
Biol Cybern (2008) 98:371–395
DOI 10.1007/s00422-008-0221-5

ORIGINAL PAPER

Elements for a general memory structure: properties
of recurrent neural networks used to form situation models

Valeri A. Makarov · Yongli Song ·
Manuel G. Velarde · David Hübner · Holk Cruse

Received: 24 August 2007 / Accepted: 6 February 2008 / Published online: 19 March 2008
© Springer-Verlag 2008

Abstract We study how individual memory items are stored
assuming that situations given in the environment can be
represented in the form of synaptic-like couplings in recur-
rent neural networks. Previous numerical investigations have
shown that specific architectures based on suppression or
max units can successfully learn static or dynamic stimuli
(situations). Here we provide a theoretical basis concerning
the learning process convergence and the network response to
a novel stimulus. We show that, besides learning “simple” sta-
tic situations, a nD network can learn and replicate a sequence
of up to n different vectors or frames. We find limits on the
learning rate and show coupling matrices developing during
training in different cases including expansion of the network
into the case of nonlinear interunit coupling. Furthermore, we
show that a specific coupling matrix provides low-pass-filter
properties to the units, thus connecting networks constructed
by static summation units with continuous-time networks.

V. A. Makarov · Y. Song · M. G. Velarde
Instituto Pluridisciplinar, Universidad Complutense,
Paseo Juan XXIII, 1, 28040 Madrid, Spain

V. A. Makarov
Department de Matemática Aplicada, Facultad de Matemáticas,
Universidad Complutense, Avda. Complutense s/n,
28040 Madrid, Spain
e-mail: vmakarov@mat.ucm.es

Y. Song
Department of Mathematics,
Tongji University, 200092 Shanghai, China

D. Hübner · H. Cruse (B)
Department of Biological Cybernetics, Faculty of Biology,
University of Bielefeld, 33501 Bielefeld, Germany
e-mail: holk.cruse@uni-bielefeld.de

We also show under which conditions such networks can be
used to perform arithmetic calculations by means of pattern
completion.

Keywords Recurrent neural network · Situation model ·
Memory · Learning

1 Introduction

How biological memories are organized is still a fairly open
question, although a huge number of experimental studies
have been reported dealing with features at different levels
and using methods from different fields such as psychology
or neurophysiology including brain imaging techniques. This
situation has eventually been dubbed the crisis of the exper-
imentalists. Is there a way to overcome this problem? It has
been said that we only understand what we can construct
(Feynman 2001). Accordingly, in order to understand brain
functions, simulation studies appear to be a sensible solu-
tion. Such simulations on the one hand can originate new
principles of information storage and engineering, and, on
the other hand, may suggest experimental procedures to test
novel hypotheses.

In the search for appropriate simulation models, recur-
rent neural networks (RNNs) have been intensively stud-
ied. This begun with Hopfield’s seminal papers (Hopfield
1982, 1984) and has led to a vast literature. Significant archi-
tectures are Elman–Jordan networks (Elman 1990) or echo
state networks (Jaeger and Haas 2004). Apart from many
studies concentrating on monolithic architectures, sparsely
coded networks (Palm and Sommer 1996) or expert net-
works (see, e.g., Tani 2003) have been investigated. In par-
ticular the latter show the advantage that they form separable

123

372 Biol Cybern (2008) 98:371–395

modules which can be treated in an easier way compared
to monolithic structures, both with respect to studying the
mathematical properties (Beer 2006; Pasemann 2002) and
with respect to the way in which these modules might be
implemented into a large memory structure. The latter, for
example, implies problems of how memory contents can be
organized to reflect hierarchical or contextual relationships.
Another question concerns the structure of the basic RNN
forming the individual modules, or neural assemblies. Two
simple types of RNNs have recently been investigated and
proposed as a possible basis for such elementary memory
structures: multiple solutions of basic equations (MSBE)
networks (Kühn et al. 2007; Kühn and Cruse 2007) and
mean of multiple computations (MMC) networks (Kinder-
mann and Cruse 2002; Steinkühler and Cruse 1998). It has
been shown that such MSBE networks can be considered as
building blocks to construct MMC networks. Specific RNNs
have been used to produce holistic models of geometrical
structures, for example, bodies with arms and legs showing
a large number of degrees of freedom, and form models that
can be used as forward models, inverse models or any mixed
combination. Furthermore, RNNs based on linear or non-
linear differential equations have been studied (Kühn et al.
2007).

In Kühn et al. (2007) and Kühn and Cruse (2007) the
authors concentrated on the RNNs as such, whereas in Cruse
and Hübner (2008) a general memory architecture has been
proposed, in which these relatively small networks can be
embedded. This general architecture, inspired by the insect
mushroom body system (Wessnitzer and Webb 2006), can be
used for learning and controlling more-complex behaviors
such as landmark-based navigation. The same architecture
is currently being studied to form a general theory explain-
ing many of the Pavlovian paradigms (Cruse and Sievers
2008).

These RNNs, although of simple structure, have been
shown to be able to learn some arithmetic relations, but also
dynamic features of linear and nonlinear oscillators. How-
ever, although attractive because of their simple structure,
the dynamical properties of the learning process and of the
resulting RNN have only been studied numerically, and a
mathematical proof of convergence exists only for a very
limited special case (Kühn et al. 2007). A general proof of
convergence and of more specific aspects of the dynamic
behavior, e.g., response to a novel stimulus, of trained net-
works is lacking. In addition, two slightly different versions
of the input compensation (IC) units have been proposed
that show a somewhat different behavior when connected to
form an RNN. In the present work we offer new insight and
give detailed proofs of several of the phenomenologically
observed behaviors, thus providing a solid basis for further
investigation and development of this simple but promising
memory architecture.

2 IC units, IC network, basic equation,
and learning rule

The networks considered here consist of n recurrently
connected units. As mentioned above, two different types of
“simple” nonlinear units have been proposed, which will be
introduced first. These units have been called, respectively,
the suppression unit or Su and the max unit or Mu (Fig. 1a, b).
Both units operate in discrete time t ∈ Z and have an exter-
nal input denoted as the signal ξi (t) that we also call the
activation, an internal (recurrent) input si (t), and an output
xi (t + 1). The recurrent input is given by a weighted sum of
the output of all units in the network

si (t) =
n∑

k=1

wik xk(t), (1)

where the matrix W = {wi j } plays the role of interunit cou-
pling.

The nonlinear properties of the units arise from the treat-
ment of the recurrent signal according to the signal at the
external input. In Su the recurrent signal is simply suppressed
and replaced by the external input if the latter is different from
zero, or otherwise sent unchanged to the output

x Su(t + 1) =
{

ξ(t), if ξ(t) "= 0
s(t), otherwise

(2)

The output of the Mu is given by

x Mu(t + 1) =
{

max(ξ(t), s(t)), if s(t) ≥ 0
min(ξ(t), s(t)), otherwise

(3)

Another way of representing the transduction properties of
the Mu is

x Mu(t + 1) = s(t) +
{ [ξ(t) − s(t)]+, if s(t) > 0

−[s(t) − ξ(t)]+, otherwise
(4)

where the subscript plus denotes the rectifier operator

x+ =
{

x, if x ≥ 0
0, otherwise

(5)

Although equivalent, representation (4) is better suited for
hardware implementation, whereas (3) better serves for math-
ematical analysis.

Combining n IC units (either Mu or Su) into a recur-
rent network (Fig. 1c) yields a system whose dynamics is
described by the following nD map

xi (t + 1) = F

(

ξi (t),
n∑

k=1

wik xk(t)

)

, i = 1, . . . , n, (6)

where F is a nonlinear function determined by the type of
units used in the network, given either by (2) for Su or (3) for
Mu.

123

Biol Cybern (2008) 98:371–395 373

A B C

Fig. 1 Circuit implementation of a recurrent neural network composed
of input compensation (nonlinear) units: a suppression IC unit (or Su)
and b Max IC unit (or Mu). Both units have two inputs (ξi (t) and si (t))
and one output (xi (t + 1)). The latter is given by a nonlinear func-
tion of the inputs (see main text). Blocks marked by Σ and Π perform

input summation and multiplication, respectively. The other blocks are
nonlinear elements with sketched transduction characteristics. c Neural
network (case n = 3) composed of either suppression or max units
recurrently coupled by the matrix W = {wi j }

Before going further let us first introduce suitable nota-
tions. For any given vectors x, y ∈ Rn , let

〈x, y〉 ≡ xT y

be a real number (T denotes transpose). Then ‖x‖ = √〈x, x〉
is the length or modulus of the vector x . We shall also use
the vector inequality

x < y ⇔ (xi ≤ yi , ∀i, and x "= y) .

The recurrent IC network described by (6) can be trained
to perform different tasks, for example to “remember” and
reproduce given static or dynamic stimuli, or to perform sim-
ple algebraic associations. To illustrate the latter we introduce
the so-called basic equation

〈B, x〉 = 0, or
n∑

i=1

Bi xi = 0, (7)

where B ∈ Rn is a constant vector. Equation (7) can be
considered as an algebraic constraint to the network state;
it defines a hyperplane passing through the origin in the nD
phase space of the network. We note that the coefficients of
the basic equation B1,...,n are defined up to a constant, i.e.,
if 〈B, x〉 = 0, then 〈k B, x〉 = 0, where k is a constant. To
rule out this uncertainty we can fix one of the coefficients,
say B1 ≡ 1.

