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Abstract

The problem of testing a point null hypothesis from the Bayesian perspective is

considered. The uncertainties are modelled through use of ε–contamination class

with the class of contaminations including: i) All unimodal distributions and ii)

All unimodal and symmetric distributions. Over these classes, the infimum of the

posterior probability of the point null hypothesis is computed and compared with

the p–value and a better approach than the one known is obtained.
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Resumen

Contaminaciones unimodales en el contraste de hipótesis nula puntual

Se considera el problema del contraste de hipótesis nula puntual desde el punto

de vista Bayesiano. La incertidumbre se modeliza mediante el uso de la clase de

las distribuciones ε–contaminadas, cuando la clase de las contaminaciones incluye:

i) todas las distribuciones unimodales y ii) todas las distribuciones unimodales y

simétricas. Se calcula el ı́nfimo de las probabilidades a posteriori de la hipótesis nula
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puntual sobre estas clases y se compara con el p–valor, obteniéndose una aproxi-

mación aceptable entre ambos valores.

1. Introduction

1.1. The choice of the prior

A random variable, X, having density f(x− θ) is observed, being θ an unknown

real parameter. To perform a Bayesian analysis concerning the parameter θ, it

is necessary to express the prior beliefs about θ through a prior distribution of

probability. Usually, the prior information can not be exactly quantified in terms

of a single prior distribution. Perhaps, after an elicitation process, we can conclude

that π0(θ) represents our prior beliefs, but it looks reasonable that any prior not too

far from π0(θ) would also be a good approximation to our prior beliefs.

This is the reason why often a class of prior distributions is used instead of a

concrete prior distribution. In this paper, following the reasoning above, we will use

the ε–contamination class given by

Γ = {π = (1− ε)π0 + εq, q ∈ Q} (1)

where π0 is the prior that one would use in a Bayesian analysis with only one prior

distribution. The value of ε, with 0 ≤ ε ≤ 1, represents the amount of error that

we want to introduce in π0. And Q is the class of probability distributions that

contaminates π0(θ).

Gómez–Villegas and Sanz (2000) use the class (1) to compare p–values and poste-

rior probabilities in the point null testing problem being Q the class of all probability

distributions and they conclude that both values can match. The class of all prob-

ability distributions is attractive because it is easy to work with and it contains

any prior near to π0 but, on the other hand, this class contains many unreasonable

distributions that are too far from π0.
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If π0(θ), the base prior distribution, is unimodal it looks reasonable the choice of

Q as the class of all unimodal distributions (with the same mode as π0) or the class

of all symmetric and unimodal distributions, specially if π0 is also unimodal and

symmetric. See Berger and Berliner (1986), Berger (1985), Sivaganesan and Berger

(1989) and Berger (1994) for further information about the choice of Q.

We start, in Section 1, with the problem. Then, in 1.2, we introduce the pro-

cedure to make up the mixed prior distribution and in 1.3 a justification for this

construction is provided. Section 2 compares the p–value with the infimum of the

posterior probability when Q is the class of all unimodal distributions. In Section 3

the comparison is done when Q is the class of all unimodal and symmetric distribu-

tions. Finally, Section 4 contains some additional comments.

1.2. The problem

We consider the parametric point null testing problem

H∗
0 : θ = θ0 versus H∗

1 : θ 6= θ0, (2)

based on observing a random variable, X, with density f(x|θ), θ ∈ <, continuous

in θ0. We suppose, as usually, that the probability of θ = θ0 is p > 0, in such a way

that the prior information is given by a mixed distribution assigning mass p to the

null hypothesis and spreading the remainder, 1− p, according to a density π(θ) ∈ Γ

over θ 6= θ0. However there is no rule to fix the value of p –usually p = 0.5–.

