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Abstract
The article makes use of three different examples (sensory information processing in the rat trigeminal complex,
intracellular interaction in snail neurons and multimodal dynamics in nephron autoregulation) to demonstrate how
modern approaches to time-series analysis based on the wavelet-transform can provide information about the
underlying complex biological processes.
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INTRODUCTION
New experimental techniques in cellular biology,

physiology and other areas of biological research

constantly provide us with new insights into the

significance of specific biological processes. On the

other hand, our understanding of the complicated

interplay among these processes, and of the role of

the intriguing dynamic phenomena it produces,

only makes modest progress. To overcome this lack

of balance between theory and experiment, first

of all one requires a stronger emphasis on a systems

oriented approach where mechanism-based model-

ing is used to establish a more complete and coherent

picture. It also requires the use of concepts and

methods from the rapidly growing fields of

nonlinear dynamics and complex systems theory,

and it requires the continuous development and

improvement of tools that can help us interpret

the information embedded in complex biological

time series.

Contrary to the conventional concept of

homeostasis, many biological control systems are

unstable and operate in an oscillatory or pulsative

mode. This is true, for instance, for the release of

growth hormone and insulin, and in some cases

the hormonal secretion becomes so erratic that

one wonders whether the release patterns

have significance for the regulatory function [1].

It is well-documented, though, that a rhythmic

process can be more efficient in eliciting a particular

response than a stable regulation.

Many cells also exhibit pulsatory variations

in their membrane potentials with extremely

complicated patterns of spikes and bursts. Chicken

heart cells, for instance, have been shown to produce

complex dynamics and synchronization phenom-

enon when stimulated by an external periodic

signal [2]. Interacting nerve cells can also produce

extremely complex and counterintuitive phenomena

[3–5]. Similar forms of complexity characterize
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interactions among the intracellular regulatory

processes [6], and synchronization also arises in

connection with the autoregulation of nephron

pressures and flows [7].

The instabilities in the regulatory processes are

associated with the fact that living systems operate far

from thermal equilibrium. Biologically, the complex

dynamic phenomena are essential for the commu-

nication and information processing between cells,

functional units and organs. Appearance of the

individual rhythmic component (mode) is typically

associated either with the activation of a positive

feedback or with a sufficiently long delay in a

negative feedback. Interactions among the modes

produce a great variety of complex phenomena,

including modulation of the frequency and ampli-

tude of one mode by the presence of another,

complex irregular oscillations and unusual responses

to noise. The purpose of the present article is to

illustrate how application of modern methods of

nonlinear time series analysis can help unravel some

of this complexity.

Wavelet analysis is presumably one of the most

powerful tools to investigate the features of a

complex signal [8–12]. The wavelet approach has

shown its strength in connection with a broad range

of applications such as noise reduction, information

compression, images processing, synthesis of signals,

etc. Like the analytical-signal approach, the wavelet

transform allows one to define the instantaneous

amplitude, phase and frequency for nonstationary

processes.

In this article, we present an overview of some of

our recent results obtained through application of

wavelet analysis to the study of biological data. The

article also presents a number of new results,

particularly in the area of sensory information

processing. The main purpose of the article is to

illustrate the amount of information that one can

extract from biological time series with appropriate

statistical methods. In ‘Wavelet analysis’ we shortly

review the main ideas of the wavelet analysis, and

the following sections consider different applications

of wavelet-based techniques. Thus, ‘information

processing in the trigeminal complex of the rat’ is

devoted to the problem of sensory information

processing, where wavelets allow us to reveal a clear

distinction in the response of different nerve groups

to the duration of a stimulus. In ‘cellular dynamics’,

we apply a modified wavelet technique (so-called

‘double-wavelet’) to analyze the interaction of

different processes at the cellular level, and in ‘renal

autoregulation’ we demonstrate the potential of the

wavelet technique to study the difference between

normal and pathological states in renal autoregula-

tion. In this article we partly consider experimental

data used in our recent publications. In this connec-

tion, we shall not describe the corresponding

experimental procedures in details making references

to previously published works.

WAVELETANALYSIS
Traditionally, analyses of biological time series have

often been performed within the framework of the

following ideology: It is supposed that segments

of the experimental time series are approximately

stationary, and that such segments can be studied by

means of statistical techniques such as, for instance,

correlation measures or Fourier analysis. This

approach is obviously useful if the nonstationarity is

associated only with the low-frequency region of the

power spectrum relative to the rhythms of interest

from the physiological point of view.

Such nonstationarity is treated as a slow trend and

may simply be filtered out from the data [13].

However, this situation is not always true

for experimental recordings. As an example, besides

a slow ‘floating’ of the mean value, instantaneous

frequencies of various rhythmic components can

exhibit complex and irregular fluctuations, i.e. the

nonstationarity may be associated with higher

frequencies as well. Analysis of such time series

using traditional statistical or spectral approaches can

lead to misinterpretation of the obtained results.

In particular, the coexistence of two peaks in the

power spectrum of a physiological process can

correspond to essentially different situations:

There could be two independent modes or only a

single mode whose instantaneous frequency changes

in time from one value to another. Such problems

serve to underline the importance of developing

new, more universal tools to study the dynamics of

complex systems.