As we shall show below the network can be trained in
such a way that the basic Eq. (7) will be an attractor, i.e., any
arbitrary activation of the network will relax to the aforemen-
tioned hyperplane. Once the network has been trained, i.e.,
the coefficients B1,...,n have been learnt or somehow stored
in the coupling matrix W , the network can be used to per-
form simple arithmetics. Indeed, giving a new incomplete
activation (stimulus)

ξi (t) = ei , (i = 1, . . . , n), ek = 0,

where e is an arbitrary nD vector (〈B, e〉 "= 0), the network
adopts a solution such that

xi = ei , (i = 1, . . . , n, i "= k), xk = −〈B, e〉/Bk,

i.e., satisfying the basic Eq. (7). This task can also be viewed
as pattern completion. We notice that, even if more than one
activation input is absent (equal to zero), the network will
relax to a proper underdetermined solution.

The network can stay either in the learning or in the oper-
ational phase. In the operational phase the coupling matrix is
fixed and the network reproduces the previously learnt stim-
ulus or responds to a novel stimulus applied to the external
input.

During learning the network is exposed to the training, in
general dynamic, stimulus. We shall distinguish two types of
situations to be learnt. One is so-called static, when external
stimuli presented to the network are assumed to be (temporar-
ily) independent pieces of a global picture; for example, the
first vector a is presented and then, after resetting the activa-
tions of all units, another vector b is given. Then the learn-
ing requires two updating cycles at each vector presentation.
Moreover, as we show below, the sequence of vectors can be
arbitrary in this case. The other, dynamic, situation is char-
acterized by essentially time-dependent stimuli, i.e., stimuli
composed of different vectors whose sequence now indeed
matters. Then we can write the situation on the external net-
work input as a time function ξ(t) = ξ(t + p), where p is
the time-domain period of the training vector; for example,
in the case p = 1, we train the network by a constant input
vector ξ(t) = a; for p = 2 the network is trained by two
alternating vectors: ξ(t) = abababab . . ., and so on.

Training consists of appropriate adjustment of the cou-
pling matrix W by using a learning rule (the same for Su and
Mu), that can be described as teacher forcing based on the
classical delta rule (Kühn et al. 2007). The updating of the

123

374 Biol Cybern (2008) 98:371–395

matrix elements is carried out according to

wi j (t + 1) = wi j (t) + εδi (t)x j (t), (8)

where ε > 0 is the learning rate, and δi (t) = ξi (t) − si (t)
is the error between the internal and external inputs (Fig. 1a,
b). We assume that during the training of the weight matrix
W the network has no internal dynamics, i.e., (2) and (3)
are reduced to x(t + 1) = ξ(t). This is indeed true for Su
with nonzero external activation. For Mu this can also be
accomplished by starting the training process from W = 0
(and s < ξ).

For the static case the dynamics of the weight matrix is
given by

W (t + 1) = W (t)
(

I − εξ(t)ξT(t)
)

+ εξ(t)ξT(t), (9)

where ξ(t) is the training (in general time-dependent) exter-
nal activation applied to the network. We note that at each
step the coupling matrix is updated by a single vector inde-
pendently on the other elements of the training sequence.

For the dynamic situation the evolution of the weight
matrix in the learning phase is given by

W (t + 1) = W (t)
(
I − εξ(t − 1)ξT(t − 1)

)

+εξ(t)ξT(t − 1).
(10)

The learning rule (10) can be considered as an (n × n)
map driven by an external force with delay. Now, in contrast
to (9), each training step uses two sequential vectors, hence
their ordering becomes important.

The training is deemed finished when the total squared
error

∑
δ2

i falls below a threshold. To quantify the learning
performance we shall also use the normalized intermatrix
distance

d(t) = ‖W (t) − W∞‖
‖W∞‖ , (11)

where W∞ = limt→∞ W (t) is the limit (learnt) matrix. Note
that W∞ is not used for learning but only for a posteriori
description of the learning dynamics.

We note that (9) or (10) in general may not converge to a
fixed point, which means that the network is unable to learn
(in terms of representation and replication) the corresponding
external situation.

3 Learning static situations

Let us start with the case in which an RNN is used to learn
a static situation. Then, as mentioned above, the learning
follows the rule (9).

3.1 Convergence of the network training procedure

Let us assume that the static situation to be learnt is described
by p nonzero vectors {a1, a2, . . . , ap}, and at each learning
step the network is exposed to one of them. We also require
that all training vectors appear sufficiently frequently in the
learning sequence. The latter means that the occurrence fre-
quency of the i th vector fi = ti/t does not tend to zero for
t → ∞ (where ti is the number of times the vector occurs up
to time t). Examples of training sequences satisfying this con-
dition are periodic (e.g., ξ(t) = a1, . . . , ap, a1, . . . , ap, . . .),
and probabilistic (vectors appear at random with nonzero
probabilities).

3.1.1 Training by orthogonal vectors

First we consider the case when a1, . . . , ap are nonzero
orthogonal vectors in Rn . Then the following theorem on
the convergence of the network learning process holds.

Theorem 1 Assume that an n-unit RNN is trained by an arbi-
trary sequence of p nonzero orthogonal vectors a1, . . . , ap,
each of which appears in the sequence with nonzero fre-
quency (i.e., an infinite number of times for an infinite
sequence). If the learning rate satisfies

0 < ε < min
{

2
‖a1‖2 ,

2
‖a2‖2 , . . . ,

2
‖ap‖2

}
(12)

then for any initial conditions W0 = W (0) the learning
process given by (9) converges to the coupling matrix

W∞ ≡ lim
t→∞ W (t) = W0(I − Mp) + Mp, (13)

where

Mp =
p∑

i=1

ai aT
i

‖ai‖2 . (14)

Particularly, for (i) p = n or (ii) p < n but with W0 = 0.

W∞ = Mp (15)

The proof of the theorem is given in Appendix A.
We note that training by one vector, i.e., ξ(t) = a, reduces

(14) to M1 = aaT/‖a‖2, which corresponds to the case con-
sidered in Kühn et al. (2007).

According to Theorem 1 the learning can always be
achieved by using a small enough learning rate. The training
starting with zero initial conditions (W0 = 0) leads to a sym-
metric coupling matrix wi j = w j i . The learning result (in
terms of W∞) does not depend on the sequence of the pre-
sentation of the vectors a1, . . . , ap to the network. The latter,
for instance, means that training by a periodic sequence of
two vectors (e.g., ξ(t) = a, b, a, b, a, . . .) gives the same
matrix W∞ as the training by a random sequence of these
vectors (e.g., ξ(t) = a, a, b, a, a, a, b, b, a, . . .), even if the

123

Biol Cybern (2008) 98:371–395 375

probability to find vector a is different from the probability
to find vector b (provided that both are nonzero).

Finally, for practical implementation, we note that the
learning time scales as

t ∝ 1

min
(

fi ln 1
1−ε‖ai ‖2

) .

Thus an excessively small (respectively, large) learning rate
and/or small occurrence frequency of one of the training vec-
tors deteriorates the learning performance. The latter partic-
ularly means that the network can learn equally well, say two
vectors a1 and a2, even if the occurrence frequency of one of
them is much smaller then that of the other (e.g., f1 1 f2);
however the training time in this case will be proportionally
longer, i.e., Ttraining ∝ 1/ f1.

3.1.2 Training by arbitrary vectors

The condition on the vector orthogonality used above is
hardly satisfied by real-world stimuli. To extend our results
we now relax this requirement.

Let us assume that the network is trained by an arbi-
trary sequence of p training vectors {a1, . . . , ap}. We denote
by {γ1, . . . , γr } a maximal linearly independent subset of
the complete training matrix. Then by the Gram–Schmidt
orthogonalization procedure (Strang 2003) we define an
orthogonal set {c1, . . . , cr }, where

c1 = γ1, ck = γk −
k−1∑

j=1

〈γk, c j 〉
‖ c j ‖2 c j for 2 ≤ k ≤ r. (16)

Now we are ready to formulate the following theorem:

Theorem 2 Assume that an n-unit RNN is trained by an arbi-
trary sequence of p arbitrary nonzero vectors a1, . . . , ap,
each of which appears in the training sequence with nonzero
frequency. If the learning process (9) starting from initial
condition W0 = W (0) converges to the coupling matrix W∞,
then

W∞ = W0(I − Mr) + Mr , (17)

where

Mr =
r∑

k=1

ckcT
k

‖ck‖2 , (18)

with r = rank{a1, . . . , ap}. Particularly, for (i) r = n or
(ii) r < n but with W0 = 0,

W∞ = Mr . (19)

The proof of the theorem is given in Appendix B.

Remark 1 Although the chosen basis {c1, . . . , cr } is not
unique, the matrix Mr does not depend on the choice, since

an orthogonal projection (given by Mr) on the space spanned
by {a1, . . . , ap} is unique (Strang 2003).

The independence of the learning result (matrix W∞) on a
particular sequence of the training vectors discussed above is
also applied here. Another important point is that the learning
operates on a linearly independent subset of the training vec-
tors only. The latter, for instance, means that the training by an
arbitrary sequence of three vectors a, b, and c, one of which
is a linear combination of the other two (i.e., c = k1a +k2b),
is equivalent to training by any pair of these vectors. In
other words, the training by, e.g., ξ(t) = a, b, c, a, b, c, . . .
gives the same coupling matrix W∞ as the training by, e.g.,
ξ(t) = a, c, a, c, a, . . .

3.2 Example of training by two vectors

Let us now give an example of the network training by two
linearly independent vectors a and b satisfying a basic equa-
tion.

Using Theorem 2 with zero initial conditions (W (0) = 0),
we obtain

W∞ = ααT + ββT, (20)

where

α = a
‖a‖ , and β = ‖a‖2b − 〈b, a〉a

‖a‖
√

‖a‖2‖b‖2 − 〈b, a〉2
. (21)

We note that ‖α‖ = ‖β‖ = 1 and 〈α, β〉 = 0, i.e., α and β

are orthonormal vectors.
As an example let us train a 3D network to learn the basic

equation

x + y − 2z = 0. (22)

We chose as the training vectors a = (1, 3, 2)T and b =
(1, 1, 1)T, fulfilling (22). From (21) we obtain the equiva-
lent vectors α = (1, 3, 2)T/

√
14 and β = (4,−2, 1)T/

√
21.