In many practical situations, it is not usual to test (2). We propose to replace

(2) by the more realistic precise hypothesis

H0 : θ ∈ Ib versus H1 : θ ∈ Ic
b , (3)

where Ib = (θ0 − b, θ0 + b) and b is suitable “small” so that any value of θ ∈ Ib can

be considered indistinguishable from θ0. Examples of this replacement can be seen

in Berger (1985), Berger and Delampady (1987) and Lee (1989) among others.
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In the classical approach, (2) can be changed by (3) when the p–value in (2)

is approximately the same as the p–value in (3). Berger and Delampady (1987)

seek conditions under which both p–values are approximately equal. From Bayesian

perspective, this can be done when the posterior probabilities of the null hypotheses

are close or, equivalently, when the Bayes factor in (2) is similar to the Bayes factor

in (3). A relation between (2) and (3) with regard to the Bayes factor is given by

Gómez–Villegas and Gómez Sánchez–Manzano (1992). There it is shown that the

Bayes factor in (3) converges to the Bayes factor in (2) when b goes to zero. A

difference between the use of Bayes factor and posterior odds in this framework can

be seen in Levine and Casella (1996).

Let us suppose that our prior distribution is π(θ) ∈ Γ, with Γ defined by (1). In

the point null testing problem, we need a mixed prior distribution

π∗(θ) = pI{θ0}(θ) + (1− p)π(θ)I{θ 6=θ0}(θ) (4)

where IA(θ) = 1 if θ ∈ A and IA(θ) = 0 if θ ∈ Ac. Whereas in (3) it is sufficient to

choose π(θ) ∈ Γ. Then, what we propose is to choose the value of p, in the mixed

distribution (4), as

p =
∫

|θ−θ0|≤b
π(θ)dθ. (5)

From now on we will note (4) by π∗(θ, b) making the dependence of b explicit.

This construction is based on the assumption that π(θ) represents our prior

beliefs about θ but, as it is not possible to test (2) with π(θ), we approach (2) by

(3) choosing a convenient value of b.

In the same way of Berger and Sellke (1987), we seek to minimize Pr(H∗
0 |x) over

the class Γ in (1). A reason to take the infimum is that for a small infimum the null

hypothesis must be rejected according to the interpretation of the p–value. More

reasons can be seen in Berger and Sellke (1987). Besides, this development is similar

to that of Casella and Berger (1987) who reconcile Bayesian and frequentist evidence

in the one–sided testing problem and we are interested in making clear the reason

for the discrepancy between both approaches in the point null testing problem.
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There is a substantial amount of literature about the reconciliation between

p–values and posterior probabilities, some important references, besides the ones

mentioned above, are Edwards et al. (1963), Pratt (1965), Dickey and Lienz (1970),

DeGroot (1974), Bernardo (1980), Ghosh and Mukerjee (1992), Berger, Boukai and

Wang (1997), Gómez–Villegas and Sanz (1998), Mukhopadhyay and Das Gupta

(1997), Marden (2000), Sellke, Bayarri and Berger (2001) and Gómez–Villegas, Máın

and Sanz(2002).

1.3. Justification and notation

The choice of p, the mass assigned to the point null hypothesis, as in (5) is

basic for posterior calculations. A way of justifying this construction is by using

the Kullback–Leibler information measure, δ(π∗|π) =
∫

π(θ) ln(π(θ)/π∗(θ)) dθ, as a

measure of discrepancy between π and π∗. With our method, when b goes to zero

δ(π∗|π) also goes to zero while if p is constant then δ(π∗|π) is constant too. The

detail of this justification can be seen in Gómez–Villegas and Sanz (2000).

We denote the likelihood function by f(x|θ), which is considered as a function

of θ for the observed value x. We assume that π0, the base prior, is unimodal with

mode θ0 and density π0(θ) and that q, the contamination, has density q(θ) both

with respect to the Lebesgue measure. Thus, any π ∈ Γ as in (1) has density

π(θ) = (1− ε)π0(θ) + εq(θ). (6)

The marginal distribution of X with respect to the prior π ∈ Γ is denoted by m(x|π).