From the viewpoint of possible applications, the

attractiveness of a particular technique for signal

processing depends on its generality, i.e. on the

lack of restrictions on the signal properties. At

the present, there are only few techniques that

can cope with inhomogeneity and nonstationarity

of biological time series. Among these, the three

most well-known are: (i) the construction of an

376 Pavlov et al.



analytical signal by means of a Hilbert transformation

[14], (ii) the detrended fluctuation analysis

(DFA) [15] and (iii) the wavelet analysis [8, 9].

The analytical signal approach allows us to

introduce the notions of an instantaneous amplitude,

phase and frequency for a random process. Thus we

can analyze how these characteristics vary in time.

This technique represents an effective tool for

studying relations between signals, e.g. entrainment

phenomena among biological rhythms.

The DFA is a tool proposed to reveal features

of long-range correlations. The main idea is to

interpret experimental data as ‘random walk’ and

then analyze how this walk deviates from a local

trend. Following Peng et al. [15], the characteristics

of the DFA-method have a clear relation to the

scaling exponents describing the behavior of the

autocorrelation function or of the power spectrum.

Thus, the DFA makes it possible to perform spectral

and correlation analyses of nonstationary processes.

However, for such applications, the wavelet-based

multifractal analysis [16] has a number of advantages,

especially for short data series. For instance, the

DFA-method requires a significantly larger length of

the time series and it is not as effective in the analysis

of correlation properties at small time scales.

The wavelet transform of a signal x(t) involves its
projection onto a set of soliton-like basis functions,

obtained by rescaling and translating a ‘wavelet’

along the time axis:

Wða,bÞ ¼
1ffiffi
a

p

Z 1

�1

xðtÞ � t� b
a

� �
dt, ð1Þ

where  is the wavelet basic function and the asterisk

(*) denotes complex conjugation. W(a,b) is referred
to as the wavelet-transform of x(t), which is a

function of the time scaling and the translation

parameters a and b, respectively. Besides being

localized in both the time and frequency domains,

the basic function should possess a few additional

properties, such as zero mean, boundedness and basis

self-similarity (the latter means, for instance, that all

wavelets constructed from a given basic function

must have the same number of oscillations).

The choice of  depends on the purpose of the

analysis. Each wavelet function has its own features

in the time and frequency domains. This provides us

with the opportunity to reveal specific properties of a

given biological signal. The wavelet-transform is

often interpreted as a ‘mathematical microscope’

whose optical characteristics are defined by the

choice of the function  , and the parameters a and b

determine the magnification and the focusing point,

respectively. In the spectral analysis of experimental

time series, one prefers complex wavelets, among

which the most popular is the Morlet-wavelet whose

simplified expression has the form:

 ð�Þ ¼ �
�1
4 expð j2�f0�Þ exp �

�2

2

� �
: ð2Þ

The value f0 allows us to search for a compromise

between the localization of the wavelet in the time

and frequency domains. The relation between time

scale a and the central frequency for the function  is

f¼ f0/a.
Depending on the considered problem, the form

of the wavelet-transform can vary: one considers

either the continuous (1), or the discrete transform

[10, 11]. The discrete variant involves integer

translations and dilations in powers of two. This

may be useful, for instance, for information com-

pressing or in cases where it is necessary to

accomplish the expansion with a minimum

number of independent coefficients. In the case of

signal analysis, a continuous wavelet transform (1) is

usually more convenient, although this transforma-

tion possesses some ambiguity related to the

continuous variation of the scaling and translation

parameters. This ambiguity may actually be an

advantage as it allows for a more complete analysis

and a clearer presentation of the data [12].

As a result of the transform (1), the surface of

coefficients W(a,b) in a three-dimensional space is

obtained. Visualization of this surface can be done in

different ways. Often, a projection of the surface

onto the plane (a, b) is considered in which tints of

color mark the value of the coefficient (by analogy to

geographical maps). As an alternative, the so-called

‘skeleton’ may be used. The skeleton consists of

the lines of local extrema of the above surface. The

skeleton presumably reflects the most informative

features of the transform (1).

Besides the coefficients W(a,b), the energy density
of the signal x(t) in the time scale plane can also

be estimated: E(a,b)� jW(a,b)j2. Following the

definition used in [17], the coefficient of proportion-

ality between E(a,b) and jW(a,b)j2 depends on both

the scale and the shape of the ‘mother’ wavelet

although in some works the simpler expression

(E(a,b)¼ jW(a,b)j2) is considered [12]. Note that the

modula of the original wavelet coefficients W(a,b)
estimated from Equation (1) do not correspond to

actual amplitudes of the rhythmic components.

To study amplitude variations, it is useful to slightly
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change the definition of the wavelet transform [16]

or to make corrections for the energy density E(a, b).
In the present study, we will use the relation

Eða, bÞ ¼ Ca�1jWða, bÞj2, ð3Þ

where C, a parameter that depends on the wavelet

‘mother’ function, is kept constant. E(a, b) represents
a surface in 3D space whose sections at fixed time

moments correspond to the local energy spectrum.

To simplify the visualization of this surface, the

dynamics of only the local maxima of E(a, b) or

E( f, b), i.e. the time evolution of the spectral peaks

will be considered. In this way, all frequency

components being of physiological interest can be

extracted from the original wavelet transform for

further analysis of their properties.

