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Universal principles justify the 
existence of concept cells
carlos calvo tapia 1, ivan tyukin  2 & Valeri A. Makarov  1,3 ✉

the widespread consensus argues that the emergence of abstract concepts in the human brain, such 
as a “table”, requires complex, perfectly orchestrated interaction of myriads of neurons. However, this 
is not what converging experimental evidence suggests. Single neurons, the so-called concept cells 
(CCs), may be responsible for complex tasks performed by humans. This finding, with deep implications 
for neuroscience and theory of neural networks, has no solid theoretical grounds so far. our recent 
advances in stochastic separability of highdimensional data have provided the basis to validate the 
existence of CCs. Here, starting from a few first principles, we layout biophysical foundations showing 
that ccs are not only possible but highly likely in brain structures such as the hippocampus. three 
fundamental conditions, fulfilled by the human brain, ensure high cognitive functionality of single cells: 
a hierarchical feedforward organization of large laminar neuronal strata, a suprathreshold number of 
synaptic entries to principal neurons in the strata, and a magnitude of synaptic plasticity adequate for 
each neuronal stratum. We illustrate the approach on a simple example of acquiring “musical memory” 
and show how the concept of musical notes can emerge.

Brains are undoubtedly high-dimensional1,2. Even the simplest animal, the rotifer .0 5 mm long, has 200 neurons 
acting in parallel as coupled dynamical systems, while in the human brain, this figure rises to billions. Such a huge 
range of the number of neurons in different species has been related to the great variety of their cognitive 
abilities3,4.

Here, however, we assess the implication of another brain dimension, the number of synaptic inputs, n, a single 
neuron receives. Recent empirical evidence shows that a variation in the dendrite length and hence in the number 
of synapses n can explain up to 25% of the variance in IQ scores between individuals5. However, no rigorous bio-
physical theory explaining how n affects high-level cognitive abilities has been put forward yet.

The importance of such a theory and the underlying universal principles is difficult to overestimate. For exam-
ple, the design of modern artificial neural networks (ANNs) copies the converging architecture of biological 
sensory systems6. As a result, they already outperform humans in pattern recognition benchmarks yet remaining 
far behind in cognition7,8. Thus, the next qualitative leap in the development of ANNs requires novel biophysical 
insights on the functional architecture and dynamical principles of higher brain stations.

A step towards may reside in recent mathematical studies of the so-called “grandmother” cells1,9. Converging 
experimental evidence suggests that some pyramidal neurons in the medial temporal lobe (MTL) can exhibit 
remarkable selectivity and invariance to complex stimuli. In particular, it has been shown that the so-called con-
cept cells (CCs) can fire when a subject sees one of seven different pictures of Jennifer Aniston but not the other 80 
pictures of other persons and places10. CCs can also fire to the spoken or written name of the same person11. Thus, 
a single CC responds to an abstract concept but not to the sensory features of the stimuli. This empirical observa-
tion casts doubts on the widespread belief that complex cognitive phenomena require the perfectly orchestrated 
collaboration of many neurons. Moreover, CCs are relatively easily recorded in the hippocampus12. Thus, they 
must be abundant, at least in the MTL, contrary to the common opinion that their existence is highly unlikely13. 
Nevertheless, the experimental approach cannot fully isolate the single-cell contribution to the network dynam-
ics, and a theoretical study of the biological mechanisms underlying CCs is required.

Presumably, CCs play a role in episodic memory11. Memory formation and retrieval have been in the center of 
attention for several decades, starting from the seminal Hopfield’s work14. Recently, the linear scaling of the mem-
ory capacity with a low factor of .0 14 has been overcome15. Yet, as has been found, memory retrieval is inherently 
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unstable due to complex network dynamics16. Thus, a “single”-neuron approach to memory functions, likely 
implemented by CCs, can also be useful from both theoretical and experimental viewpoints.

Early, a purely statistical approach for mimicking the sparse coding in the brain has been proposed17,18. 
Using a problem-tailored sparse distribution of categories and an unsupervised expectation-maximization of 
a log-likelihood functional, Waydo and Koch showed that a network of nonlinear units can map input images 
to categories18. Such a mapping displays sparse invariant selectivity similar to the data observed in the MTL. 
However, the fundamental questions how and why it happens in the brain have not been addressed yet.

In this work, we report the first theoretical justification of the existence of CCs. Our approach involves a few 
first biophysical principles and uses the neuronal dimension n as the major factor. We suggest that the evolution 
of neurons led to an increase of their input dimension n, which triggered a qualitative leap in their function and 
emergence of CCs, and episodic memory.