Finally, substituting them into (20) we get the limit trained
matrix

W2v = 1
6




5 −1 2

−1 5 2
2 2 2



 . (23)

3.3 Response of a 3D Su RNN trained by two vectors
to a novel external stimulus

As mentioned in the Introduction, the RNNs considered here
are deemed to be used as building blocks in a larger mem-
ory framework, where different parts (individual networks)
will interact with each other. Therefore, not only the network
learning capabilities are of interest, but likewise its ability to
recognize different stimuli and to complete incorrect stimu-
lus patterns.

123

376 Biol Cybern (2008) 98:371–395

Let us consider a 3D Su network trained by two linearly
independent vectors a and b. This type of network has been
studied numerically in Kühn et al. (2007) and Cruse and
Hübner (2008). Here we generalize and extend those results.

The learnt coupling matrix is given by (20). We apply
to the network a novel stimulus e that does not satisfy the
basic equation. Due to the Su network constraint, to obtain a
dynamical response some of the elements of the novel stim-
ulus should be equal to zero, e.g., e = (0, 0, e3). Then the
network response follows from the theorem:

Theorem 3 Assume that a 3D Su network has been previ-
ously trained by two linearly independent vectors a and b
satisfying the basic equation. Then a novel incomplete exter-
nal activation e is given to the network.

(i) If e = (0, e2, e3)
T, and a3b2 "= a2b3 then indepen-

dently on the initial conditions the network state relaxes
to

x1 = −B2e2 − B3e3, x2 = e2, x3 = e3, (24)

where the constant B2,3 are given by the basic equation
(B1 ≡ 1) associated with the vectors a and b.
For a3b2 = a2b3 the network shows no dynamics:
x(t) = (x0

1 , e2, e3)
T.

(ii) If e = (0, 0, e3)
T, then the network state relaxes to

x1 = −C2 B2 − e3 B3, x2 = C2, x3 = e3,

C2 = x0
2+B2(e3 B3−x0

1)

1+B2
2

,
(25)

where x0
1,2 are the network initial conditions.

The proof is given in Appendix C.
From Theorem 3 we can derive the following statement

concerning the memory content of the Su network. If the
novel stimulus e has one or two zero components, then the
output of the corresponding units evolves in time to a steady
state such that the final network state always fulfills the basic
equation. Indeed, using (24) for one zero or (25) for two zeros
in the novel activation e we can verify that 〈B, x∞〉 = 0.
Thus the 3D network trained by two linearly independent
vectors can perform algebraic calculations, or it can be used
for pattern completion.

3.4 Damping factors (n = 3)

Let us consider a 3D Su network trained by two vectors a and
b. The weights on the diagonal of the learnt coupling matrix
(20) can be interpreted as damping elements. Then using that
matrix we can formally construct a new damped matrix as

follows

Wdamped =





d1
1+d1

α1α2+β1β2
(1+d1)h1

α1α3+β1β3
(1+d1)h1

α2α1+β2β1
(1+d1)h2

d2
1+d2

α2α3+β2β3
(1+d2)h2

α3α1+β3β1
(1+d3)h3

α3α2+β3β2
(1+d3)h3

d3
1+d3



 , (26)

where hi = 1 − α2
i − β2

i and di are the so-called damping
factors. We immediately see that for di = (α2

i + β2
i)/hi the

damped matrix (26) is reduced to W∞ as defined by (20), in
other words, the training procedure (9) produces the damping
factors (α2

i +β2
i)/hi . We note that (26) can be easily extended

to the case of an nD network.
Clearly, for a set of arbitrary chosen damping factors

(di "= −1), for any vector x located in the attractor plane
we have Wdampedx = x , which means that the damping fac-
tors do not affect the existence of the solution (interpreted
as memory contents). However, their adjustment leads to a
change in the relaxation provoked by a novel stimulus, as the
following theorem states:

Theorem 4 Assume that a novel incomplete stimulus e is
applied to a 3D Su network with the modified coupling matrix
(26) and d1,2 > 0.

(i) If e = (0, e2, e3)
T and a3b2 "= a2b3 then indepen-

dently on the initial conditions the network state relaxes
to (24). Moreover, the relaxation rate is controlled by
d1/(1 + d1).

(ii) If e = (0, 0, e3)
T, then starting form zero initial con-

ditions the network state relaxes to

x1 = −B3e3(1 + d2)

2 + d1 + d2
,

x2 = −B3e3(1 + d1)

B2(2 + d1 + d2)
, x3 = e3, (27)

with the relaxation rate given by λ3 = (d1d2−1)/(1+
d1)(1+d2). Moreover, the relaxation trajectory on the
plane x3 = e3 follows the straight line

x1(t) = 1 + d2

1 + d1
B2x2(t). (28)

The proof is given in Appendix D.
Theorem 4 shows that, for a novel activation in the form

e = (0, e2, e3), damping factors affect only the relaxation
rate, while the final network output is still given by (24), i.e.,
the network finds a solution satisfying the basic equation.
The maximal relaxation velocity is achieved for d1 → 0.

For a novel activation in the form e = (0, 0, e3), damp-
ing factors affect both the relaxation rate and the final output
of the network. For arbitrary (positive) values of the damp-
ing factors the network finds a solution satisfying the basic

123

Biol Cybern (2008) 98:371–395 377

Fig. 2 Response of a 3D Su RNN trained by two vectors a = (1, 3, 2)T

and b = (1, 1, 1)T to a novel stimulus e = (0, 0, 1) for different values
of the damping factors d1,2. All trajectories start from the point (0, 0, 1)
(marked by x(0)) and lie in the plane x3 = 1 (marked by x3 = e3)
given by the internal network constraint. According to (27) and (28)
they follow straight lines tending to the plane (marked by BE) given
by the basic Eq. (22). The thick solid line corresponds to the original
coupling matrix with the damping factors d∗

1,2 = (α2
1,2 + β2

1,2)/h1,2. It
is orthogonal to the line obtained by the intersection of the basic plane
and the plane x3 = e3

equation. Indeed, from (27) one can immediately see that
〈B, x∞〉 = 0. However, the new solution in general differs
from the original solution (25). The maximal velocity of the
relaxation process is achieved for d1d2 = 1, then λ3 = 0 and
the network jumps in a single step to the final state (27).

For d1,2 = (α2
1,2 + β2

1,2)/h1,2 using (28) one can show
that the relaxation trajectory is orthogonal to the intersection
of the basic plane and the plane given by x3 = e3.

To illustrate the results we have trained a 3D Su network by
two vectors a = (1, 3, 2)T and b = (1, 1, 1)T. In accordance
with Theorem 2 the training process leads to the coupling
matrix given by (23). Then, as defined by (26), we construct
the damped matrix with different damping factors. Once a
new damped matrix is obtained, we apply to the network a
novel stimulus e = (0, 0, 1), which does not satisfy the basic
Eq. (22). According to Theorem 4 the network output will
relax to a new state satisfying the basic equation.

Figure 2 shows trajectories in the network phase space
for several values of d1,2. The thick solid line corresponds
to the original coupling matrix (d1,2 = (α2

1,2 + β2
1,2)/h1,2).

The other six trajectories correspond to (d1, d2) = {(10,1),
(7,1), (4,1), (1,4), (1,7), (1,10)}. As predicted, the trajectory
obtained for the original coupling matrix (23) is orthogonal to
the intersection of the basic plane and the plane given by x3 =
e3. Thus the learning process given by (9) converges to the
coupling matrix such that a novel stimulus will be processed
by the network in a way that the network state will relax
to the basic equation by the shortest trajectory. However,

we note that setting damping factors such that (1 + d1) =
B2

2 (1+d2)we also obtain a trajectory going straightforwardly
(orthogonal) from the initial perturbation to the basic plane.
Moreover, minimizing also |λ3| (see Theorem 4), we obtain
the optimal coupling matrix. For the basic Eq. (22) this can be
obtained by setting d1 = d2 = 1. Then the network will relax
to the basic equation (find a solution to the pattern completion
problem) in just a single time iteration.

4 Dynamic situations: convergence of the network
training procedure

In the previous section we considered learning of static sit-
uations. Let us now study the convergence properties of the
network learning essentially dynamic situations. Then the
training process is described by the rule (10). As we show
below this leads to a more complex network behavior.

We assume that the training is done by exposing the RNN
to an external input stimulus composed of periodically
repeated sequences of vectors ai ∈ Rn

ξ(t) = a1, a2, . . . , ap, a1, a2, . . . , ap, a1, a2, . . . , ap . . . ,

(29)

where p is the period of the training stimulus; for example,
a simple static situation corresponds to p = 1 and (29) is
reduced to ξ(t) = a1.

In general p is defined by the stimulus complexity (the
external world) and can be rather arbitrary. Thus the network
may receive as training input a stimulus with period shorter
or equal to the number of units in the network (p ≤ n), or
during learning the network can be exposed to a sequence of
vectors whose number exceeds the network order (p > n).
By analogy to linear algebra we shall call the former situation
underdetermined and the latter overdetermined. As we show
below the training in these two cases may lead to essentially
different results.