INFORMATION PROCESSING IN
THETRIGEMINALCOMPLEXOF
THERAT
Organization of the trigeminal pathway
The central nervous system (CNS) of living

organisms processes enormous amount of sensory

information received through the interaction with

the surrounding world. The study of how this

information is encoded, represented and processed in

the brain is one of the most significant challenges to

neurology and related sciences. Before producing

sensation optical, auditive, tactile and other stimuli

are encoded by their respective receptors into

sequences of electrical pulses (or spikes) that are

transferred to ‘first’ neurons in areas of the CNS

(e.g. trigeminal nuclei) that perform the preprocess-

ing of the sensory information which then passes

a number of additional processing stages and finally

reaches the cortex, where an internal ‘image’ of the

external world is formed. The complexity in the

representation of the sensory information increases

significantly with each subsequent stage, and so does

the difficulty of investigating this representation.

Although the molecular and ionic mechanisms of

the underlying neural activation are rather well

understood [18], the properties of spike trains as

information carriers remain less clear: How do these

trains reflect the complexity and variety of the

sensory information? How is the information

transformed from one stage to the next? And

how is the information from many different spike

trains integrated into a coherent picture? At the

moment there exist several hypotheses on the

information coding in the brain with varying degrees

of experimental confirmation. Sensory information

can be hidden in the firing rate (frequency coding) or

in the firing pattern (temporal coding) of individual

neurons, or it can be populationally coded, i.e. be

presented through the correlated firing of different

neurons. In view of the many open questions in

this field, let us examine the processing of tactile

information in rats by the first relay station, the brain

stem trigeminal sensory complex.

The rat perceives the majority of sensory

information by means of the vibrissal pad, a highly

specialized and sensitive apparatus that conveys

tactile signals via the trigeminal system to the brain

[19]. The length of vibrissae varies from 4–5mm to

30–50mm, thus providing simultaneous contact of

their tips with a tangible object during whisker

movements and allowing the system to cover a wide

range of frequencies necessary for an effective

perception of the external object.

A rat sweeps whiskers across surfaces with a

frequency from 5 to 15Hz. When a whisker touches

an object, its vibration and deflection encode certain

physical characteristics of the object. Specialized

receptors innervated by primary afferent fibers on

each whisker are excited by these movements.

Figure 1 illustrates how signals from receptors

(placed in vibrissae follicles) travel along the

trigeminal nerve toward the brain stem where the

fibers bifurcate and synapse with the ‘first’ neurons

of the trigeminal complex [20] that contains the

principalis (Pr5), interpolaris (Spi5), oralis (Spo5)

and caudalis (Spc5) nuclei. The trigeminal complex

performs a preprocessing of the tactile information

before it is transmitted to the thalamus and then to

the cortex [19]. All four nuclei are interconnected by

an extensive network of internuclear fibers [21].

The purpose of this section is to demonstrate

characteristic distinctions in responses to tactile

stimulation of the vibrissae that exist among neurons

from the three different nuclei. We propose an

approach to study changes in the dynamics aiming to

obtain new information concerning the neuronal

response to periodic stimulation, and we show

that the three groups of neurons demonstrate

qualitatively different dynamics under variation of

the stimulus duration.

A new approach to studying the stability
of neuronal response
Characteristics of the principalis, interpolaris and

oralis nuclei of the trigeminal sensory complex were
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studied under free whisker movements caused

by short air puffs of 10, 50 or 100ms durations.

This type of stimulation provokes whisker oscilla-

tions closely corresponding to those observed in

natural conditions. The air puffs were directed

only toward one vibrissa, and signals were not

recorded when other vibrissae were activated.

Spontaneous spiking activity in trigeminal nuclei

was extracellularly recorded in vivo for 180 s, and

then three separated sequences of 50 stimuli of 10, 50

and 100ms duration, respectively, at 1Hz were

applied. Further details of the experimental proce-

dure can be found in [22]. The analyzed data set

included 39 experimental recordings of single-unit

activity among which: 15 recordings from the

principalis, 12 from oralis and 12 from interpolaris

nuclei.

A study of Pr5, Spi5 and Spo5 nuclei of the

trigeminal sensory complex was reported in [22]

using standard methods of data analysis (mean spiking

frequency, mean response latency, per-stimulus

histograms, etc.). However, these methods do not

account for possible changes of neuronal activity

during stimulation, and in a certain way, they are

based on the hypothesis of a stereotypic response to

identical stimuli. Meanwhile, deviations from this

type of response are widely observed for the neurons

from various parts of the brain, and accounting for

such phenomena (rather than ignoring them)

obviously allows us to reach a significantly better

understanding of the underlying dynamical and

behavioral mechanisms. In particular, Figure 2

shows an example of adaptation for a Pr5-neuron

to a periodic stimulation. The activity is highest at

the beginning (27 spikes/s) and after a few seconds

it decreases up to about 10 spikes/s.

If the response of a neuron to a given stimulus

(short pulse) delivered to a particular vibrissa would

always be the same, then periodic stimulation by a

series of pulses would lead to a periodic spike train

(e.g. 2 or 3 spikes/stimulus). However, in reality,

we often observe aperiodic and nonstationary neural

responses (Figure 2). This is the result of adaptation

to external influences associated with internal

processes in the neuron and with global dynamics

of the neural network. A neuron typically demon-

strates inhibition of the reaction to a stimulus during

a certain time interval (the refraction period), or this

reaction may be modified significantly depending on

the time elapsed since the previous response.