Assuming the existence of all quantities in the problem, we have

m(x|π) = (1− ε)m(x|π0) + εm(x|q), (7)

therefore, if the posterior distributions π0(θ|x) and q(θ|x) exist, the posterior dis-

tribution of θ given x with respect to π is given by π(θ|x) = λ(x)π0(θ|x) + (1 −
λ(x))q(θ|x), where λ(x) = (1− ε)m(x|π0)/m(x|π).
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The prior mass assigned to the null hypothesis results, from (5) and (6), p =

(1− ε)p0 + εq0, where

p0 =
∫

|θ−θ0|≤b
π0(θ) dθ and q0 =

∫

|θ−θ0|≤b
q(θ) dθ. (8)

A classical measure of evidence against the null hypothesis, which depends on

the observations, is the p–value. If there exists an appropriate statistic T (X) for

testing (3), for example a sufficient statistic, the p–value of the sample point, x, is

p(x) = supθ∈H0
Pr(|T (X)| > |T (x)| |θ). In particular, for testing (2), the p–value

takes the form p(x) = Pr(|T (X)| > |T (x)| |θ0).

2. Unimodal contaminations

In this section we consider the ε–contaminated class as in (1), with Q, the class

of contaminations as

Q = {All unimodal distributions with the same mode as π0(θ)} (9)

class which is particularly reasonable if the base prior, π0(θ), is also unimodal.

In order to find the infimum of the posterior probability of H∗
0 over the class

Γ, with the class of contaminations as (9), it is sufficient to find it over the much

smaller class

ΓU = {π = (1− ε)π0 + εq, q is U(θ0, θ0 + k) or U(θ0 − k, θ0), for some k > 0}, (10)

as it is shown in Sivaganesan and Berger (1989). Where U(a, b) denotes the uniform

distribution on the interval (a, b).

In the following theorem we obtain the infimum of the posterior probability of

the point null hypothesis for the class (10) given π∗(θ, b) by (4) and p computed as

in (5).

Theorem 2.1. For the hypotheses (2), if we take an arbitrary prior distribution

π(θ) ∈ ΓU as in (10) and a mixed prior distribution as (4) with the mass assigned
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to the null hypothesis according to (5), then the infimum of the posterior probability

of H∗
0 is attained for a π(θ) with k given by

k =
{(1− ε)p0 − p2}a− (1− ε)b m(x|π0)

p(1− p)f(x|w)
(11)

where

i) a =
∫ θ0+k
θ0

f(x|θ) dθ and w = θ0 + k if q(θ) isU(θ, θ0 + k)

ii) a =
∫ θ0
θ0−k f(x|θ) dθ and w = θ0 − k if q(θ) isU(θ0 − k, θ0)

Proof: Computing the infimum of the posterior probability of H∗
0

Pr(H∗
0 |x) =

f(x|θ0)

f(x|θ0) +
1− p

p
m(x|π)

(12)

is just like computing the supremum of G(k) = (1− p)/p m(x|π) over the class ΓU .

Assuming b ≤ k, by (5), we have

p =
∫

|θ−θ0|≤b
π(θ) dθ = (1− ε)p0 + ε

b

k
(13)

with p0 given by (8), while m(x|q) = a/k.

It must be noted that p depends on q through q0 = b/k, so the infimum of

Pr(H∗
0 |x) in q can be computed, by (7), as the supremum in q ∈ Q of

G(k) =
1− p

p

{
(1− ε)m(x|π0) + ε

a

k

}
(14)

with p given by (13).

In order to find the value of k for which G(k) in (14) is maximized, we obtain

G′(k) and setting this equal to zero it is straightforward to verify that

(1− ε)m(x|π0)b + kp(1− p)f(x|w) + {p2 − (1− ε)p0}a = 0. (15)

Equation (15) will have solution k ≥ 0 only if:

1. p2 − (1− ε)p < 0, and

2. |{p2 − (1− ε)p0}a| > (1− ε)bm(x|π0).
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Condition 1 is reasonable since we can think that p is close to p0 and, then, 1 is

equivalent to require p < 1− ε, and this looks reasonable if we are thinking that the

amount of error, ε, is not large. Nevertheless, if ε = 1 or p2 − (1 − ε)p0 ≥ 0 then

G′(k) will be positive in any case and, therefore, the supremum will be achieved

when k goes to ∞. Condition 2 is due to mathematical reasons.