4.1 Network training: underdetermined case (p ≤ n)

First we consider the case when p ≤ n and a1, . . . , ap are
nonzero orthogonal vectors in Rn . Then the following the-
orem on the convergence of the network learning process
holds:

Theorem 5 Assume that an n-unit RNN is trained by a peri-
odic stimulus (29) composed of nonzero orthogonal vectors
a1, . . . , ap (p ≤ n) with the learning rate satisfying

0 < ε < min
{

2
‖a1‖2 ,

2
‖a2‖2 , . . . ,

2
‖ap‖2

}
. (30)

123

378 Biol Cybern (2008) 98:371–395

Then for any initial conditions W (0) the learning process
given by (10) converges to the coupling matrix

W∞ ≡ lim
t→∞ W (t) = W̃ + Mp, (31)

where W̃ is a constant matrix defined by the initial conditions
and given in Appendix E; and

Mp =
p∑

i=1

ai+1aT
i

‖ai‖2 , with ap+1 ≡ a1. (32)

Particularly, for (i) p = n or (ii) p < n but with W (0) = 0

W∞ = Mp. (33)

The proof of the theorem is given in Appendix E.
Theorem 5 states not only the convergence but it also pro-

vides the upper limit of the learning rate when the conver-
gence still exists. For any set of nonzero vectors {ai } we can
select the learning rate in such a way that the training process
will always converge. From the implementation point of view
an adjustment of the learning rate may improve the learning
performance (speed up convergence).

As earlier noted, the requirement on orthogonality of the
training stimulus in Theorem 5 is hardly satisfied by real-
world stimuli. To extend our results we relax the condition
on the orthogonal structure of the stimulus providing the fol-
lowing theorem:

Theorem 6 Assume that an n-unit RNN is trained by a peri-
odic stimulus (29) composed of linearly independent vectors
a1, a2, . . . , ap (p ≤ n) and that the learning process (10)
starting from zero initial condition W (0) = 0 converges to
the coupling matrix W∞. Then

W∞ = (a2, a3, . . . , ap, a1,

n−p︷ ︸︸ ︷
0, . . . , 0)

×(a1, . . . , ap, α1, . . . , αn−p)
−1,

(34)

where 0 ∈ Rn is the zero vector and α1, . . . , αn−p are aux-
iliary nonzero linearly independent vectors such that the
space spanned by {α1, . . . , αn−p} is orthogonal to the space
spanned by {a1, . . . , ap}.

The proof of the theorem is given in Appendix F.

Remark 2 For p = n the resulting coupling matrix (34) is
reduced to

W∞ = (a2, a3, . . . , an, a1) (a1, a2, . . . , an)−1 . (35)

4.2 Network training: overdetermined case (p > n)

Let us now assume that the network of n units is subject to
learn an external stimulus whose period is longer than the
number of units in the network, i.e., p > n. Then we have:

Theorem 7 Assume that an n-unit RNN is trained by a peri-
odic stimulus (29) composed of vectors a1, a2, . . . , ap (p >

n) and that the learning process (10) starting from zero ini-
tial condition W (0) = 0 converges to the coupling matrix
W∞. Let {a1, a2, . . . , an} be the linearly independent subset
of the training stimulus. Then

W∞ = (a2, a3, . . . , an, an+1) (a1, a2, . . . , an)−1 (36)

with

(W∞)p = I and an+1 = W∞an, . . . , ap = W∞ap−1 (37)

satisfied.

The theorem proof is given in Appendix G.
Note that in contrast to the underdetermined case consid-

ered above the learning convergence is not always possible
here.

4.3 Examples of stimulus learning: underdetermined case
(p ≤ n)

Let us now give a few examples illustrating the above stated
theorems. In numerical simulations we use an RNN com-
posed of three suppression units (Fig. 1a, c), though the
results can be extended to the Mu network. In the under-
determined case such a network can be trained either by a
static stimulus (one vector, p = 1) or by dynamic stimuli
with period two (two vectors, p = 2) or period three (three
vectors, p = 3).

4.3.1 Network training by one stimulus vector

We begin with training the network by a single vector. Strictly
speaking this case can be ascribed to a static situation. Indeed,
we supply to the network a constant input vector ξ(t) = a
and allow the coupling matrix to evolve. However, for com-
pleteness we also show this case here.

Starting from zero initial conditions W (0) = 0 the result-
ing trained coupling matrix is given by Kühn et al. (2007)

W∞ = aaT

‖a‖2 . (38)

The same result is obtained from Theorem 5. Indeed, set-
ting p = 1 in (32) and using (33) we end up with (38). The
same matrix is obtained from Theorem 2 using c1 = a and
r ≡ 1.

To illustrate the training process let us set a = (1, 3, 2)T

and assume zero initial conditions W (0) = 0. Then using
(38) the resulting trained matrix is

W1v = 1
14




1 3 2
3 9 6
2 6 4



 . (39)

123

Biol Cybern (2008) 98:371–395 379

A

B

C

Fig. 3 Examples of stimulus learning and replication by RNN com-
posed of three suppression units in the underdetermined case. a Network
training by the constant stimulus vector a = (1, 3, 2)T. b Network train-
ing by alternating (period-two) sequence of vectors a = (1, 3, 2)T and

b = (1, 1, 1)T. c Network training by period-three stimulus composed
of vectors a = (1, 3, 2)T, b = (1, 1, 1)T, and c = (−1, 2, 0)T. The
learning rate has been fixed to ε = 0.1 for all three cases

Figure 3a (left and center panels) shows the training stim-
ulus and the time evolution of the matrix distance (11) of the
coupling matrix W (t) to the theoretically predicted trained
matrix (39). During the training the coupling matrix expo-
nentially converges to (39) and in a few steps (at the seventh
iteration) the error decreases below 1%. Then the external
input can be withdrawn ξ = 0, and the RNN will replicate
the previously learnt stimulus (Fig. 3a, right panel).

4.3.2 Network training by two alternating input vectors

Let us now consider the case in which, during training, sev-
eral different vectors are presented to the three-unit network.
As mentioned above this kind of training can be considered
as dynamic in contrast to the static situation discussed in
Sect. 4.3.1, since now the network activation varies in time.

In the simplest case we train the network with two vectors,
say a and b (assuming they are linearly independent). Then
using Theorem 6 from (34) we have

W∞ = (b, a, 0) (a, b, α)−1, (40)

where α can be chosen as

α =
(∣∣∣∣

a2 a3
b2 b3

∣∣∣∣ ,
∣∣∣∣
a3 a1
b3 b1

∣∣∣∣ ,
∣∣∣∣
a1 a2
b1 b2

∣∣∣∣

)T

.

We also note that, if the training vectors a and b satisfy the
basic equation, i.e., 〈B, a〉 = 0 and 〈B, b〉 = 0, then α = B.

Using a = (1, 3, 2)T and b = (1, 1, 1)T we obtain α =
(1, 1,−2)T and finally

W2v = 1
6




5 −1 2

21 −9 6
13 −5 4



 . (41)

Figure 3b shows the learning dynamics. As in the case of
the training by a constant input vector, the coupling matrix
also converges exponentially to the predicted matrix. How-
ever, the convergence rate is lower. To obtain an error below
1% of the initial intermatrix distance, 196 iteration steps are
required.

4.3.3 Learning period-three stimulus

Let us now train the network of three units by a stimulus of
period 3, i.e., p = 3 and ξ = abcabcabc . . . Using Remark 2
to Theorem 6 from (35) we have

W∞ = (b, c, a)(a, b, c)−1. (42)

Setting as a =(1, 3, 2)T, b=(1, 1, 1)T, and c=(−1, 2, 0)T

we obtain

W3v =




−5 −2 6
9 6 −13
0 1 −1



 . (43)

123

380 Biol Cybern (2008) 98:371–395

A

B

Fig. 4 Examples of learning and replication of dynamical stimuli by
RNN consisting of two suppression units in the overdetermined case
(i.e., stimulus period p exceeds the number of units in the network n).
a Learning period of eight oscillations generated by the discrete coun-
terpart of the harmonic oscillator (44). Left panel: first 30 vectors (only
ξ1 projection is shown) used for the network training. Middle panel:
learning performance, i.e., dynamics of the distance of the coupling
matrix W (t) to the theoretically predicted matrix (47). Right panel:
stimulus replication. Once the learning has been finished with the cor-
responding criteria (5% or 0.5% error) we use the network to replicate

the stimulus. For 5% error the network output strongly deviates from the
presented stimulus, whereas for 0.5% the RNN reproduces the stimulus
fairly well. The learning rate was fixed at ε = 0.05. b The same as in
(a) but now the network is subjected to learn decaying oscillations. We
use the stimulus of 60 vectors long and present it to the network several
times. The learning gradually improves each time we present the stim-
ulus. After five presentations of the stimulus the learning reaches high
quality and then the RNN replicates well the stimulus. The learning rate
was fixed at ε = 0.5

Figure 3c shows the learning process dynamics. To obtain
an error below 1% of the initial matrix distance, 6450 iteration
steps are required.

Thus, the longer the stimulus period is, the slower the
learning process is.

4.4 Examples of stimulus learning: overdetermined case
(p > n)

To illustrate the stimulus learning in the overdetermined case
we use a network of two coupled Su units (n = 2). As a
physical model to learn we select the linear damped oscillator
ẍ + r ẋ + ω2x = 0, where r is the damping constant and
ω is the oscillation frequency. Direct discretization of the
harmonic oscillator equation yields

X (t + 1) = WLO X (t)

WLO =
(

1 1
−ω2 (1 − r − ω2)

)
.

(44)

Note that in general the solution of (44) may differ from the
solution of its continuous counterpart.

