describe the problem. Variables X17, . . . ,X23 are intermediate, unobserv-
able variables defining some partial states of the structure. It is assumed that an expert can examine a given concrete beam
to sequentially obtain the values of X1, . . . ,X16. We consider E = (X1, . . . ,X16) to be evidential variables, and Y = (X17, . . . ,X24) to
be variables of interest.

The DAG that represents the dependence structure of the variables is shown in Fig. 10. The mean of every variable is zero.
The covariance matrix is computed using the coefficients bji shown in the edges of Fig. 10. The conditional variances are set to
1 for observable variables, and to 10�4 for other variables.

The evidence proposed is E = {X1 = 1, . . . ,X16 = 1}. A complete description of this model and its evidence is given in [3].
There is uncertainty in some means and conditional variances of the network. Two of the evidential variables, X15 and X16,

are close to X24 in value. The variable of interest X24 is also defined with uncertainty. It is thus plausible to define a perturbed

Fig. 8. KLREE divergence measures to simultaneous perturbations in the variance of X2 and the covariance of X1 and X2 of the block REE of Example 1.

Fig. 9. KLRYE divergence measures to simultaneous perturbations the covariance of X3 and X1 and the covariance of X5 and X2 of the block RYE of Example 1.
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model where the means of X15, X16 and X24 are set to 1 instead of zero. The conditional variances of these variables are set to
1.5 instead of 1 (remember that X24 is an observable variable of interest) then we have a perturbation DD for D.

To study the sensitivity and robustness of this network, first it is necessary to compute the joint probability distribution of
the perturbed model. Using (3) the perturbation of the covariance matrix, D, is obtained from

Rþ D ¼ ½ðI� BÞ�1�TðDþ DDÞðI� BÞ�1

and then it is partitioned as follows:

D ¼
DYY DYE

DEY DEE

� �

and with the previous results we have,

KLlY ðf lY jf Þ ¼ 0:5
KLlE ðf lE jf Þ ¼ 0:5

KLRYY ðf RYY jf Þ ¼ 0:0704

KLREE ðf REE jf Þ ¼ 0:0539

KLRYEðf RYE jf Þ ¼ 1:1272

Table 1
Description of the case study variables.

Xi Description

X1 Corrosion
X2 Shrinkage
X3 Number of flexure cracks
X4 Number of shear cracks
X5 Content of chlorine in the air
X6 pH value in the air
X7 Humidity
X8 Structure age
X9 Cover
X10 Length of the worst flexure cracks
X11 Breadth of the worst flexure crack
X12 Position of the worst flexure crack
X13 Breadth of the worst shear crack
X14 Position of the worst shear crack
X15 Deflection of the beam
X16 Weakness of the beam
X17 Corrosion state
X18 Worst cracking in flexure domain
X19 Shrinkage cracking
X20 Cracking state in flexure domain
X21 Steel corrosion
X22 Cracking state in shear domain
X23 Cracking state
X24 Damage assessment

Fig. 10. DAG for the damage assessment of reinforced concrete structure with bji values.
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On the basis of these values, we conclude that the proposed uncertainties do not disturb too much the network output
after evidence propagation. Nevertheless, the parameters that describe covariances between evidential and interest variables
should be examined more carefully, because the divergence measure KLRYE ðf RYE jf Þ is over 1.

To complete this example, we study the robustness of the network under the proposed uncertainties. The KL divergence
shows that the network is robust to these perturbations because the KL divergence has decreased to

KLðf d;Djf Þ ¼ 0:03606

In fact, the global effect of different parameter perturbations is smaller than the particular deviations that can be ex-
plained if viewed as the result of opposing effects. Some perturbations dX15 and dX16 , for the means of X15 and X16, in a grid
with values from �1 to 1 by 0.005 are considered and the corresponding KL measures presented in Fig. 11. Also we can study
the effect of d perturbation same in all the conditional variances of X15, X16 and X24 with d ranging from 0 to 0.5 by 0.05 and
make comparisons on the divergences related to perturbations in the different blocks as well as in the total covariance ma-
trix as it is shown in Fig. 12. As expected the highest values correspond to induced RYE perturbations and the global KL is
always below.