Methods
Model architecture. Figure 1(a) illustrates the model mimicking primary signaling pathways in the hip-
pocampus. It takes into account the stratified structure of the hippocampus that facilitates ramification of axons, 
leaving multiple buttons in passage and hence conveying the same high-dimensional input to multiple pyramidal 
cells. The latter has been supported by electrophysiological observations showing that Schaffer collaterals create 
modules of coherent activity with a large spatial extension in the CA3 region19,20. Thus, the hippocampal forma-
tion possesses rather exclusive anatomical and functional properties required for the emergence of concept cells, 
as we discuss below.

For simplicity, we consider one “selective” and one “concept” neuronal strata only and neglect the connections 
between neurons within each layer. Moreover, as we will see below, the network is randomly initialized, and 
learning is localized within individual neurons. It is unsupervised, and hence no global fitness function usually 
used in the ANN approach is required. Thus, the model discards all a priori assumptions on the local network 
structure and dynamics.

The first (selective) stratum contains ms neurons receiving in a sequence L ns-dimensional (ns D) stimuli 
∈ −x [ 1,1]i

ns ( = …i L1,2, , ), e.g., sound waves (Fig. 1(a)). In general, m Ls  (e.g., in the CA1 region of the 
hippocampus, there are . ×1 4 107 pyramidal cells). The output from the first stratum yi, as a response to stimulus 
x i, goes to the second stratum consisting of mc neurons. We assume that each neuron in the concept stratum 
receives input from all neurons of the selective stratum. Therefore, the input dimension of the neurons in the 

Figure 1. Hypothesis of concept cells. (a) Model mimicking the information flow in the hippocampus. A 
stimulus, a sound wave in the example, activates the concept of a musical note. (b) Rearrangement of the 
neuronal “receptive fields” leads to the formation of note-specific concept cells (different colors correspond to 
the receptive fields of different neurons).
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concept stratum is equal to the number of neurons in the selective stratum =n mc s. In the concept stratum, K  
consecutive signals y{ }i  can overlap in time due to short-term memory, implemented through, e.g., synaptic inte-
gration, and we get output z, which codifies concepts (musical notes in Fig. 1(a)).

We note that neurons in the concept stratum associate several items and then respond to groups of stimuli, 
which form concepts (in our case, concepts of musical notes). Stimuli within a group can be uncorrelated and 
even represent different sensory modalities, which gives rise to complex concepts as experimentally observed11.

Stimuli and concepts. Although the nature of stimuli x i can be arbitrary, we illustrate the model on a simple 
example of acquiring “musical memory”. To follow the music, the system must be able to recognize the tones of 
sound or notes unambiguously. To preserve generality, we do not apply any algorithmic pre-processing of sound 
signals, largely extended in ANNs. A piece of a sound wave sampled at =f 2sm

13 Hz can be represented as a “raw” 
ns D stimulus (Fig. 1(a)):

π φ= + =A f t fx ( cos (2 / )) , (1)i i i i t
n

sm 1
s

where Ai, fi, and φi are the amplitude, frequency, and phase, respectively. Let’s assume that Ai is fixed, i.e., the 
amplitude is normalized by a sensory organ. Then, φΩ = f{( , )} defines the set of primary stimuli. In this set, for 
example, musical note A corresponds to frequency 440 Hz, i.e., to the subset ω φ φ= ∀ ⊂ Ω{(440, ) : }A .

At the beginning, all neurons in both strata are initialized randomly. Therefore, their “receptive fields” (areas 
in the sensory domain Ω invoking a response of a neuron) form a disordered mixture of random regions (see the 
cartoon in Fig. 1(b), left). Thus, the output of the concept stratum is random, and the system cannot follow the 
music. The purpose of learning is to organize the receptive fields in such a way that the concept cells become 
note-specific, i.e., they should fire in response to a given tone regardless of its phase (Fig. 1(b), right). In this case, 
each concept cell will not be a stimulus-specific but represent a set of associated stimuli or a concept, e.g., note A.