4.4.1 Periodic oscillations

For r = 0, (44) with appropriate ω produces a periodic oscil-
lation (in terms of a periodic sequence of 2D vectors X)
whose period depends on ω. Using (37) from Theorem 7 for
a solution of period p we have the following condition on ω

det
(
W p

LO(ω) − I
)

= 0. (45)

For instance, for p = 8 from (44) and (45) we have

((ω2 − 4)ω2 + 2)2(ω2 − 2)2(ω2 − 4)ω2 = 0, (46)

whose two solutionsω2 = 2±
√

2 correspond to two different
period-8 trajectories. Using either of them we can generate
dynamical period-8 stimulus vectors a1, . . . , a8. Presenting
such a stimulus to the RNN, according to Theorem 7 the
learning process should converge to the coupling matrix

Wosc = (a2, a3)(a1, a2)
−1. (47)

123

Biol Cybern (2008) 98:371–395 381

Using a1 = (1, 0)T, a2 = (1,−2 −
√

2)T, and a3 = (−1 −√
2, 2 + 2

√
2)T we indeed arrive at

W8v =
(

1 1
−2 −

√
2 −1 −

√
2

)
. (48)

Figure 4a (left panel) shows the external stimulus of period
8 which has been applied to the network for training. The
stimulus learning process, similarly to what we observed in
the underdetermined case, exponentially converges to the
theoretically predicted coupling matrix (48) (Fig. 4a, cen-
ter panel). The intermatrix distance decreases below 5% in
127 iterations and in 227 iterations the matrix error becomes
less than 0.5%. Once the external stimulus has been learnt
(stored) we can use the network to replicate the stimulus.
Figure 4a (right panel) illustrates the network output for two
conditions to truncate the learning process for different error
thresholds. With 5% error the output significantly diverges
from the original stimulus already in the second period (i.e.,
8 < t ≤ 16). However, with the more accurate (longer)
learning (error 0.5%) the network reproduces the stimulus
with high precision.

4.4.2 Damped oscillations

Let us now consider the damped oscillator (44) (i.e., r > 0).
Now, strictly speaking, the stimulus is not periodic, since the
oscillation amplitude decays in time. Nevertheless, the net-
work can learn the stimulus, and Theorem 7 can be applied.
To illustrate this case we use ω2 = (3 −

√
5)/2 (which cor-

responds to period-10 undamped oscillations) and r = 0.1
to generate the training stimulus. Then we use the first three
vectors a1, a2, and a3 to evaluate the theoretical prediction
for the learning convergence given by (47), which yields

Wdamped oscill =
(

1 1
−0.382 0.518

)
. (49)

Numerical simulation (Fig. 4b) indeed shows that the
learning process converges to the coupling matrix (49). How-
ever, depending on the learning rate ε and the damping con-
stant r , the learning may not converge in just a single stimulus
presentation. This happens when the learning time scale is
shorter than the scale of the oscillation decay, hence the net-
work “has no time” to learn the stimulus, which disappears
too fast. In this case, a solution to train the network is to
present the same stimulus several times. In Fig. 4b we trun-
cated the stimulus to 60 vectors; the left panel shows two
stimulus presentations (epochs). At each stimulus presen-
tation the network gradually improves the coupling matrix,
approaching the theoretically predicted one (49). After three
stimulus presentations the error falls below 6% and five pre-
sentations results in 1% error. The latter precision is suffi-
cient to obtain quite a good stimulus replication (Fig. 4b,
right panel).

Finally we note that nD network can learn the dynamical
situations given by nD linear maps (i.e., loosely speaking by
any linear differential equation).

5 Dynamic situations: response of trained IC-unit
networks to a novel external stimulus

Let us consider an RNN of IC units when the learning process
has been finished, i.e., the network now works in the oper-
ational phase with W = const. Then a novel, in general
arbitrary, stimulus is given to the network, which provokes a
response of the network state x(t), whose dynamics we shall
now describe.

For convenience we shall ascribe to the previously per-
formed learning phase t < 0 (past) and to the operational
phase t > 0 (future). Then the external network activation
can be represented by

f (t) =
{

ξ(t), t < 0
e, t ≥ 0

, (50)

where ξ(t) is the learnt stimulus (e.g., a or ab), which fulfills
the basic equation, and e is an arbitrary (including e = 0)
postlearning network activation. Then the network response
x(t > 0) is expected to evolve in time to a new constant
value (or diverge in time) according to (6). To complete the
problem we also have to specify the initial condition for the
network state, i.e., x(t = 0) = x0. Two possibilities to define
x0 can be considered: (i) the so-called continuous case when
the initial network state in the operational phase is the same
(continues) as the state at the end of the learning phase, i.e.,
x0 = ξ(0), or (ii) the network state being reset, i.e., x(0) = 0.

If after learning we switch off the external activation from
all units (i.e., e = 0) in the continuous case the network will
replicate the previously learnt stimulus, e.g., x(t >0)=a for
the training with single vector a, or x(t > 0) = ababab . . .

for the training with two alternating vectors a and b (Fig. 3,
right panels). Obviously, for e = 0 and x(0) = 0 (resetting)
the network will stay at rest x(t > 0) = 0. However, for a
nonzero novel stimulus (‖e‖ > 0), the network will relax to
a new state, in general different for Su and Mu networks.

5.1 Relaxation dynamics of Su networks (n = 3)

In the case of an RNN composed of Su units we have con-
straints xi (t > 0) = ei for all ei "= 0. Thus only the units
with zero external activations are allowed to evolve in time,
while the others instantaneously (in one time step) adopt the
new activation values. If nonzero activations are applied to
all units then the network shows no dynamics at all. Thus we
assume that the novel stimulus is incomplete, i.e., it has zero
(empty) components. In this section for the sake of simplicity,
we limit our analysis to the case of 3D networks. Moreover,

123

382 Biol Cybern (2008) 98:371–395

without loss of generality we assume that zero components
are in the first elements of the novel stimulus vector e.

5.1.1 Stimulus completion

First, for convenience, let us introduce auxiliary parameters
that can be evaluated using the training vectors a and b

Γ = ‖a‖2‖b‖2 − 〈a, b〉2,

∆i j = ai b j‖a‖2 + a j bi‖b‖2 − (ai a j + bi b j)〈a, b〉. (51)

We note that, for linearly independent a and b, Γ > 0.
The response of a trained RNN to a novel incomplete

stimulus follows from the theorem:

Theorem 8 Assume that a 3D Su network has been previ-
ously trained by a stimulus ξ(t) satisfying the basic equation
〈B, ξ(t)〉 = 0. Then a novel constant stimulus vector e with
at least one zero component is applied.

(1a) For the network trained by one vector (ξ = a) and
e = (0, e2, e3), the network state always relaxes to

x1 = e2a2 + e3a3

‖a‖2 − a2
1

a1, x2 = e2, x3 = e3. (52)

(1b) For the network trained by two linearly independent
vectors (ξ = abab . . .) and e = (0, e2, e3) the network
dynamics depends on the following condition

∣∣∣∣
∆11

Γ

∣∣∣∣ < 1. (53)

If (53) is satisfied then the network state relaxes to

x1 = ∆12e2 + ∆13e3

Γ − ∆11
, x2 = e2, x3 = e3, (54)

and diverges otherwise.
(2a) For the network trained by one vector (ξ = a) and

e = (0, 0, e3), the network state always relaxes to

x = e3

a3
a. (55)

(2b) For the network trained by two linearly independent
vectors (ξ = abab . . .), and e = (0, 0, e3), the net-
work dynamics depends on the following condition

∣∣∣∣∣∣
2(a2b1 − a1b2)

2

∆33 ±
√

∆2
33 + 4(a2b1 − a1b2)2Γ

∣∣∣∣∣∣
< 1. (56)

If (56) is satisfied then the network state relaxes to

x = e3

a3 + b3
(a + b), (57)

and diverges otherwise.

Remark 3 The final network state (given for the correspond-
ing case by (52), (54), (55), and (57)) does not depend on the
initial network state x0. The latter means that the network
behavior is robust to internal perturbations.

The proof is given in Appendix H.

Response of an RNN trained by one vector Let us first con-
sider the case of an RNN trained by one vector a. According
to Theorem 8 any perturbation of the network state exponen-
tially decays to a fixed point. This fixed point, however, may
not belong to the plane defined by the basic equation.

If only one of the three components of the novel external
stimuli e is zero, then the network will relax to a state that
fulfills the basic equation only when

e2

e3
= a2

a3
,

i.e., when the new activation has the same ratio between its
second and third nonzero components as that of the training
vector. Indeed, in this case x1(t) → a1e3/a3 and 〈B, x∞〉 =
e3/a3〈B, a〉 = 0. Thus the network recovers the “lost” part
of the stimulus.

For the case of two zero components in the novel stimulus
the network always finds a new solution satisfying the basic
equation. Indeed, from (55) we have 〈B, x∞〉=e3/a3〈B, a〉
= 0. Moreover, the new network state represents a scaled
version of the stimulus a previously learnt. The scaling fac-
tor can be adjusted by tuning the nonzero component e3 of
the novel stimulus. Thus starting from arbitrary initial con-
ditions the network completes the previously learnt pattern
and provides it on the output with the scale factor controlled
by the novel stimulus.

Response of an RNN trained by two vectors Let us now con-
sider the case when the network has been trained by two
(linearly independent) vectors a and b. Note that now the
stimulus vectors uniquely define the plane corresponding to
the basic equation.

At variance with the training by one vector, now the novel
stimulus e does not necessarily lead to a relaxation of the
network state to a fixed point. If (53) or (56) is not satisfied
by the training stimulus (e.g., for a = (1.5, 3, 2)T and b =
(1, 1, 1)T, ∆11/Γ = 25/14 > 1) the network state diverges.
This means that for network stability an appropriate (safe)
network training is required.