From (15) we obtain (11) the value of k which maximizes G(k) and, so, we will

find infπ∈ΓU
Pr(H∗

0 |x). 2

In order to see how theorem 2.1 works, the following example for the normal

model is considered.

Example 2.1. Let us suppose that X|θ is N(θ, σ2) distributed, with σ2 known,

and π0(θ) is N(µ, τ 2), with both parameters known. If X1, . . . , Xn is a random

sample of X, then X is N(θ, σ2/n) distributed and m(x|π0) is N(µ, τ 2 + σ2/n).

Besides p0 = Φ{(θ0 + b − µ)/τ} − Φ{(θ0 − b − µ)/τ}, Φ denoting the standard

cumulative distribution function.

Table 1 shows, choosing σ2 = 1, τ 2 = 2, θ0 = µ = 0 and n = 10, for some specific

values of t =
√

n(x− θ0)/σ and b, the values of k, from (11), in which the infimum

of the posterior probability of the point null hypothesis is achieved.

The last column in Table 1 is computed from

inf
π∈ΓU

Pr(H∗
0 |x) =

{
1 +

supπ∈ΓU
G(k)

f(x|θ0)

}−1

. (16)

Besides, we can get now the values of b and k, say b∗ and k∗, so that the p–values

and infπ∈ΓU
Pr(H∗

0 |x) = Pr(H∗
0 |x) match. This could be done from the expression

p(x) =

{
1 +

supπ∈ΓU
G(k)

f(x|θ0)

}−1

, (17)

and then the prior probability depends on the data but we can avoid it, replacing

p(x) by the significance level of the test, α. Moreover, the infimum of the posterior

probability of H∗
0 and the p–value are closed if the value chosen for b is close to b∗,
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Table 1: Values of k where the infimum of Pr(H∗
0 |x) is achieved for some values of t and

b

t b k supπ∈ΓU
G(k) Pr(H∗

0 |x)

1.645 0.1 1.081 5.52499 0.05573
0.2 1.112 2.58070 0.11217
0.3 1.150 1.60304 0.16902

1.960 0.1 1.175 5.43849 0.03286
0.2 1.201 2.54499 0.06770
0.3 1.233 1.58374 0.10450

2.596 0.1 1.375 5.14862 0.00836
0.2 1.394 2.41652 0.01764
0.3 1.420 1.50861 0.02664

3.291 0.1 1.598 4.74991 0.00118
0.2 1.614 2.23486 0.00250
0.3 1.632 1.39895 0.00399

since the infimum is a continuous function of b. Now, the infimum is attained when

the contamination distribution, q(θ), is uniform in U(θ0, θ0 +k∗) or in U(θ0−k∗, θ0).

Table 2 shows those values of b∗ and k∗ for some specific t =
√

n(x − θ0)/σ.

Besides, we see that Pr(H∗
0 |x) is close to infπ∈ΓU

Pr(H0|x) = Pr(H0|x).

Table 2: Values of b and k that make equal the p–value with Pr(H0|x), Pr(H∗
0 |x), infimum

over ΓU

t b∗ k∗ Pr(H∗
0 |x) = p–value Pr(H0|x) Pr(H∗

0 |x, p = 0.5)

1.645 0.1785 1.122 0.1 0.10298 0.45062

1.960 0.1498 1.180 0.05 0.05310 0.32957

2.596 0.1184 1.381 0.01 0.01081 0.11477

3.291 0.0855 1.589 0.001 0.00107 0.01868

Table 2 shows, too, that if the prior mass assigned to the null hypothesis is

p = 0.5, the infimum of the posterior probability of H∗
0 is much more larger than

the p–value, but if the values of b in (5) are close to b∗, then Bayesian and classical
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approaches are numerically close. Moreover, table 2 shows that if p = 0.5, the pos-

terior probability of the point null hypothesis disagree with the posterior probability

of the interval hypothesis.