To enable such learning, we need at least a two-stratum system. Neurons in the selective stratum learn to 
respond selectively to all sound waves, while neurons in the concept stratum associate stimuli with different 
phases but with the same frequency. Such an association cannot be done within the first stratum, since raw signals 
can be anti-correlated, e.g., φ = 01  and φ π=2  in Eq. (1), and then cancel each other on a neuron + =x x 01 2 .

neuronal dynamics. All neurons in both strata are described by the same model1,9, which captures the 
threshold nature of the neuronal activation but disregards the dynamics of spike generation. The response of the 
j-th neuron ( )y tj

 in the selective stratum to the external input ts ( )ext  is given by:

∑∑ σ=
= n

ts x3 ( ),
(2a)i

L

k s
i ikext

1

θ= − =( )y H v v w s, , , (2b)j j j j j ext

α β= −
 ( )y vw s w , (2c)j j j j

2
ext

where σ t( )ik  are disjoint rectangular time windows defining the k-th appearance of the i-th stimulus, 
=H u u( ) max {0, } is the transfer function, ( )v tj  is the membrane potential, θ ≥ 0j  is the “firing” threshold, 
∈( )twj

ns is the vector of the synaptic weights, ⋅ ⋅,  is the standard inner product, α > 0 defines the relaxation 
time, and β > 0 is an order parameter that will be defined later.

Equation (2c) simulates the Hebbian type of synaptic plasticity. The term proportional to y sj ext forces plastic 
changes when a stimulus evokes a non-zero neuronal response only, similar to the classical Oja rule21. The second 
term ensures boundness of wj to conform with physical plausibility.

Results
We now assess the implication of the neuronal input dimensions in the selective and concept strata (ns and nc) on 
the emergence of concept cells.

emergence of extreme selectivity. Since we assume no a priory information, at =t 0, the synaptic 
weights of all neurons, w (0)j , are randomly initialized in the hypercube −U ([ 1,1])ns . The threshold values θj can 
also be chosen arbitrary. Then, neuron j “fires” in response to stimulus x i if its membrane potential exceeds the 
threshold, θ>vj j. In this case, we say that the neuron detects the stimulus. Let ∈ … }d L{0, 1, ,j  be the number of 
stimuli the j-th neuron can detect. Then, if =d 0j , the neuron is inactive for the given stimulus set, it is selective if 

=d 1j , and non-selective otherwise.
To quantify the performance of the selective stratum, we introduce the ratios of selective neurons Rslctv, i.e., 

the number of selective neurons over ms; inactive neurons Rinact, i.e., the number of inactive neurons over ms; and 
“lost” stimuli Rlost, i.e., the number of stimuli that excite no neurons over L.

To estimate the expected values of these indexes, we note that a random stimulus x i, taken from −U ([ 1,1])ns , 
elicits random membrane potential in each neuron, which will be normally distributed as ∼ N )v (0, 1

3
, up to an 

error term of order O n(1/ )s . For ns  large enough (  −n 10 20s ), the error decays exponentially [see 
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Supplemental Materials and ref. 22]. Then, we can estimate the firing probability  θ θ> = − Φv( ) 1 ( 3 ), where 
Φ ⋅( ) is the normal cumulative distribution function. By using a binomial distribution, we get:

θ θ

θ

θ

= − Φ Φ

= Φ

= Φ .

−R L

R
R

(1 ( 3 )) ( 3 ) ,

( 3 ) ,
( 3 ) (3)

L

L

m

slctv
1

inact

lost
s

Figure 2(a) illustrates the performance measures and two examples of raster plots of stimuli detected by neurons 
(in a raster plot a black dot at position i j( , ) means that neuron i detects stimulus j). The ratio of selective neurons 
Rslctv has a modest peak of height −e 1 at θ = Φ ≈ .− −⁎ ( ) 1 35L

L
1
3

1 1 . Therefore, at =t 0 a randomly initialized 
selective stratum can have at most 37% of selective neurons, independently on the neuronal dimension ns. Thus, 
the first universal principle is:

• Different “brains” exhibit poor initial performance, regardless of the neuronal input dimension ns.

As we show now, learning can dramatically improve brain performance. We choose the firing threshold small 
enough (i.e., sufficiently lower than θ⁎), e.g., θ = 1. Then, with high probability, there are no inactive neurons nor 
lost stimuli (Fig. 2(a), ≈R 0inact , ≈R 0lost ), i.e., Hebbian learning (2c) is activated for all neurons and all stimuli. 
Figure 2(b) illustrates the dynamics of the median number of stimuli detected by neurons. At =t 0, all neurons 
in the aggregate respond in average to =d 25 stimuli and hence are not selective, while at =t 80 all of them are 
absolutely selective, =d 1.

