Negligible influence of small enough jitter in the neuron geometry on the
extracellular potential
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A. Initial definitions

Let

0

P°(r,t) = — ﬁZLl 25:1% (1)
be the potential created by an aggregate of N identical, perfectly aligned neurons with C compartments
(see also Eq. (3) in the manuscript). Under the perfect alignment we understand parallel alignment of
the neurons over (vertical) z-axis with no rotation in (x, y)-plane. Somas of all neurons have the same z
position but can be randomly distributed in (x, y)-plane. In Eq. (1) d2, = ||;%. — r|| is the Euclidean
distance between the compartment nc and the recording point, I2.(t) is the transmembrane current
generated by the compartment, and o is the (constant) conductivity of the extracellular space. We
notice that

dl. >8>0, vn,c (2)

where § is a small enough number, otherwise the model of the potential (1) is not valid. Under the
assumption of the same synaptic input Eqg. (1) can be simplified

P°(r, 1) = — =35 I2(OR? (3)
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where R? = n=170 is the cumulative inverse distance to the c-th compartment of all neurons (this
nc

sum converges to a constant depended on the mean intersoma distance).
B. Jitter in the compartment’s diameter

Let us consider the case of variation of the diameter of the compartments among different neurons in
the aggregate. The diameter of the c-th compartment of the n-th neuron is given by:

Ape = afw + €&nc (4)

where a?, is the diameter of the original (unperturbed) compartment, 0 < € is the smallness parameter
and &,,. is a random zero mean variable describing the perturbation.

The compartmental transmembrane current is proportional to the compartment’s diameter: I, X a,..
Thus the variation (4) induces variation in the compartmental currents of the order of magnitude € (to
obtained exact values, we should also take into account the readjustment of the currents due to their
intracellular interaction). Using the Taylor expansion we can write:

Inc(t) = Ir?c(t) + E]nc(t) + 0(62) (5)

where J,.(t) are the transmembrane currents induced by the variation of the diameter of the
compartments. Then the new currents given by (5) lead to changes in the potential:

p(r,t) = @°(r,t) + ep(r,t) + 0(€?) -
where
S )



is the first order correction to the potential. In Eq. (6) we notice that the correction of the potential is of
the order €. Besides, since J,,. is a random variable of its indexes the sum (7) will be significantly smaller
in magnitude than the sum (1). To demonstrate this statement we introduce new random variables:

Ne = Ena1 5 (8)

n=1ag,
Since N > 1 (N = 16966 in simulations), the central limit theorem is applied and we have
Ne ~ N (uy, Ay) )

One can easily show that the mean value of 1. is zero (4, = 0), whereas the standard deviation is given
by

1
Ay =4 ﬁ=1m (10)

where 4, is the standard deviation of the random correcting transmembrane currents J,,.. Assuming
that 4; does not depend on the compartment’s number (which is true at least at the first order of
magnitude) we then obtain the final expression for the correcting potential:

b~ N(0,4y), Ay =2 /ngzlﬁ (10)

Thus small enough jitter in the compartment’ diameters makes no significant change in the extracellular
potential.