3. Unimodal and symmetric contaminations

If the base prior, π0, is unimodal and symmetric it may be reasonable to require

that the contaminations be also unimodal and symmetric. Thus, in this section, we

deal with the class (1) and Q, the class of contaminations, will be

Q = {All symmetric unimodal distributions with the same mode as π0}

This ε–contaminated class will be denoted ΓUS. Sivaganesan and Berger (1989)

prove that in order to find the infimum of the posterior probability of H∗
0 over the

class ΓUS it is sufficcient to do it over the class

ΓUS = {π = (1− ε)π0 + εq, q ∈ U(θ0 − k, θ0 + k) for some k > 0}, (18)

based on representing a symmetric unimodal density as a mixture of symmetric

uniforms.

Theorem 3.1 shows the value of k for the uniform distribution where the infimum

is attained.

Theorem 3.1. For the hypotheses (2), if π(θ) ∈ ΓUS as in (18) and a mixed prior

distribution as (4), with the mass assigned to the null by (5), is used, the infimum

of the posterior probability of H∗
0 is attained for a π(θ) with k given by

k =
{(1− ε)p0 − p2}a− 2(1− ε)bm(x|π0)

p(1− p){f(x|θ0 + k) + f(x|θ0 − k)} (19)

where a =
∫ θ0+k
θ0−k f(x|θ) dθ

Proof: The infimum of Pr(H∗
0 |x) over ΓUS will be obtained, as in theorem 2.1,

computing the supremum of G(k) = (1− p)/pm(x|π).
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Assuming b ≤ k, the prior mass, p, assigned to the null hypothesis is, given by

(5), now

p = (1− ε)p0 + ε
b

k
(20)

The marginal distribution of X given π is, by (7),

m(x|π) = (1− ε)m(x|π0) + ε
a

2k
(21)

Then, by (21) and (20)

G(k) =
k(1− ε)m(x|π0) + εa/2

k(1− ε)p0 + εb
− (1− ε)m(x|π0)− ε

a

2k
, (22)

Expression (22) depends only on k for b fixed and x observed. Then, by differenti-

ating (22), results

(1− ε)m(x|π0)b +
1

2
kp(1− p){f(x|θ0 + k) + f(x|θ0 − k)}+

1

2
{p2 − (1− ε)p0}a = 0

and (19) is obtained. 2

Theorem 3.1 gives us the value of k which maximizes G(k) and then the value

that minimizes the posterior probability of H∗
0 .

Example 3.1. Consider a random variable X with N(θ, σ2) distribution, σ2 known,

and the base prior π0(θ) is N(µ, τ 2) for µ and τ 2 given. If X1, . . . , Xn is a random

sample of size n, the sample mean, X, is N(θ, σ2/n) distributed and m(x|π0) is

N(µ, τ 2 + σ2/n). Moreover, the prior mass assigned to H∗
0 , p, is given by (20) with

p0 = Φ{(θ0 + b− µ)/τ} − Φ{(θ0 − b− µ)/τ}.
Then, equation (19) gives solutions in k for fixed values of x and b. Table 3 shows

the values of k for which the infimum of the posterior probability of the point null

hypothesis is attained for some especific values of t =
√

n|x − θ0|/σ and different

values of b. Calculus are done for ε = 0.2, σ2 = 1, τ 2 = 2, θ0 = µ = 0 and n = 10.