Fig. 11. KLlE divergence measures to simultaneous perturbations in the means of the evidential variables X15 and X16 of Case Study such that kdEk2
2 6 2.

Fig. 12. KL divergence measures to perturbations in the different blocks by d perturbation to be the same in all the conditional variances of X15, X16 and X24.
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Thus, we can say our proposed method is easy to calculate and apply even for complicated problems. It also allows further
study of the effects that uncertain parameters can have on the network output. Since then some of the decisions necessary to
define more accurately the most influential parameters can be taken.

7. Conclusions

This paper has presented a new method for analyzing the sensitivity and robustness of a GBN when some of the param-
eters describing the quantitative part of the network are inaccurate or uncertain. The KL divergence is used to compare the
overall behaviors of the original network and a perturbed network, thereby evaluating the effect of changes in the network
parameters after evidence propagation for the variables of interest. The proposed method is simple to calculate for any GBN,
and can handle any kind of perturbation or inaccuracy in the network parameters. Then, it is possible to study either large or
small perturbations in the uncertain parameters of the network.

The sensitivity analysis considers different sets of parameters, depending on which kinds of variables are perturbed
(interest or evidential), and whether the uncertainties lie in their mean vector or covariance matrix. Each case yields a dif-
ferent divergence, making it possible to know which set of variables most strongly disturbs the network output after evi-
dence propagation. When the divergences obtained by the sensitivity analysis are small, the network may be considered
robust under the proposed perturbations. To confirm this result, we also develop a robustness analysis method that evalu-
ates all the perturbations at the same time. There still is not an answer when KL divergence is sufficiently large. We consider
that until that divergence is not used more in practical contexts with different uncertainty situations an accurate answer to
that question cannot be given.

Acknowledgements

This research has been supported by the Spanish Ministerio de Ciencia e Innovación, Grant MTM 2008-03282 and par-
tially by GR58/08-A, 910395 – Métodos Bayesianos by the BSCH-UCM from Spain.

We also want to thank the referees for their useful comments.

Appendix A

Proof of Proposition 1. After the evidence propagation, the output of the original network is YjE � N(lYjE,RYjE)
and parameters of the perturbed models can be obtained directly taking into account the evidence propagation
process.

1. The output of the perturbed model is YjE, dY � N(lYjE,dY,RYjE). The covariance matrix is the same in both models, original
and perturbed because, as follows from (4), the conditional covariance matrix RYjE does not depend on the mean vector,
unlike the conditional mean vector with respect to the covariance matrix, then is not affected by perturbations in the
mean vector and remains the same for both models regardless of the block mean vector to be perturbed. To compute
KLlY ðf lY jf Þ we have that, trace (RYjE(RYjE)�1) = dim(Y), then

KLlY ðf lY jf Þ ¼ 1
2

lYjE;dY � lYjE� 	T
RYjE� 	�1 lYjE;dY � lYjE� 	h i

¼ 1
2

dT
YðRYjEÞ�1dY

h i

2. In this case, the output of the perturbed model is YjE, dE � N(lYjE, dE,RYjE). The covariance matrix is the same in both mod-
els, again. Then

KLlE ðf lE jf Þ ¼ 1
2

lYjE;dE � lYjE� 	TðRYjEÞ�1 lYjE;dE � lYjE� 	h i
¼ 1

2
dT

E RYER
�1
EE

� 	T
RYjE� 	�1

RYER
�1
EE

� 	
dE

h i
�

Proof of Proposition 2. Given that

KLlY ðf lY jf Þ ¼ 1
2
½dT

YðRYjEÞ�1dY�

and RYjE is positive definite with ordered eigenvalues k1 P � � �P kq P 0 and associated normalized eigenvectors e1, . . . ,eq, we
have (RYjE)�1 has eigenvalues 0 6 1

k1
6 � � � 6 1

kq
and the same eigenvectors then using the Maximization Lemma for positive

definite matrices [18]
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max
dY–0

dT
YðRYjEÞ�1dY

dT
YdY

¼ 1
kq

attained when dY = eq and the result (6) holds.
Now we have

KLlE ðf lE jf Þ ¼ 1
2

dT
E RYER

�1
EE

� 	T
RYjE� 	�1

RYER
�1
EE

� 	
dE

h i

and the previous Maximization Lemma for positive definite matrices is applied to dY
⁄T(RYjE)�1dY