Figure 1: Main stages of the tactile information pathway: fromreceptor cells through the trigeminal complex via the
thalamus and to the cortex.

Figure 2: A representative example of adaptation
of spiking activity of a neuron from Pr5 nucleus under
maintained periodic stimulation of the vibrissae (10ms
air puffs at 1Hz). (Up)çstimulus, (Middle)çneural
response, (Bottom)çmean spiking rate. Note how the
spiking frequency after a few seconds is reduced
from 27 spikes/s to about10 spikes/s.
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As a first approach let us consider a spike train as a

sequence of �-functions (see Figure 3):

xðtÞ ¼
X
i

� t� tið Þ, ð4Þ

where each �-function coincides with the moment

of spike generation ti.
Using the Morlet-wavelet (2) representation of

the experimental data in the form (4) allows us to

analytically evaluate the wavelet-coefficients:

Wða; bÞ ¼
�

�1
4ffiffi
a

p
X
i

exp �j2�f0
ti � b
a

� �
exp �

ðti � tÞ2

2a2

� �
ð5Þ

and to perform a complete time-frequency analysis

of the spike trains, i.e. to analyze the temporal

evolution of its characteristic rhythmic components.

The wavelet coefficients (5) can be considered as the

parameterized function Wa(b), where b defines the

observation time moment. It is of interest to study

the neural response to a constant stimulation

frequency (1Hz in our case). If the neuron generates

the same spiking pattern to all stimuli, the instanta-

neous frequency of the response remains constant

and reflects the 1Hz rhythm of the stimulus

(Figure 4A). For an aperiodic response, however,

the instantaneous frequency will show characteristic

‘floatings’ around the mean value. The correspond-

ing fluctuations of the frequency will be the stronger

the more significant the variations are in the

neuronal response (Figure 4B).

As a numerical characterization of the stability of

the response we may use:

S ¼
1

�2f
, ð6Þ

where �f
2 is the variance of the instantaneous

frequency of the neuronal activity. Note that the

result of the above approach differs from that of a

simple statistical analysis such as the construction of

per-stimulus histograms. Such histograms will be

very similar, for instance, for the two spike trains

shown in Figure 5, while the parameter S will reveal

essential distinctions because it accounts for the

dynamical changes. A stereotypical neuronal

response of any complexity will attain a constant

value of f (Figure 4A) and, consequently, produce

an infinite value of the stability S. Rather than

emphasizing the structure of the spike pattern the

stability measure accentuates the spike to spike

differences in the response. Thus, we have a

parameter that allows us to quantify the long-term

nonstationarity in the neural response. Note that this

measure is also different from the sliding window

averaging shown in Figure 2.

Figure 3: Representation of a spike train in the form
of a series of �-functions. (A) Band-pass filtered extra-
cellular spikes recorded in Pr5 nucleus. (B) Each spike is
associatedwith a �-function.

Figure 4: Dynamics of the instantaneous frequency
for a periodic (A) and an aperiodic (B) neuronalresponses
to a1Hz stimulation.Note that themodulation observed
in (B) never reaches a steady state value.
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By estimating the response stability of a series

of experimental recordings, we have been able to

reveal differences in the neuronal reaction to

variation of the stimulus duration between princi-

palis, interpolaris and oralis nuclei. We have first

calculated the parameter S for the three types of

neurons (from three different nuclei) and the three

types of stimulation (10, 50 or 100ms). We have

thereafter determined the stimulus duration that

leads to the highest stability in the response for

each type of neuron (i.e. to the minimal deviations

from the stereotypic response during the whole

stimulation)—Figure 6A. With a view of quantifying

the changes of this stability when the stimulus

duration increases (10 ! 50 ! 100ms), we have

determined the number of neurons satisfying

the conditions: S504S10 and S504S100, where the

subscript denotes the considered pulse duration

(Figure 6B).

In the case of Pr5-neurons, the stability parameter

S takes its maximal value for the intermediate

duration of the stimuli (50ms). This is observed

for �53% of cells. For 73% of Pr5-neurons, the

response to 50ms stimulation is more stable than to

air puffs of 100ms duration. Quite similar dynamics

is observed for Spi5 neurons: 67% of the cells

show a most stable response at 50ms stimulation, and

only a single cell demonstrates the presence of

maximal stability at 10ms stimulation. The value

of S increases at the transition 10 ! 50ms for �92%

of cells. Thus, Pr5- and Spi5-neurons are character-

ized by rather similar types of reaction to variation of

stimulus duration from the viewpoint of trial to trial

stability. The most prominent difference in their

responses is observed for the shortest (10ms) stimulus

duration, when about twice more neurons from

Pr5 show better stability. Spo5-neurons demonstrate

completely different type of response. Maximal

stability at 50ms stimulation was observed for only

17% of these cells. Most of the neurons (�50%)

reached the maximally stable response for the

shortest 10ms stimulation and only for 33% of

the cells the value of S grew up with the increase

of the stimulus duration from 10 to 50ms.

This analysis allows us to make conclusions about

the different response dynamics of neurons from

the three nuclei: Whereas the stability of the

Figure 5: Examples of different neuronal response to
the same stimulation. The per-stimulus histograms
will be fairly similar in both cases, whereas the stability
parameter S defined in (6) will reveal clear distinctions.
Dashed linesmark themoments of stimulus onsets.