123

Biol Cybern (2008) 98:371–395 383

A

B

Fig. 5 Response of a trained 3D Su RNN to a novel stimulus. a Exam-
ple of an algebraic task performed by the network (projection of the
phase space on the plane (x1, x2) is shown). The network has first
learnt the basic equation x1 = x2 + x3 by using as a stimulus periodic
sequence of two vectors a = (1, 0.5, 0.5)T and b = (1, 1.5,−0.5)T.
Then as a novel activation we use (0, e2, e2). The initial value of the
output on the first unit is either x1(0) = 0 or x1(0) = 10. Indepen-
dently of the initial network state the network relaxes to the learnt basic
equation (e2 + e3, e2, e3) = (2e2, e2, e2), thus dynamically evaluating
the missing stimulus part. Arrows mark the direction of trajectories. b
Example of stimulus summation and scaling. As in (a) the network has
been trained by two vectors a = (2, 1.5, 0.5) and b = (−1, 1,−2).
Then a novel activation in the form (0, 0, e3) is applied to the net-
work. We use four values e3 = {−1, 0, 1, 2}. Independently of the
initial condition x(0) the network sums and scales the learnt vectors
x = e3(a +b)/(a3 +b3). All trajectories end up at the line x1 = 2x2/5.
Arrows mark the directions of the trajectories

If the novel (arbitrary) stimulus has one zero component,
then the necessary and sufficient condition (Appendix H) for
the network to always relax to the basic plane (i.e., 〈B, x∞〉 =
0) is that a1 = b1 (which is always possible). Indeed, (53) is
reduced to (a3b2 − a2b3)

2 > 0 and (54) to

x1 = − B2e2 + B3e3

B1
, x2 = e2, x3 = e3, (58)

which satisfies the basic equation 〈B, x〉 = 0. Therefore, the
network can be used to perform simple algebraic tasks as,
e.g.,

x1 = x2 + x3. (59)

To illustrate the algebraic capabilities of the network, first
from the given algebraic Eq. (59) we have B =(1,−1,−1)T.

Second we chose two vectors satisfying the basic equation
with a1 = b1. Using as an example a = (1, 0.5, 0.5)T and
b = (1, 1.5,−0.5)T we train a 3D Su network similarly as
done in Fig. 3b. Once the coupling matrix (given in this case
by (40)) has been learnt we can apply to the network novel
incomplete stimuli. For illustration we use e = (0, e2, e2)

(i.e., with the same second and third components). Then
according to Theorem 8 and (58), independently on the initial
condition x(0), the network output relaxes to x =(2e2, e2, e2),
which means that the network finds the missing stimulus
value x1 = 2e2 = e2 + e2. Figure 5a shows the network tra-
jectories starting from different initial conditions for different
values of the stimulus component e2. All trajectories end up
at the straight line x1 = x2 + x3 fulfilling the task (59).

If the novel stimulus has two zero components and the
training stimulus satisfies (56) then the network perturbation
always relaxes to the basic plane. Moreover, the new adopted
network state represents a weighted mean of the two training
vectors. Again, as in the case of training by one vector, the
scale factor is controlled by the nonzero stimulus component.

To illustrate this case we also use (59) as the basic equation
and train the network by two vectors a = (2, 1.5, 0.5) and
b = (−1, 1,−2). Then according to (57) the network state
relaxes to x = e3(2/3, 5/3,−1), which yields x1 = 2x2/5.
Figure 5b shows four network trajectories for four different
values of the novel stimulus e3 starting from different ini-
tial conditions x(0) and converging to x =e3(2/3, 5/3,−1).
Note that the trajectories exhibit damped oscillations (jump
from one to the other side) around the attractor line
x1 = 2x2/5.

5.1.2 Damping with constant input

Let us consider a network trained by a single vector a. Similar
to in Sect. 3.4 the weights on the diagonal of the learnt cou-
pling matrix wi i = a2

i /‖a‖2 can be interpreted as damping
elements and the damped matrix is given by

Wdamped =





d1
1+d1

a2h1
1+d1

. . . anh1
1+d1

a1h2
1+d2

d2
1+d2

. . . anh2
1+d2

...
...

. . .
...

a1hn
1+dn

a2hn
1+dn

. . . dn
1+dn




, (60)

where hi = ai/(‖a‖2 − a2
i). We immediately see that, for

di = ai hi , the damped matrix (60) is reduced to W∞ as
defined by (38); in other words, the training procedure (10)
produces the damping factors ai hi .

Clearly, for a set of arbitrary chosen damping factors (di "=
−1), Wdampeda = a, which means that the damping fac-
tors do not affect the existence of the solution (interpreted as
memory contents). However, as the following theorem states,

123

384 Biol Cybern (2008) 98:371–395

Fig. 6 Modified Su with the first-order low-pass filter (LPF) incorpo-
rated in the circuit

their adjustment leads to a change in the relaxation rate pro-
voked by a perturbation of the network state:

Theorem 9 Assume that a novel incomplete stimulus e is
applied to a 3D Su network with the modified coupling matrix
(60) and ai "= 0, di ≥ 0 (i = 1, 2, 3).

(i) If e = (0, e2, e3)
T then the network state relaxes to

x1 = (e2a2 + e3a3)h1, x2 = e2, x3 = e3. (61)

Moreover, the relaxation rate is given by d1/(1 + d1),
i.e., the larger d1, the slower the network approaches
the stable solution.

(ii) If e = (0, 0, e3)
T then the network state relaxes to

x = e3

a3
a (62)

Damping factors affect the relaxation rate. Particu-
larly, for d1 = d2 = d, the larger d the slower the
network approaches the stable solution.

The proof of Theorem 9 is given in Appendix I.
According to the theorem the damping factors do not alter

the result of the network response to a novel stimulus [com-
pare (52) and (55) with (61) and (62), respectively]. However,
the convergence rate can be adjusted by the damping factors.

5.1.3 Low-pass filter and damping elements

In several studies concerning the behavior of RNNs, instead
of using simple summation units as done here, units contain-
ing blocks showing dynamical properties are used. An often
applied extension is the use of a low-pass filter at the output
(Fig. 6). The low-pass filter damps fast oscillations allowing
the network to converge rapidly to a fixed point.

The dynamics of a first-order low-pass filter is given by

τ ẏ = −y + I (t), (63)

where I is the signal on the filter input, y is the filter output,
and τ defines the filter time constant, i.e., the decay velocity
of the filter output in response to delta-function input. Since
our RNNs operate in discrete time we also discretize (63)
and obtain the equation describing the dynamics of the LPF
block in Fig. 6

yi (t + 1) = τ − 1
τ

yi (t) + 1
τ

Ii (t). (64)

A simple calculation shows that the behavior of an Su RNN
based on the damped coupling matrix with damping elements
ddmp

i is identical to that of a network using the undamped
matrix (i.e., with di = 0) but with each unit being equipped
with a low-pass filter with the time constants τi = ddmp

i − 1.

5.2 Relaxation dynamics of Mu networks (n = 3)

Let us now discuss the evolution of a Mu network under a
general step-like perturbation (50). Once the training process
described in Sect. 4.3.1 has been finished, the dynamics of
the Mu-network obeys (3). Note that the new activation may
not satisfy the basic Eq. (7), i.e., 〈B, e〉 "= 0, and the coupling
matrix W is defined by (38).

When dealing with Su networks we could easily predict the
evolution of the units with nonzero activation: xi (t > 0) = ei
for ei "= 0. For Mu networks the answer to the same question
is not so trivial. Numerical simulation (not presented here)
shows that, as for the Su network, one of the network out-
put variables always appears to be fixed (unchanged) during
the relaxation, i.e., xi (t > 0) = ei . However, there is no
indication which of the units stays fixed.

First let us assume that the new stimulus vector e is given
by rescaling the training stimulus e = ρa (ρ is a nonzero
constant), and hence satisfies the basic equation. Then the
dynamics of (3) is simply reduced to x(t) = e, i.e., there
is no time evolution of the network state. Consequently, in
the following we consider the case e "= ρa, i.e., we apply
to the network a novel significantly different stimulus. Then
we have the following result:

Theorem 10 For a Mu network assume that the training vec-
tor a and the post-training stimulus vector e are either both
positive (a, e > 0) or negative (a, e < 0) and e "= ρa. Let
i ∈ {1, 2, . . . , n} be the only unit satisfying

〈a, e〉
‖a‖2 |ai | ≤ |ei |, ai "= 0. (65)

Then xi (t > 0) = ei , i.e., the output variable corresponding
to this unit is fixed, while the others evolve in time according
to

x j (t) = λ(t)a j

λ(t) =
(

〈a,e〉
‖a‖2 − ei

ai

) (
1 − a2

i
‖a‖2

)t−1

+ ei
ai

(66)

123

Biol Cybern (2008) 98:371–395 385

A

B C

Fig. 7 Relaxation dynamics of a 3D Mu network. a Graphical solution
for the constraint (68) with a = (1, 3, 2)T and e1 = 1. The gray area
corresponds to the possible values of e2 and e3. The dashed line is the
bisectrix. The two filled circles marked by letters B and C correspond
to stimulus values used in simulations of the relaxation dynamics of
the network shown in panels B and C, respectively. b, c Time evolution
of x1,2,3 (marked by circles, squares, and triangles, respectively). In
both cases the solution converges to x = ae3/a3, satisfying the basic
equation

for j "= i . The final network state is given by

lim
t→∞ x(t) = ei

ai
a. (67)

The proof is given in Appendix J.
Theorem 10 provides the answer for the unit number

whose output will be fixed in time. Note that it usually, but
not always, corresponds to the highest element of the post-
training stimulus vector. Moreover, the final network state
(67) reproduces a rescaled version of the training vector a.