To extend this numerical observation, we first find the condition that a neuron, started firing to a stimulus x i, 
keeps firing in forward time with a probability no smaller than some constant < <p0 1sl . This condition is ful-
filled by choosing the order parameter (see Supplemental Materials):

Figure 2. Poor initial brain performance and the emergence of selectivity through learning. (a) Performance 
indexes [Eq. (3), thick curves] of the selective stratum at =t 0. Insets show raster plots of stimuli detected by 
neurons ( =m 300s  and =L 100). (b) Median number of stimuli detected by neurons, d, vs time ( =n 30s , 

=L 400, θ = .0 5, α = 20, and = .p 0 95sl ).
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β θ
δ

δ= = −
Φ

.
− p

n
, 1

2 ( )
5 (4)

sl

1
sl

s

Note that the higher the neuronal dimension ns, the higher psl can be chosen. We also observe that if a neuron has 
the order parameter significantly lower βsl, then such a neuron “forgets” the stimulus x i after a transient. In con-
trast, if β is much higher βsl, then such a neuron cannot be selective. Thus, βsl is the optimal order parameter for 
the selective stratum.

Under condition (4) the synaptic weights converge:

β=










= .∞
→∞

tw w x
x

: lim
(5)t

i

i
sl

Thus, given that the relaxation time α is large enough, learning forces the neuron to “align” along its “prefera-
ble” stimulus: ↑↑∞w x i. At the same time, for high ns, we have the property: ≈x x, 0i k , ≠i k (for details see, 
e.g., refs. 9,23). Thus, after a transient, the neuronal membrane potential will be close to zero for all stimuli except 
x i and hence the neuron will become selective.

To estimate the probability that a neuron will be selective after learning, i.e., = =(S d: 1)j , we evaluate the 
probability that the neuron will be silent to another arbitrary stimulus xk ( ≠k i) (see Supplemental Materials):

∫ δ ξ κ ξ µ σ ξ= Φ
∞ ( ) ( )p n ; , d ,

(6)a s
0

where κ µ σ⋅( ; , ) is the normal probability distribution function with the mean µ = 1 and the standard deviation 
σ =

n
2
5 s

. We note that with an increase of ns, κ concentrates around 1, and we can roughly evaluate δ≈ Φp n( )a s , 
which rapidly tends to 1 for high ns. Finally, the neuronal selectivity,

= −S n L p( , ) , (7)s a
L 1

depends on the number of stimuli L and the neuronal input dimension ns only.
Figure 3(a) shows the selectivity S as a function of the neuronal dimension ns. Learning yields a step-like 

dependence of S on ns. For small ns, there is no improvement of the selectivity by learning ( ≈S 0), while for 
higher ns, it rapidly reaches 100%. Insets in Fig. 3(a) illustrate an example of raster plots of stimuli detected by 
neurons at the beginning and the end of learning. We observe that almost all neurons become selective to single 
information items (area shadowed by blue). Thus, the second universal principle is

•	 An increase in the neuronal input dimension ns provokes an explosive emergence of selective behavior in 
“brains” composed of high-dimensional neurons at a critical dimension of 15–30. From Eq. (7) we can also 
estimate the maximal number of stimuli that a big enough stratum can work with:

= +L
p
p

1
ln( )
ln( )

,
(8)

L

a
max

where pL is the lower bound of the probability that the stratum detects all L stimuli. Figure 3(b) shows the theoretical 
and experimental estimates of the stratum capacity. Even for a rather moderate dimension =n 60s , the capacity goes 

Figure 3. Emergence of extreme selectivity in high-dimensional brains. (a) Step-like increase of the ratio of 
selective neurons (experiment: black circles; estimate (7): red curve). Insets show raster plots of detected stimuli 
for =n 30s  (compare to Fig. 2(a)). (b) Exponential growth of the memory capacity (experiment: blue circles; 
estimate (8): red curve). Green area marks the working zone. Green dot corresponds to insets in (a).
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beyond 1010 items (numerical estimate beyond =n 30s  was not calculated due to exponential growth of the computa-
tional load). In practical terms, it means that:
•	 A big enough “brain” consisting of high-dimensional neurons can selectively detect all stimuli existing in the 

world.