Figure 6: Comparative analysis of the spiking pattern
stability of the response of Pr5, Spi5 and Spo5-neurons
under 1Hz stimulation of vibrissa by pulses of air puffs
of different durations. (A) Percentage of the neurons
showing maximal stability S for the corresponding
stimulus duration. (B) Percentage of the neuron showing
an increase of the response stability for the intermediate
stimulus duration (50ms).
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Spo5-neurons has a minimum at the interme-

diate stimulus duration (S104S50 <S100), Pr5- and

Spi5-neurons show the opposite behavior, they

reach the most stable response at the intermediate

value (S10 <S504S100). Hence, we can suppose

that there is an optimal stimulus duration that

provides stable firing of neurons from the Pr5- and

Spi5-nuclei and at the same time Spo5-neurons

show the most significant variability. This may mean

that principalis and interpolaris nuclei process the

tactile information in a similar way, paying attention

mostly to the fast and precise identification of the

presence of tactile stimuli, while the oralis nucleus

works on a longer time scale processing the fine

structure of the stimulus. Thus, our novel method

allows getting a new interpretation of the tactile

information processing in the trigeminal complex

of the rat. In contrast to the traditional electro-

physiological approach (a study of neuronal response

averaged over trials), the proposed stability measure

reveals essential differences in the time evolution

of the responses of Pr5, Spi5 and Spo5-neurons

mostly localized in the range of short (10ms) to

intermediate (50ms) stimulus durations.

CELLULARDYNAMICS
Study of intracellular processes with
interference microscopy
Cell dynamics involves a number of regulatory

processes that occur over many different time

scales both in the plasma membrane and in the

various cytoplasmic compartments. A study of non-

linear interaction phenomena between these

processes allows us to establish a better understanding

of cellular regulation and function. Standard experi-

mental approaches (patch clamping, intracellular

registration of membrane potentials and fluorescent

microscopy) only allow us to analyze the processes

individually. Moreover, these tools may distort the

cellular processes or damage neuron structures.

An extremely promising approach to studying

cooperative phenomena in intracellular dynamics is

based on the use of interference microscopy [23].

With this technique one measures the optical path

difference between a laser beam transmitted through

the object (e.g. a biological cell) and reflected from a

bottom mirror and a reference beam reflected from

the control mirror [23]. The phase height relief

reflects the location of various organelles and plasma

membrane structures. The relief changes in time,

and these variations provide information on the

dynamics of the local refractive index resulting from

processes in the plasma membrane and inside the cell,

e.g. changes in membrane bound proteins, variations

in the local Ca2þ concentrations, or motion of

vesicles carrying neurotransmittors to the cell surface.

Experiments were performed on isolated pond

snail (Lymnaea stagnalis) neurons. Details of these

experiments are described in our recent article [6].

Interaction among intracellular processes
Unraveling the complexity of information contained

in interference-microscopic time series obviously

poses some difficulties with respect to identifying the

processes that are responsible for the various

signal components. Some of these difficulties can

be addressed by measuring at different positions

in the cell. One can also change the external

conditions (e.g. the salinity of the surrounding

solution) and add chemical components that influ-

ence the cellular processes (e.g. by blocking certain

ion channels). However, by revealing the mutual

interactions among the signal components, a suffi-

ciently skillful time series analysis can also provide

important insights.

Interaction phenomena between the coexisting

modes in the dynamics of a biological system are

reflected in the temporal evolution of the instanta-

neous frequencies and amplitudes of the existing

rhythms. In particular, the mode-to-mode interac-

tion may reveal itself in the form of a modulation

where the instantaneous amplitude or frequency of

one (faster) mode is modulated by the presence

of another (slower) mode. Aiming to study modula-

tion properties, we propose to use the following

approach. The time dependence of the instantaneous

frequency is considered as input signal for a second

wavelet-transform (1) [25, 26]. Again, the wavelet

coefficients and the energy density are estimated and

the simplified visualization of the energy density is

considered. The latter will contain information about

all modes involved in the modulation process. In the

case of nonstationary dynamics we can examine

how the features (characteristics) of the frequency

modulation are changed in time. By analogy, instead

of the instantaneous frequency of the fast dynamics

we can take the instantaneous amplitude of this

mode and, thus, study the properties of amplitude

modulation of the fast rhythm.

This approach, which we shall refer to as a

double-wavelet analysis [27, 28] allows us to characterize
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the nonstationary temporal dynamics of a modulated

signal, i.e. to detect all components that are involved

in the modulation, estimate their contributions and

analyze whether the modulation properties change

during the observation time.