Let us illustrate the theorem in the 3D case considering
positive training and post-training vectors (a, e > 0), such
that the condition (65) is satisfied for the i = 3 unit, i.e.,

κa1 > e1, κa2 > e2, κa3 ≤ e3, (68)

where κ = 〈a, e〉/‖a‖2. As earlier, we use a = (1, 3, 2)T,
and for the sake of simplicity we set e1 = 1. Then Fig. 7a

A B

Fig. 8 IC networks with nonlinear blocks (shown as boxes) in the
recurrent pathway (case n = 3). a The nonlinear blocks are placed
before the coupling. b The nonlinear blocks appear after the coupling

shows a graphical solution for the inequalities (68). We can
have either e3 > e2 or e3 < e2 (above or below the bisec-
tor line). In both cases, according to Theorem 10, the third
unit of the network will have no dynamics, i.e., x3(t) = e3.
Thus as mentioned above, the unit with constant output usu-
ally, but not always, corresponds to the highest element of
the post-training vector. Indeed, Fig. 7b,c confirms the the-
orem predictions: (i) x3(t > 0) = e3, and (ii) x1,2(t) →
e3a1,2/a3, which for the parameter values used in the figure
gives x1,2 → (2, 6) for Fig. 7b, and x1,2 → (1.1, 3.3) for
Fig. 7c. Thus the final network state is x = 2a in the first
case and x = 1.1a in the second case.

6 IC networks with nonlinear recurrent coupling

In the previous sections we investigated the dynamical behav-
ior of “simple” nonlinear networks, when each IC unit on its
internal input receives a linear weighted sum of outputs of all
units (1). In this context we may refer to such recurrent input
as a linear coupling. The use of nonlinear coupling can greatly
enhance the flexibility of RNNs to represent and model more
complex external stimuli or situations, e.g., nonlinear alge-
braic relationships or pattern completion. Specific cases of
nonlinear RNNs could successfully be trained (Kühn et al.
2007), but there was no general statement concerning the con-
ditions under which such training is possible. Let us therefore
investigate up to what extent an RNN can be trained when
“strong” nonlinear properties are introduced in the recurrent
coupling.

To generalize the network architecture shown in Fig. 1c
we include nonlinear blocks into the recurrent pathway, i.e.,
elements whose output is a nonlinear function of the input.
Figure 8 shows two possible network architectures with non-
linear blocks inserted between the unit outputs and their inter-
nal inputs. The difference between these architectures is in
the order of operation, i.e., first nonlinearity and then cou-
pling (Fig. 8a), or vice versa (Fig. 8b). Denoting the nonlin-
earity used in the network by g(x), in the first case we have
the generalized version of (1) in the form

123

386 Biol Cybern (2008) 98:371–395

si (t) =
n∑

k=1

wik g (xk(t)) , (69)

whereas in the second case

si (t) = g

(
n∑

k=1

wik xk(t)

)

. (70)

6.1 Training the network with nonlinear blocks preceding
the coupling

Let us start with the network where the nonlinear blocks are
placed before the coupling (Fig. 8a). We shall consider the
learning of a static stimulus, i.e., when during the training the
network receives a constant external input ξ(t) = a. In this
case, generalizing the above described learning algorithm (9)
or (10) and using the constant external input, we obtain

W (t + 1) = W (t)
(

I − εg(a)aT
)

+ εaaT, (71)

where g(a) = (g(a1), . . . , g(an))T. For the learning process
described by (71) the following theorem holds:

Theorem 11 Assume that network A (Fig. 8a) is trained by
a constant stimulus a such that gT(a)a "= 0 and the learning
rate satisfies

0 < ε <
2

gT(a)a
. (72)

Then the learning process given by (71) converges. Moreover,
for zero initial conditions W (0) = 0 we have

W∞ ≡ lim
t→∞ W (t) = aaT

gT(a)a
. (73)

The theorem proof is given in Appendix K. We also note
that for g(x) = x (73) is reduced to (38).

Using Theorem 11 we see that the learning convergence
can be achieved by an appropriate choice of the learning rate
ε for any nonlinear function g satisfying g(x)x > 0. The
latter condition for instance is true for odd functions like
tanh(x), x3, sign(x), etc.

6.2 Training the network with nonlinear blocks following
the coupling

Let us now consider the case when the nonlinear blocks are
included after the coupling (Fig. 8b), hence we have the fol-
lowing learning rule

W (t + 1) = W (t) − εg(W (t)a)aT + εaaT, (74)

where g(W (t)a) = (g(〈W1, a〉), . . . , g(〈Wn, a〉))T, with Wi
being the i th row of W .

The convergence of the learning algorithm (74) is given
by the following theorem.

Fig. 9 Performance of learning constant stimulus by IC networks with
nonlinear blocks in the recurrent pathway shown in Fig. 8 (g(x) = x3,
a = (1, 3, 2)T, and ε = 0.02)

Theorem 12 Assume that network B (Fig. 8b) is trained by
a constant stimulus a and g(x) ∈ C1(R) is a monotonic
function on R, g′(g−1(ai)) "= 0. If the learning rate satisfies

0 < ε < min
1≤i≤n

(
2

g′(g−1(ai))‖a‖2

)
, (75)

then the learning process given by (74) converges. Moreover,
for zero initial conditions W (0) = 0, we have

W∞ ≡ lim
t→∞ W (t) = g−1(a)aT

‖a‖2 . (76)

The theorem proof is given in Appendix L. Again (76) is
reduced to (38) for g = x . We also note that, if g−1(a) does
not exist (e.g., tanh−1(3)), then the learning process diverges.

6.3 Simulation results

To illustrate the above stated theorems we use g(x) =
x3 as the nonlinearity, and a = (1, 3, 2)T as the training
stimulus.

Let us first consider the case of the nonlinearity preceding
the coupling (Fig. 8a). We obtain g(a) = (1, 27, 8)T. Then
from (72) we get εmax = 1/49 ≈ 0.020 and from (73)

WA = 1
98




1 3 2
3 9 6
2 6 4



 . (77)

For network B with nonlinearity, following the coupling
(Fig. 8b) using the same training vector a = (1, 3, 2)T, we
find g−1(a) = a1/3 = (1, 31/3, 21/3) and g′(g−1(a)) =
3(a1/3)2. Then using Theorem 12 we obtain εmax ≈ 0.023
and

WB ≈




0.071 0.214 0.142
0.103 0.309 0.206
0.090 0.270 0.180



 . (78)

Figure 9 shows the learning performance for the two net-
work configurations shown in Fig. 8. In simulations we used

123

Biol Cybern (2008) 98:371–395 387

the same nonlinearity and the same learning rate. For net-
work A (coupling follows nonlinearity, Fig. 8a) the matrix
distance goes below 1% in 114 iterations, whereas for net-
work B the same precision is achieved in 8 steps. Thus for
the given nonlinearity the use of network architecture B is
more beneficial.

7 Discussion

If, following Fuster (1995), one interprets the term mem-
ory to comprise not only declarative and/or procedural mem-
ory, but also one does not separate individual memory from
species memory, then the task of understanding the memory
does not mean less than understanding the brain. Therefore,
investigation of the memory organization and functions is a
challenging task. The goal of understanding memory func-
tion primarily requires solution of two basic problems. One
concerns the question of how individual memory items are
stored in the form of neural networks. The second question is
how such memory elements may be connected to form large
temporal or contextual structures. In this paper we have dealt
with the first problem, assuming that situations given in the
environment are represented by RNNs of as-yet unspecified
structure.

Among the different situations to learn we have static,
represented by one or more stimulus vectors that are consid-
ered to be temporarily independent, and dynamic situations
represented by a sequence of temporarily ordered stimulus
vectors; for instance, situations described by linear or non-
linear differential equations belong to the latter case.

Following the hypothesis that stimuli are stored in the
interunit couplings, it has been shown that specific RNN
architectures based on Su or Mu units can be used to learn and
represent static and dynamic situations. Moreover, we have
shown how the learning rule should be adjusted (selecting
(9) or (10)) according to the situation. The obtained situation
models might then be used to represent the learnt stimuli
or to control behavioral output. Examples of the tasks to be
solved include pattern completion, solution of simple alge-
braic problems, learning and finding the position of a home
relatively to visible landmarks or representing a model of its
own body. Most of these investigations had been previously
performed based on numerical studies only. Therefore no
proof concerning the generality or limits of these proposals
had been given. In this paper, this gap has now been closed
in such a way that many of the qualitative statements could
be proven or the quantitative limits be defined.

Using the teacher forcing method and the traditional delta
rule applied locally within a neuron, training RNNs is possi-
ble for situations being described by linear basic equations,
by linear differential equations, and also by nonlinear ver-
sions of both types. Based on the results presented here it

is shown (Cruse and Hübner 2008) that also linear MMC
networks can be learned this way. Concerning the training,
there is no difference between the use of Su or Mu units in
the network; the difference appears in the network responses
to a novel stimulus.

During the training of a RNN with linear couplings, the
network learns the weight matrix W , whose damping factors
can be the same or may be different for all units. Learning of
both static and dynamic situations has been studied. We have
shown that the learning of static situations works on a linearly
independent subset of the training vectors and that the limit
coupling matrix does not depend on their particular sequence.
This is obviously not the case for dynamic situations where
the time ordering is indeed important. Theorems 1 and 2 for
the static case and Theorems 5, 6, and 7 for the dynamic
case provide coupling matrices that will be formed during
the learning and what are the appropriate limits for the learn-
ing rate in general, i.e., for the case of arbitrary number of
units in the network and arbitrary stimulus complexity. As
an example for the static case, matrix (20) shows the weights
(elements of W) of a three-unit network trained statically
with two vectors. Matrix (26) shows how the weights can be
interpreted to include damping factors that define the relax-
ation characteristics of the network after a disturbance. As an
example for the dynamic case, the weights are given by (38),
(40), or (42) for learning a periodic sequence of one, two or
three stimulus vectors, respectively. If, after the learning of
the periodic sequence, the external input is then switched off,
the network reproduces this input, either a constant vector or
a temporal pattern (Fig. 3). We have shown that nD networks
can learn a dynamic situation consisting of up to n different
vectors. Moreover, the network will sequentially reproduce
the learnt vectors in the order they have been shown to the
network. Such network ability can be used, for instance, to
store a movie, where each frame can be considered as a train-
ing vector.

