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Introduction and notation

Let X = (X1, ...,Xn) be a random sample taken from a sample
space X with density function f (x|θ) = Πn

i=1f (xi |θ), where θ is an
unknown parameter taking values in a parameter space Θ.

Let us denote by a any action we can take from an action space A.

Let us denote by L : A×Θ → <, the loss function measuring (in
some suitable way) the loss we incur when the action a is taken
and the true value of the parameter is θ.

Of course, we are interested in choosing an action depending on
the sample x = (x1, ..., xn) we have observed. So, let us denote by
δ : X → A, any decision rule we can use for choosing an action
depending on the different samples we can obtain.



Introduction and notation

In any decision problem, we have to evaluate (in some suitable
way) the different decision rules in order to choose one of them
and, for doing that, we have to choose a criterion for comparing
random variables, because the loss of a decision rule δ is a random
variable.

1. Frequentist context:
For each θ fixed, the loss is the random variable L : X → <
defined as L(δ(X), θ), where the probability model over X is
given by the sampling density f (x|θ).

2. Bayesian context:
Let π(θ) be the prior density summarizing the prior
information we have on the parameter θ. Now, the loss is the
random variable L : X ×Θ → < defined as L(δ(X), θ), where
the probability model over X ×Θ is given by the joint density
f (x|θ)π(θ) (obtained from the sampling density and the prior
density).



Introduction and notation

Von Neumann and Morgenstern (1947) (frequentist context) and
Savage (1954) (Bayesian context) provided axiomatic justifications
for comparing these random variables by means of their
expectations. In other words, they gave axiomatic justifications for
minimizing expected loss. Moreover, expectations are very friendly
to handle and, therefore, minimizing expected loss became the
standard criterion.

But, of course, there are other possibilities ...



Three medloss criteria

Manski (1988) suggested the optimization of quantiles (instead of
expectations) for comparing random variables. The use of
quantiles is very popular in finance and has different benefits: it is
not necessary to assume the existence of moments (and so, heavy
tailed distributions are not a problem), and the behavior of
quantiles is usually more robust. Rostek (2007) provided an
axiomatic justification for the optimization of quantiles, making
use of the previous work by Machina and Schmeidler (1992).
Before that, De la Horra (1981) provided an axiomatic justification
for the case in which the parameter space, Θ, is finite, exploiting
the previous work by Rios (1967).

Yu and Clarke (2011, J. S. P. I.) proposed three different criteria
based on comparing medians of random variables (of course, the
extension from medians to quantiles is immediate).



Frequentist medloss criterion

(a) For each θ fixed, let us consider the random variable
L : X → < defined as L(δ(X), θ), where the probability model over
X is given by the sampling density f (x|θ).

(b) For each θ fixed, let us consider the median of the previous
random variable:

Mf (x|θ)(L(δ(X), θ)).

(c) We say that the decision rule δ1 is better than the decison rule
δ2 (in the sense of the frequentist medloss criterion) when:

Mf (x|θ)(L(δ1(X), θ)) ≤ Mf (x|θ)(L(δ2(X), θ)), ∀θ ∈ Θ.



Bayes medloss criterion

(a) For each θ fixed, let us consider the random variable
L : X → < defined as L(δ(X), θ), where the probability model over
X is given by the sampling density f (x|θ).

(b) For each θ fixed, let us consider the median of the previous
random variable:

Mf (x|θ)(L(δ(X), θ)).

(c) Let π(θ) be the prior density summarizing the prior information
we have on the parameter θ, and let us consider the random
variable h : Θ → < defined as h(θ) = Mf (x|θ)(L(δ(X), θ)), where
the probability model over Θ is given by the prior density π(θ).



Bayes medloss criterion

(d) Let us consider the median of the previous random variable:

Mπ(θ)(h(θ)) = Mπ(θ)

[
Mf (x|θ)(L(δ(X), θ))

]
.

(e) We say that the decision rule δ1 is better than the decison rule
δ2 (in the sense of the Bayes medloss criterion) when:

Mπ(θ)

[
Mf (x|θ)(L(δ1(X), θ))

]
≤ Mπ(θ)

[
Mf (x|θ)(L(δ2(X), θ))

]
.



Posterior medloss criterion

(a) Let π(θ) be the prior density summarizing the prior information
we have on the parameter θ. For the sample x = (x1, ..., xn) we
have actually observed, let us compute the posterior density in the
usual way:

π(θ|x) =
f (x|θ)π(θ)∫

Θ f (x|θ)π(θ)dθ
.