Figure 7A illustrates an example of the power

spectrum estimated for the refractive index record-

ings in the low-frequency range. Inspection of

this figure clearly shows the presence of several

rhythmic components with frequencies around 0.1,

0.2–0.4, 1 and 3Hz. Aiming at a better under-

standing of cellular dynamics, we have tried to

associate each rhythm with a particular process in

the cell [6]. We suppose that the frequency range

shown in Figure 7A represents processes in the

plasma membrane. In particular, slow processes with

the frequencies around 0.1Hz probably originate

from reorganizations in the plasma membrane such as

lipid rafts and protein movements, changes of the

amount of membrane-bound ions and, related

hereto, local fluctuations of the membrane fluidity

and transmembrane potential [29–31]. Rhythmic

components in the next frequency range

(0.2–0.4Hz) are considered to be associated with

the dynamics of Cd2þ ions (a blocker for Ca2þ

channels) [32]. According to Schutt et al. [33],

neurons in the ganglia of mollusca Helix aspersa
possess an intrinsic 1Hz activity and a nonspecific

induced activity at 1.5 and 3Hz. Moreover, Peixoto

etal. [34] found that during the first 3 h after isolation,

Helix neurons show a spontaneous rhythmic activity

with 1–10Hz frequencies. Hence, the prominent

spectral peaks with frequencies around 1 and 3Hz

may correspond to subthreshold changes of the

membrane potential and/or to spontaneous

rhythmic activity.

The coexistence of rhythmic components in

the nonlinear biological system leads to their

mutual interaction. As we can see from Figure 7B,

instantaneous frequencies of faster rhythmic compo-

nents (around 1 and 3Hz) oscillate in time. These

variations are likely to arise from frequency

modulation by the slower intracellular processes.

The instantaneous frequencies of the rhythms

between 0.1 and 0.4Hz demonstrate relatively

constant values during the observation time

(this may, obviously, be connected with the

relatively short duration of the available experimental

recordings). The 1.3Hz mode, however, shows

a modulation with two full cycles during the 20 s

observation time. This corresponds to the

frequency of the 1.3Hz mode being modulated

by the presence of the 0.1Hz mode. The obvious

conclusion is that these two modes are associated

with strongly interacting processes. Similarly,

the frequency of the 3–4Hz mode performs 7–8

oscillations during the 20 s observation period.

This corresponds to the modulation of this frequency

by the 0.3–0.4Hz mode. A more detailed analysis

of the nonlinear interactions between the coexisting

oscillatory modes can provide quantitative informa-

tion about the degree of interaction between

different mechanisms in the cell functioning.

Our analysis was based on about 200 recordings.

Besides the instantaneous frequencies, we have

also analyzed the instantaneous amplitudes of the

low-frequency modes (i.e. below 5Hz). Further,

we have quantified the intensity of mode-to-mode

Figure 7: (A) Power spectrum calculated via the
wavelet technique. (B) The dynamics of all local
maxima of the energy density reveals variations of
the rhythmic behavior with time. In particular we note
how the1.3Hz mode ismodulatedby a 0.1Hz signal.
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interactions in terms of the modulation depth

separately for the amplitude and for the frequency

modulation [6]. Figure 8 shows that the rhythmic

components at 1Hz (black circles) and 2–4Hz

(white circles) are clearly separated with respect

to modulation depth in the case of frequency

modulation (Figure 8A) and with respect to

modulation frequency in the case of amplitude

modulation (Figure 8B). We consider this to imply

that different biological mechanisms are involved

in the regulation of the 1Hz and the 2–4Hz

rhythmic activities.

The above results clearly reveal the presence

of nonlinear interactions among the cellular processes

in the form of frequency and amplitude modulation

of the fast processes by the slower processes.

Further analyses of refractive index dynamics and

the relations between the observed frequencies

of the refractive index changes are presently under-

way. Such analyses are expected to provide a more

detailed physiological understanding of the interac-

tion of cellular processes on different time-scale,

in different neuron compartments and at rest

conditions as well as under the influence of external

stimuli.

RENALAUTOREGULATION
Multimode dynamics in nephron
autoregulation
In this section, we shall consider application of time

series analysis to study nonlinear interactions

between two mechanisms of renal autoregulation.

It is well known that the kidneys play an important

role in regulating the blood pressure and main-

taining a proper environment for the cells of the

body. The measurements to be reported in this

section were performed in rats. A rat kidney contains

�30 000 nephrons as compared with the 1 million

nephrons in a human kidney. The process of urine

formation starts with the filtration of plasma in the

glomerulus, a system of 20–40 capillary loops. The

presence of a relatively high hydrostatic pressure

in this system allows water, salts and small molecules

to pass out through the capillary wall and into

the proximal tubule. Blood cells and proteins

are retained, and the filtration process saturates

when the protein osmotic pressure balances the

hydrostatic pressure difference between the blood

and the filtrate in the tubule. For superficial

nephrons, the proximal tubule is visible in the

surface of the kidney and easily accessible for pressure

measurements.

To protect its function against variations in the

arterial blood pressure, the individual functional

unit of the kidney (the nephron) possesses a feedback

mechanism (the so-called tubuloglomerular

feedback) that regulates the incoming blood

flow depending on the NaCl concentration of the

fluid that leaves the loop of Henle. As experiments

on rats have shown [35–37], this feedback regula-

tion can become unstable and generate self-sustained

oscillations in the proximal intratubular pressure

with a typical period of 30–40 s. With different

amplitudes and phases the same oscillations are

manifest in the distal intratubular pressure and in

the chloride concentration near the terminal part of

the loop of Henle. The observed oscillations are

fairly regular for normotensive rats and highly

Figure 8: Distribution of modulation depths with
the modulation frequency as a parameter for the
1Hz and 2^4Hz rhythmic components in the cases
of (A) frequency and (B) amplitudemodulation.
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irregular for so-called spontaneously hypertensive

rats, i.e. rats that are genetically disposed for high

blood pressures [35].