To illustrate how the selective stratum can deal with “real-world” stimuli, we simulated learning of 48 sound 
waves corresponding to 12 musical notes from A to G# [see Eq. (1) and Fig. 1]. Figure 4(a) shows the receptive 
fields of two arbitrary chosen neurons in the selective stratum before and after learning. At the beginning, the 
neurons had wide random (even disjoint) receptive fields, as it was hypothesized at the beginning (see Fig. 1(b)). 
The learning reduced the receptive fields to tiny ellipses representing coherent stimuli (sound waves indistin-
guishable for neurons due to some finite tolerance). Thus, neurons in the selective stratum learn individual sound 
waves, and we observe the spontaneous formation of neuronal “clusters” (Fig. 4(b)). Individual neurons within a 
cluster detect sound waves with different phases corresponding to a single note while rejecting the other stimuli.

We also note that the size of clusters varies among different notes. It occurs due to the random initialization of the 
neurons, without a priory knowledge on the stimulus characteristics. A better allocation of the neurons across different 
stimuli can be achieved by introducing inhibitory inter-neuron couplings, which will prevent the emergence of large 
clusters responding to the same stimuli. Such an inhibitory mechanism is widely implemented in the hippocampus 
through multiple types of interneurons, which contribute up to 85% to the total power of local field potentials24,25.

emergence of concept cells. Let us now consider the second stratum composed of concept cells (Fig. 1(a)). 
The dynamics of concept cells is also described by Eq. (2) but now as an input we use the output from the selective 
stratum ∈ +y ms within one time window:

∑ χ= ∈ ∆
=

t t t Ks y( ) ( ), [0, ],
(9)i

K

i iint
1

where χ t( )i  are overlapping rectangular time windows − ∆ ∆i K[( 1) , ). At the stratum output z (Fig. 1(a)), we 
then expect to obtain codification of concepts, which are associations of K individual stimuli.

The coding is now sparse. After learning, only a little portion of the neurons in the selective stratum responds 
to a single stimulus x i, i.e., | |  mysupp( )i s. Thus,

•	 Sparse coding emerges naturally, without a predesigned structuring of the model.

Figure 4. Learning musical stimuli by the selective stratum. (a) Receptive fields of two neurons in the “sound” 
space before and after learning. (b) Raster plot at =t 0 (top) shows the random response of the stratum to 48 
stimuli representing 12 musical notes from A to G#. After learning (bottom), neurons grouped into clusters 
selective to individual stimuli (sound waves).
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•	 The neuronal response ≥y 0i  and hence 〈 〉 ≥y y, 0j i . Besides, after learning neurons in the first stratum are 
selective, i.e., =d 1j , = …j m1, , s. Then, ∩ = ∅y ysupp( ) supp( )j i  and hence 〈 〉 =y y, 0j i  ( ≠j i), which facil-
itates learning in the concept stratum.

Repeating similar arguments for choosing the order parameter β as provided above, after tedious calculations 
(see Supplemental Materials), we find:

β
θ δ

θ δ
=

Γ +

− − −

( )L K K

p K n(1 )(1 )( 1)!
,

(10)c
cn

cn
1
2

sl cn

where Γ  is the gamma function, and pnc  is the probability that after learning a neuron in the concept stratum will 
fire to all K stimuli, i.e., will become a concept cell. Equation (10) yields the following approximate condition on 
the neuronal dimension of CCs:

β∝ .n K / (11)c
3

cn
2

An increase in the number of stimuli K, which can be associated with a concept, requires a cubic increase of 
the input dimension of the concept cells nc, which can be balanced by the rise of the order parameter βcn. Thus, we 
have the following feature:

•	 The input dimension of the concept cells nc scales cubically with their association ability.

Figure 5(a) shows how the association depth K scales with the neuronal dimension nc. Overloaded associa-
tions with high K can result in the detection of “wrong” stimuli as being within a concept. Such an observation 
has been reported experimentally when a Jennifer Aniston neuron the next day also detected Lisa Kudrow from 
the TV series “Friends”12.

To illustrate the process of the formation of selective and concept cells for musical memory, we built a network 
consisting of =m 3200s  neurons in the selective and =m 1600c  neurons in the concept strata. These numbers 
ensure about 50 neurons for each learned stimulus in the selective layer spanning eight sound waves with different 

Figure 5. Emergence of concept cells and musical memory. (a) Working zone (shadowed by green) for 
association of stimuli in concepts. Insets show raster plots of the concept cells’ response: a random mixture in 
the red zone and correct association in the green zone. (b) Formation of “musical memory”. Receptive fields in 
the selective and concept strata are organized into wave- and note-specific structures, respectively [see also the 
hypothesis in Fig. 1(b)]. (c) Perception of a fragment of the 9-th Symphony by Beethoven “Ode to joy” ( =K 7, 
θ = 1sl , θ = .0 1cn , = .p 0 9cn , =L 64, =n 100s , =m 3200s , and =m 1600c ; for visual clarity, in the middle 
subplot, the response of only 2% of the neurons in the selective stratum is shown).
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phase lags per each of the eight frequencies (notes D, D#, E, F, F#, G, G#, and A). Then, the used constraints define 
the depth of the concepts of musical notes =K 7.