(b) For x = (x1, ..., xn) fixed (the sample we have actually
observed), let us consider the random variable L : Θ → < defined
as L(δ(x), θ), where the probability model over Θ is given by the
posterior density π(θ|x).



Posterior medloss criterion

(c) For x = (x1, ..., xn) fixed (the sample we have actually
observed), let us consider the median of the previous random
variable:

Mπ(θ|x)(L(δ(x), θ)).

(d) We say that the decision rule δ1 is better than the decison rule
δ2 (in the sense of the posterior medloss criterion) when:

Mπ(θ|x)(L(δ1(x), θ)) ≤ Mπ(θ|x)(L(δ2(x), θ)).



Bayes quantile loss

(a) Let π(θ) be the prior density summarizing the prior information
we have on the parameter θ. Now, let us consider the random
variable L : X ×Θ → < defined as L(δ(X), θ), where the
probability model over X ×Θ is given by the joint density
f (x|θ)π(θ) (obtained from the sampling density and the prior
density).

(b) Now, let us consider the median of the previous random
variable:

Mf (x|θ)π(θ)(L(δ(X), θ)).

(c) We say that the decision rule δ1 is better than the decision rule
δ2 (in the sense of this new Bayes medloss criterion) when:

Mf (x|θ)π(θ)(L(δ1(X), θ)) ≤ Mf (x|θ)π(θ)(L(δ(X), θ)).



Bayes quantile loss

Comments

1. This criterion is close to Bayes medloss criterion but it is not
the same. The technical reason for this difference is that,
although for expectations we have

Eπ(θ)[Ef (x|θ)(L(δ(X), θ))] = Ef (x|θ)π(θ)(L(δ(X), θ)),

for medians we have (in general)

Mπ(θ)[Mf (x|θ)(L(δ(X), θ))] 6= Mf (x|θ)π(θ)(L(δ(X), θ)).

2. The median is nothing but a specific quantile, and there is no
reason for constrain our attention to the median (in fact,
quantiles have been very used in finance). Therefore, the new
criterion is next defined through quantiles. All the elements in
the decision problem are recalled in the following definition.



Bayes quantile loss

Definition (Bayes ε-quantloss criterion)
The Bayes ε-quantloss of a decision rule δ is the quantile (at level
ε) of the random variable L : X ×Θ → < defined as L(δ(X), θ),
where the probability model over X ×Θ is given by the joint
density f (x|θ)π(θ) (obtained from the sampling density and the
prior density):

Qε(δ, π) = max{t ∈ < : Prf (x|θ)π(θ)(L(δ(X), θ) < t) ≤ ε}
= max{t : Pr(L(δ, π) < t) ≤ ε}.

We say that the decision rule δ1 is better than the decison rule δ2

(in the sense of Bayes ε-quantloss criterion) when:

Qε(δ1, π) ≤ Qε(δ2, π).



Bayesian robustness

In general, it is complicated to elicit the exact prior distribution.
The usual solution to this problem is to consider a class of priors
(instead of a single prior) and to evaluate the differences we find
when the prior ranges over this class. This is the usual analysis of
Bayesian robustness.

Therefore, if we need to carry out a study of Bayesian robustness
for the Bayes ε-quantloss, we first choose a suitable class of prior
distributions, Γ, and we then compute:

inf
π∈Γ

Qε(δ, π) = inf
π∈Γ

[max{t : Pr(L(δ, π) < t) ≤ ε}], (1)

sup
π∈Γ

Qε(δ, π) = sup
π∈Γ

[max{t : Pr(L(δ, π) < t) ≤ ε}]. (2)

When the difference between these two values is small, we say that
the Bayes ε-quantloss shows a robust behavior.



Bayesian robustness

Theorem
For any class Γ, we have:

inf
π∈Γ

Qε(δ, π) = max

{
t : sup

π∈Γ
Pr(L(δ, π) < t) ≤ ε

}
,

sup
π∈Γ

Qε(δ, π) = max

{
t : inf

π∈Γ
Pr(L(δ, π) < t) ≤ ε

}
.



Bayesian robustness

Corollary
For the case in which all the degenerate distributions are included
in the class Γ, we have:

inf
π∈Γ

Qε(δ, π) = max

{
t : sup

θ∈Θ
Pr(L(δ, θ) < t) ≤ ε

}
,

sup
π∈Γ

Qε(δ, π) = max

{
t : inf

θ∈Θ
Pr(L(δ, θ) < t) ≤ ε

}
.

These theoretical results may be useful for developing algorithms.