Another rhythmic component in the nephron

autoregulation that can be revealed by wavelet

analysis [38] is associated with a myogenic mecha-

nism representing the intrinsic response of the

smooth muscle cells in the vascular wall to changes

in the TGF-signal as well as to other stimuli.

This mechanism operates at 0.1–0.25Hz.

An increase of the transmural pressure elicits a

contraction of the vascular smooth muscle causing

a vasoconstriction and an increase in the resistance

of the afferent arteriole. Since both the above

mechanisms act on the afferent arteriole to control

its hemodynamic resistance, the activation of one

of the mechanisms modifies the response of the

other. Interaction between these mechanisms

can lead to various modes of intranephron synchro-

nization [39]. Interaction between the two modes

can also lead to modulation of the faster mode by

the slower dynamics [27, 28]. Let us consider some

of the features of this modulation.

Figure 9 displays an experimental recording of

the proximal tubular pressure in surface nephrons in

a rat together with the temporal behavior of

the instantaneous frequencies associated with the

slow (fslow) and the fast (ffast) oscillatory modes in

the dynamics of the nephron. We can clearly see that

both modes are well expressed. The first of

them (fslow) remains practically constant while the

second (ffast) changes in time. Moreover, since

Figure 9B represents the values of the instantaneous

frequencies, some value of the energy density

is associated with each point as shown in this

figure. This means that we can extract not only

the time dependences of the instantaneous frequen-

cies but also the dependences of the instantaneous

values of the energy densities (or the instantaneous

amplitudes).

Mode-to-mode interaction in individual
nephron
The extracted time dependences of the instantaneous

frequencies and amplitudes can further be analyzed

to extract information about the modulating

frequency and the depth of modulation. In parti-

cular, we can study the frequency and amplitude

modulations of the myogenic mode by applying

a second wavelet-transformation to the temporal

variations in the instantaneous frequency or

amplitude of this mode. As shown in Figure 10,

the modulation depth can show essential

variations demonstrating that the strength of the

mode-to-mode interaction does not remain

constant. Moreover, we have found that the

numerical values of the depth of the frequency

modulation (Mf) are significantly different for

a normotensive (Mf� 0.35 in the average) and a

hypertensive rat (Mf� 1.1 and strongly varying).

Here, Mf¼�!/�, where �!¼ (!max�!min)/2

and � is the modulation frequency. For

nonstationary processes, �(t) is determined via a

single-wavelet technique while the peak to

peak frequency variation �!(t) is determined

via the double-wavelet technique.

Figure 9: Experimental recording of the proximal
tubular pressure in a cortical nephron of a rat kidney (A)
and the extracted frequencies of rhythmic components.
The search for fslow and ffast was performed in the
ranges [0.02^0.07] Hz and [0.1^0.25] Hz, respectively.
The frequency step in the wavelet transform was
chosen to be 0.001Hz.

Wavelet-based tools and the biological processes 385



Analogous studies can be performed for the

instantaneous amplitudes of the fast mode. In this

way, we obtained the values Ma� 0.33 and

Ma� 0.55 for the depths of the amplitude modula-

tion in the normotensive and the hypertensive rat,

respectively. We conclude that the amplitude

modulation is less expressed than the frequency

modulation. This observation may provide an

important testing criterion for alternative models of

the interaction between the two modes.

We have performed a statistical survey of these

results for a series of experiments. We used 76

recordings, among which 34 were from normoten-

sive and 42 from hypertensive rats. Animal prepara-

tion and the experimental procedure are described

in the literature [35–37]. Figure 11 illustrates

the distribution of depths of frequency and

amplitude modulation for hypertensive (black circles)

and normotensive (white circles) rats. Inspection of

the figure clearly shows that there is a well-defined

distinction between the two rat strains for both

the amplitude and the frequency modulation,

although the latter effect is more clearly expressed.

Over the complete data set, the mean values of the

modulation depth with standard error of the

mean are Ma¼ 0.49� 0.02 and Mf¼ 1.08� 0.06 as

indicated by the dashed lines in Figure 11. It is

clearly seen that the depth of modulation and,

hence, the nonlinear interaction between the

involved mechanisms are stronger for hypertensive

than for normotensive rats. The mean values

are Ma¼ 0.40� 0.02 and Mf¼ 0.74� 0.06 for

normotensive rats, while Ma¼ 0.55� 0.02 and

Mf¼ 1.35� 0.06 for hypertensive rats. The

number of nephrons with a frequency modulation

that exceeds the average value is higher for

hypertensive rats (75%) than for normotensive rats

(18%). For the amplitude variations, we obtained

64% and 21%, respectively.

Very low frequency components of unknown

origin also participate in the mode-to-mode

interaction and influence the above two mechanisms

of renal autoregulation. Thus, the modulation

spectrum for the TGF-mode (Figure 12A) contains

a sharp peak at a frequency of about 0.006Hz,

and the modulation spectrum for the myogenic

mode (Figure 12B), besides the peak at about

0.03Hz reflecting the TGF-dynamics, also contains

a clear peak at a frequency of about 0.006Hz.

Figure 10: Temporal variations in the depths of
frequency modulation for a normotensive (A) and
a hypertensive (B) rat. The frequency modulation
depth Mf measures how much the frequency of the
fast (myogenic) mode is modulated by the slower
(tubuloglomerular) mode.