⁄ being dY
⁄ = (RYEREE

�1) dE to
obtain (7). h

Proof of Proposition 3. After the evidence propagation, the output of the original network is YjE � N(lYjE,RYjE).
In next cases, different perturbed models are considered. Parameters of the perturbed models can be obtained directly

taking into account the evidence propagation process. The KL divergence is calculated directly using the.

1. The output of the perturbed model is YjE, DYY � N(lYjE,RYjE,DYY), with RYjE,DYY = RYjE + DYY. In this case, the mean vector is
the same in both models, original and perturbed. Then,

KLRYY ðf RYY jf Þ ¼ 1
2

ln jRYjEðRYjE;DYY Þ�1j þ trace RYjEðRYjE;DYY Þ�1

 �

� dimðYÞ
h i

2. In this case, the expression associated with the KL divergence is the.
3. The KL divergence is

KLRYE ðf RYE jf Þ ¼ 1
2

ln jRYjE RYjE;DYY
� 	�1j þ traceðRYjEðRYjE;DYEÞ�1Þ � dimðYÞ

h i
þ 1

2
lYjE;DYE � lYjE� 	T

RYjE;DYE
� 	�1 lYjE;DYE � lYjE� 	h i

¼ 1
2

ln jRYjE RYjE;DYY
� 	�1j þ trace RYjE RYjE;DYE

� 	�1

 �

� dimðYÞ
h i
þ 1

2
ðe� lEÞ

T R�1
EE

� 	T
DT

YE RYjE;DYE
� 	�1

DYER
�1
EE ðe� lEÞ

h i
�

Proof of Proposition 4. Since interval covariance matrix is considered for perturbations with the conditions assumed then
positive definite covariance matrices are obtained as desired. For all the cases studied it can be shown

lYjE;pj ¼ lYjE þ dYjE;pj

RYjE;pj ¼ RYjE þ DYjE;pj :

Moreover, since

RYjEðRYjE;pj Þ�1 ¼ RYjEðRYjE þ DYjE;pj Þ�1 ¼ IdimðYÞ þ DYjE;pj ðRYjEÞ�1

 ��1

with Idim(Y) the identity matrix, it follows that the first summand in (5)

� ln jRYjEðRYjE;pj Þ�1j þ trace RYjE RYjE;pj
� 	�1


 �
� dimðYÞ

¼ ln j IdimðYÞ þ DYjE;pj ðRYjEÞ�1

 �

j þ trace IdimðYÞ þ DYjE;pj ðRYjEÞ�1

 ��1

� IdimðYÞ

� �

¼
XdimðYÞ

i¼1

lnð1þ kiÞ þ
1

1þ ki
� 1

� �
¼
XdimðYÞ

i¼1

lnð1þ kiÞ �
ki

1þ ki

� �
:

with {ki} the eigenvalues of DYjE,pj(RYjE)�1. Then, the upper bound is attained with kmaxðDYjE;pj ðRYjEÞ�1Þ or kminðDYjE;pj ðRYjEÞ�1Þ,
substituting DYjE,pj for the different types of perturbations.

The formula (5) when perturbations are added to REE or RYE includes also the term with lYjE;pj that can be bounded using
the Maximization Lemma for positive definite matrices that gives

ðlYjE;pj � lYjEÞTðRYjE;pj Þ�1ðlYjE;pj � lYjEÞ ¼ ðdYjE;pj ÞTðRYjE þ DYjE;pj Þ�1ðdYjE;pj Þ 6 jdYjE;pjk2
2

kminðRYjE þ DYjE;pj Þ
�
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