The last column in Table 3 is obtained from

inf
π∈ΓUS

Pr(H∗
0 |x) =

(
1 +

supπ∈ΓUS
G(k)

f(x|θ0)

)−1

.
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Table 3: Values of k where the infimum of Pr(H∗
0 |x) is achieved for some values of t and

b

p–value t b k supπ∈ΓUS
G(k) Pr(H∗

0 |x)

0.1 1.645 0.1 1.570 4.40095 0.06898
0.2 +∞ 2.08649 0.13503
0.3 +∞ 1.32996 0.19689

0.05 1.960 0.1 1.546 4.31036 0.04111
0.2 5.073 2.03466 0.08327
0.3 +∞ 1.29449 0.12493

0.01 2.596 0.1 1.634 4.08511 0.01051
0.2 1.782 1.92363 0.02206
0.3 4.477 1.21042 0.03462

0.001 3.291 0.1 1.785 3.78266 0.00148
0.2 1.846 1.78289 0.00314
0.3 1.963 1.11884 0.00499

A couple of observations can be made about the results shown in Table 3. Firstly,

the distribution q(θ) ∈ Q, for which the infimum is attained, depends on the value

fixed for b and the observation x, and in some cases the infimum is attained for the

uniform improper contamination. Secondly, if b takes moderate small values, the

infimum of the posterior probability of H∗
0 is close to the p–value independently of

the observed value x, so if t = 1.96 and b ∈ (0.1, 0.2) the infimum of the posterior

probability is in (0.04111, 0.08327), close to the p–value, 0.05.

As it happened in the case of unimodal contaminations, it is possible to determine

a value of b, say b∗, such that the p–value and the infimum of the posterior probability

of H∗
0 match. Table 4 shows the values of b∗ and the respectives of k, say k∗.

For example, if t = 1.96 and b∗ = 0.12 is chosen in (5), the infimum of the

posterior probability is attained for the uniform distribution in the interval (θ0 −
1.6, θ0 + 1.6) and this infimum and the p–value match, whereas if the posterior

probability of the point null is computed with p = 0.5, as it is usually done in the

literature, gives 0.38817 which is too far from the p–value.
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Table 4: Values of b and k that make equal the p–value with Pr(H0|x), Pr(H∗
0 |x), infimum

over ΓUS

t b∗ k∗ Pr(H∗
0 |x) = p–value Pr(H0|x) Pr(H0|x, p = 0.5)

1.645 0.1461 3.85 0.1 0.10811 0.51364

1.960 0.1213 1.60 0.05 0.05115 0.38817

2.596 0.0954 1.63 0.01 0.01014 0.14231

3.291 0.0688 1.77 0.001 0.00104 0.02357

Table 4 shows too the values of the infimum of the posterior probability of the

interval hypothesis, H0, Pr(H0|x) =
∫
|θ−θ0|≤b π(θ|x) dθ, where π(θ|x) is given by

(12), then

Pr(H0|x) =
1− ε

m(x|π)

∫

|θ−θ0|≤b
f(x|θ)π0(θ) dθ +

ε

m(x|π)

∫

|θ−θ0|≤b

f(x|θ)
2k

dθ,

with f(x|θ) the density of the N(x, σ2/n) distribution and m(x|π) is given by (7).

2

4. Comments

As it is shown, the ε–contaminated class allows an acceptable Bayesian approach,

both analytical and intuitive, to the problem of testing point null hypothesis.

The procedure to determine the prior mass assigned to the point null hypothesis

using a small interval of length 2b, centered in θ0, and to compute the probability as-

signed by π(θ) to this interval, allows us to obtain values of the posterior probability

of the point null hypothesis that are closer to the p–value.

Moreover, the case in which the prior mass assigned to the point null hypothesis

is 0.5 is a particular case for some value of b. In other words, there is a value of b

for which the prior mass assigned to the point null is 0.5.

Then, the difference between the p–value and the posterior probability for the

problem of testing a point null hypothesis is not due to using a mixed prior distribu-
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tion but rather to the choice of the prior mass, p, in the mixed distribution, usually

p = 0.5. Small values than this, depending on the sample model, allow us a better

approximation between the p–value and the posterior probability.
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