At the beginning, all selective and concept cells have messy receptive fields (Fig. 5(b), see also Fig. 4(a)). 
Learning organizes both strata as it was advanced in Fig. 1(b). We obtained about 85% of selective neurons in the 
first stratum. Since the association depth has been preselected ( =K 7 for eight phase lags), all neurons in the 
concept stratum ended up as concept cells.

We then tested the network in real conditions by simulating the process of perception of the 9th Symphony by 
Beethoven. Figure 5(c) shows the system response to a fragment of the symphony. As expected, the selective stra-
tum detects individual sound waves, while the concept stratum puts them together and forms the note-specific 
output. Thus, concept cells respond to particular notes regardless of the phase of sound waves, and the “brain” 
now does follow the music.

Discussion
In this work, we considered from the fundamental viewpoint the long-standing problem of the existence of con-
cept cells in the human brain. Our findings have shown that the emergence of concept cells is conditioned by the 
synaptic (i.e., input) dimension of principal neurons in feedforward connected strata. This result has an impor-
tant implication on the brain regions suspected to have CCs. For example, one of the anatomical requirements 
is the predominantly laminar organization of the neuronal strata with large modules of coherent activity pro-
duced by afferent pathways. Such a structural and functional organization facilitates the transmission of similar 
high-dimensional information to many postsynaptic cells as it happens in, e.g., the hippocampus19.

The evolution of living organisms and to some extent artificial neural networks towards more complex cogni-
tive functionality requires an increase of the neuronal input dimension. A concept capable brain or an ANN 
should meet the following requirements: a) At least one selective and one concept strata; b) The adequate neu-
ronal dimensions, e.g., ≈n 10s

2 and ≈n 10c
4 for the selective and concept layers, respectively; c) The order 

parameter β properly chosen for different strata.
We intentionally avoided the use of any a priory knowledge and constraints in the mathematical model. Thus, 

the conditions found are fundamental and have no specific relation to the fine features of the model used in our 
simulations. Encephalized animals and humans satisfy requirements (a) and (b). Thus, our results support the 
hypothesis of a strong correlation between the level of the neuronal connectivity in living organisms, and differ-
ent cognitive behaviors such organisms can exhibit (cf. refs. 3,26). Condition (c) is related to the learning rate and 
hence to the magnitude of synaptic plasticity, which differs significantly among neurons27. It defines whether a 
neuron can be selective or associative.

We thus suggest a hierarchy of cognitive functionality. The first relay stations in the information processing, 
i.e., selective strata, gain extreme selectivity at intermediate dimensions ( ≈ −n 30 100s ). The second critical 
transition occurs at much higher dimensions ≈ −n 500 1000c . Then, neurons located in the concept stratum 
become capable of associating multiple uncorrelated inputs of different sensory modalities into concepts. A 
straightforward extension of our model is an inclusion of more layers, which could encode the association of 
primary concepts into compound ones, as was observed experimentally11.

Recent experimental data28 suggest that neurons in the medial temporal lobe (including the hippocampus) 
codify high-level semantic abstractions at the population level. Then, the emergence of superordinate concepts 
(e.g., from a ‘dog’ to an ‘animal’) can be considered as a hierarchical generalization of knowledge codified by 
multiple concept cells. Our results indirectly support this hypothesis. We have shown that the required input 
dimension of the concept cells increases very fast (cubically) with the number of items associated with concepts. 
We then get a natural limitation on the associative ability of individual cells. Thus, high-level concepts must be 
fuzzy by their nature, and their construction may involve a hierarchical combinatorial composition of low-level 
categories, which can be experimentally observed at the population level.

Finally, the abstraction of “static” stimuli (objects, persons, landscapes, etc.) can be extended to the abstraction 
of actions and behaviors29. Our brain is capable of building and learning through observation of motor-motifs30 
required for effective interaction with the environment. How neurons represent such spatiotemporal concepts is 
a challenge for further theoretical and experimental studies.
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