Figure 11: Distribution of depths of frequency and
amplitude modulation of the myogenic mode by the
TGF-mediatedmode.
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Figure 13A and B shows distributions of

frequency and amplitude modulation depths for

the TGF-mediated mode (Figure 13A) and the

myogenic mode (Figure 13B) as caused by the very

slow dynamics. Again, the spontaneously hyperten-

sive rats demonstrate a higher depth of modulation

and, therefore, a stronger mode-to-mode interac-

tion. The revealed phenomena and, in particular,

the role of very slow dynamics in the renal

autoregulation need further physiological

interpretation.

Based on the above results, we suggest that the

mechanism of regulation of the afferent arterial

blood flow is more complex than previously

assumed. In hypertension, the active parts of

the blood vessels demonstrate increased variability

in their oscillations, i.e. regulation of the flow is

associated not only with changes in vascular

diameters but also with an accompanying adjustment

of the frequency of the vascular oscillations.

We would like to note that amplitude

modulation of the myogenic dynamics by the

tubuloglomerular mechanism has previously been

demonstrated [40], but frequency modulation has

never been observed in the renal circulation, or in

other vascular beds. From a physiological point

of view, we can associate the strong variations in

Mf observed particularly for the hypertensive

rats with nonlinear effects in the activation of the

smooth muscle cells in the arteriolar wall. At

low activation level, these cells operate in a relatively

incoherent manner. With increasing activation,

however, the cells start to perform self-sustained

and synchronized oscillations with a period that

depends on the activation level.

Figure 12: Power spectra of amplitude modulation
forTGF (A) and for myogenic (B) dynamics for a nephron
from a hypertensive rat. Note the peaks occurring
at very slow dynamics.

Figure 13: Distributions of depths of frequency
and amplitude modulation of theTGF-mode (A) and the
myogenic mode (B) by very slow oscillations.

Wavelet-based tools and the biological processes 387



CONCLUSIONS
In the course of the last years, wavelet-based

methods have found many different applications in

the analysis of biological systems. The appearance of

this tool has essentially extended our ability to extract

information from experimental research. Living

systems typically demonstrate complex irregular

behaviors whose characteristics continuously change

in time. Application of standard methods of statistical

analysis in such situations is based on the a-priori
assumption that we deal with stationary processes.

However, it is very difficult (or even impossible) to

support this assumption, especially if the living

system demonstrates an adaptation process to

changing environmental conditions. Different

misinterpretations of the obtained results can,

therefore, occur as a consequence of limitations of

the standard statistical tools when it comes to

analyzing nonstationary processes.

Aiming to illustrate how application of special

tools of nonlinear and nonstationary time series

analysis allows us to reveal new phenomena in the

dynamics of living systems and to obtain more

detailed information about the underlying biological

processes, we presented three different wavelet

analyses. In the first example, we considered sensory

information processing in the rat trigeminal system.

In order to study dynamical features in the

functioning of neurons from different nuclei, we

have proposed a new approach based on estimation

of the stability of the firing response of a neuron to a

repeating (oscillatory) stimulus. Using this approach,

we have revealed clear distinctions in the

dynamics of neurons from the Pr5 (principalis),

Spi5 (interpolaris) and Spo5 (oralis) nuclei when

stimulating the corresponding vibrissa by short air

puffs. These neurons exhibit different behaviors

under variation of the puff duration. While for

Spo5 neurons the firing stability approaches a

minimum for intermediate stimulus durations,

Pr5 and Spi5—neurons demonstrate the presence

of an ‘optimum’ stability as the stimulus duration is

varied. We hypothesize that Pr5 and Spi5 process the

tactile information in a similar way, paying attention

mostly to the fast and precise identification of the

stimulus presence, while Spo5 works on a longer

time scale processing the fine structure of the

stimulus. This new interpretation of the tactile

information processing in the trigeminal complex

of the rat requires further investigations and may

significantly contribute to the existing knowledge

about the information processing in the trigeminal

sensory complex.

As the second example, we discussed intracellular

interactions in snail neurons. Cell dynamics involves

a number of regulatory processes that demonstrate

different degrees of mutual interactions. The double-

wavelet approach allowed us to reveal differences in

modulation phenomena for the rhythms at 1Hz

and 2–4Hz, thus providing information about the

degree of interaction between different mechanisms

in the cell functioning.

Interaction phenomena were also considered

for the dynamics of nephron autoregulation. Using

the depth of modulation as an informative

characteristic of the mutual influence between

the oscillatory modes, we have demonstrated the

presence of essential distinctions in the functioning

of nephrons from normotensive and spontaneously

hypertensive rats. We have found that the

processes of renal autoregulation in hypertensive

rats involve a strong mode-to-mode interaction

for all rhythmic components presented in the

functioning of individual functional units of the

kidney.
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Key Point
� Various wavelet-based methods are proposed and applied to

three different examples. The methods allow us to make a new
interpretation of the tactile information processing in the tri-
geminal complex of the rat and to reveal essential distinctions in
the response of neurons from different nuclei.The presence and
features of nonlinear interactions among the neuronal processes
in the form of frequency and amplitude modulation of fast
processes by slower dynamics are revealed. Using the depth
of modulation as an informative characteristic, essential
distinctions in the mode-to-mode interactions for nephrons
from normotensive and hypertensive rats are found.
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