Theorems 11 and 12 extend results of the learning static
situations onto the case of nonlinear coupling. They provide
general conditions on the type of nonlinearities, weight matri-
ces developed during the training, and limits for the learn-
ing rate for different arrangements of the nonlinear blocks
in the interunit coupling. For instance, the nonlinearity pre-
ceding the linear part of the coupling (as shown in Fig. 8a)
should satisfy the condition xg(x) > 0, which is fulfilled
by odd functions such as g(x) = tanh(x). The nonlinearity
following the coupling (Fig. 8b) should satisfy the condition
g′(g−1(x)) > 0. We have shown that placing the nonlineari-
ties at the output of the units requires more learning steps to
converge compared to placing the same nonlinear functions
at the internal input of the units. However, the latter network
may cause problems if the inverse of the nonlinear function
does not exist for the whole range of possible values of the
stimulus vector, e.g., tanh−1(x) exists only for |x | < 1.

123

388 Biol Cybern (2008) 98:371–395

Generally, artificial neural networks are investigated in
two versions using either (i) simple summation units, or
(ii) units equipped with dynamic properties, usually a low-
pass filter. The latter cases are eventually called continuous-
time recurrent neural networks (Beer 2006). Steinkühler and
Cruse (1998) have indicated that using summation units with
appropriate positive weights at the diagonal of the coupling
matrix may endow the network with low-pass-filter-like
properties. Using the units with low-pass-filter blocks (Fig. 6)
here we have shown that indeed damping factors di in Su units
correspond to the decaying time constants τi = di − 1 of the
first-order low-pass filter introduced at each unit. Recently,
the inclusion of such low-pass filter units instead of setting
the diagonal weights to zero was shown to be advantageous
in the case of a network used for landmark navigation (Cruse
and Hübner 2008).

Apart from the learning situation models, an important
question is how such networks behave after the learning
process has been finished. If a novel stimulus is then applied,
the network will relax to a new state. As has been discussed
by Kühn et al. (2007) these networks can be used to represent
short- and long-term memories. They can be used to perform
simple algebraic tasks or more abstract pattern separation
such as ABB or ABA. Applying the property of pattern com-
pletion these representations could be used for reconstruction
of missing inputs, or for pattern recognition. For example the
missing value of x1 can be recovered given x2 and x3. These
properties have now been investigated in quantitative detail
for the case of three-unit networks.

Regarding the static case for a network consisting of three
Su units and being trained by two linearly independent vec-
tors, Theorem 3 shows that after a disturbance the network
relaxes to the attractor plane defined by the basic equation.
Therefore, the network can be used to compute simple alge-
braic equations. Theorem 4 provides information concerning
the relaxation dynamics. The damping factors learnt led to
the relaxation trajectory being orthogonal to the plane defined
by the basic equation, i.e., the relaxation follows the short-
est possible path. We have also shown how one can tune
the damping factors to speed up the relaxation (decrease the
number of the required time steps down to a single iteration).
Similarly, with respect to dynamic situations, Theorem 8 con-
siders the response of a network with Su units, which has been
trained by either one or two input vectors. For the network
trained by one vector providing a novel incomplete input to
two units that corresponds to the training vector, while set-
ting the other stimulus component to zero, the network will
restore this missing stimulus part. If two of three inputs are
set to zero, in general, the new network output will represent
a scaled version of the learned vector. Moreover, the scaling
factor can be controlled by the nonzero input. For the net-
work trained by two vectors, application of the incomplete
novel stimulus with two zero components leads to a new state

on the network output satisfying the basic equation. Further-
more, we have shown that the new state represents a scaled
sum of the training vectors. If specific conditions are fulfilled
by the training vectors and then one component of the novel
stimulus is set to zero, the three-neuron network can be used
to perform simple algebraic calculations, e.g., x1 = x2 + x3
(Fig. 5) if some constraints (not being necessary when apply-
ing the learning procedure for the static case) are fulfilled.
Using Mu units, in the same situation the network after dis-
turbance will always relax to a scaled version of the training
vector. One unit of the network will maintain its value during
the relaxation and the conditions defining which unit will be
selected are given for specific cases in Theorem 10.

Having investigated basic properties of the recurrent net-
works constructed by Su or Mu units, we now have a solid
basis to approach the second goal when searching for a mem-
ory structure, namely how to connect different situation mod-
els in a sensible way in order to represent temporal sequences
of such situation models and to search for possibilities of how
such situation models could be arranged within a dynamical
hierarchy.

Acknowledgements This research has been sponsored by the EU
grant SPARK (FP6-2003-IST-004690), by the Spanish Ministry of Edu-
cation and Science (grant FIS2007-65173, and by a Ramón y Cajal
grant), and by a Santander–Complutense grant (PR41/06-15058).

Appendix A: Proof of Theorem 1

Let Vj (t) denote the j th column of the matrix W T(t). Then
from (9) we have

Vj (t + 1) =
(

I − εξ(t)ξT(t)
)

Vj (t) + εξ j (t)ξ(t). (79)

For p < n we can select (n − p) nonzero orthogonal vectors
α1, . . . , αn−p ∈ Rn such that the space spanned by them is
orthogonal to the space spanned by {a1, . . . , ap}. Then we
can introduce two orthogonal subspaces

X1 =
{
kp+1α1 + · · · + knαn−p : kp+1, . . . , kn ∈ R

}
,

X2 =
{
k1a1 + · · · + kpap : k1, . . . , kp ∈ R

}
.

(80)

Clearly, Rn is the direct sum of X1 and X2, i.e., Rn = X1 ⊕
X2. Using (14) we verify that

MT
p ai = ai , MT

p MT
p = MT

p , (81)

hence MT
p is an orthogonal projector onto X2. Then decom-

position of Vj ∈ Rn is given by

Vj = V 1
j ⊕ V 2

j (82)

with V 1
j = (I − MT

p)Vj ∈ X1 and V 2
j = MT

p Vj ∈ X2.

123

Biol Cybern (2008) 98:371–395 389

Denoting the j th column of the matrix MT
p by MT

pj we
have

aT
i MT

pj = ai, j , i = 1, . . . , p, (83)

where ai, j is the j th component of the vector ai .
Now we define a linear map L from Rn into itself

L(Vj) =
(

I − εξ(t)ξT(t)
)

Vj . (84)

Then for Vj ∈ X1 we have

L(Vj) = Vj , (85)

since ξ(t) ∈ X2 and X1 is orthogonal to X2.
Let Vj = k1a1+· · ·+kpap ∈ X2 and, for example, ξ(t) =

a1, a2, . . . Then from (84) we get the first two iterations

L1(Vj) =
(
I − εa1aT

1

)
(k1a1 + k2a2 + · · · + kpap)

=
(
1 − ε‖a1‖2) k1a1 + ∑p

i=2 ki ai

and

L2(Vj) = L(L1(Vj)) =
(
I − εa2aT

2

)
L1(Vj)

= (1 − ε‖a1‖2)k1a1 + (1 − ε‖a2‖2)k2a2 + ∑p
i=3 ki ai .

Similarly, we can proceed with the other iterations. Then, in
the general case, for the t th iteration and nonzero probabil-
ities of occurrences of the training vectors {a1, . . . , ap} we
obtain

Lt (Vj) =
p∑

i=1

(
1 − ε‖ai‖2

)ti
ki ai ∈ X2, (86)

where ti is the number of occurrences of the i th training
vector ai

(∑
ti = t

)
. For ε satisfying (12)

lim
t→∞ Lt (Vj) = 0. (87)

Now let us consider the following map, equivalent to (79),

Vj (t + 1) = L(Vj (t)) + εξ j (t)ξ(t) (88)

with the initial condition Vj (0). Using the decomposition
(82) and (85) we have

Vj (t + 1)=V 1
j (0) + Lt+1(V 2

j (0))+
t∑

k=0

Lt−k (
εξ j (k)ξ(k)

)
.

Thus, if (88) in X2 converges to V̂ j ∈ X2, then in Rn for any
Vj (0) it converges to V 1

j (0) + V̂ j .
Using (83) and (84) we can directly verify that

MT
pj − L(MT

pj)= MT
pj −(I − εξ(t)ξT(t))MT

pj =εξ j (t)ξ(t),

i.e., MT
pj ∈ X2 is a steady state of the map (88) in X2. Then

representing the solution of (88) in the form Vj (t) = MT
pj +

Ṽ j (t) and using (87) we immediately see that Ṽ j (t) → 0, i.e.,
MT

pj ∈ X2 is the unique globally asymptotically stable steady
state in X2 (provided that (12) is satisfied). Thus Vj (t) →
V 1

j (0) + MT
pj and hence we have

lim
t→∞ V (t) = V 1(0) + MT

p .

Using (82) we obtain V 1(0) = (I − MT
p)V (0). Therefore

(13) holds.
For p = n we have X2 = Rn , which implies that W∞ =

Mp.

Appendix B: Proof of Theorem 2

The proof is similar to the proof of Theorem 1.
For r < n we can select (n − r) linearly independent

vectors α1, . . . , αn−r ∈ Rn such that the space spanned by
them is orthogonal to the space spanned by {a1, . . . , ap}.
Consequently, we can introduce two orthogonal subspaces
of Rn

X1 = {k1α1 + · · · + kn−rαn−r : k1, . . . , kn−r ∈ R}
X2 = span{a1, . . . , ap}

(89)

Using (18) we check for any i ∈ {1, . . . , p}
MT

r ci = ci , MT
r MT

r = MT
r . (90)

The latter, together with span{a1, . . . , ap}=span{c1, . . . , cr },
imply that MT

r is an orthogonal projector onto X2 and the
decomposition of Vj ∈ Rn is given by

Vj = V 1
j ⊕ V 2

j (91)

with V 1
j = (I − MT

r)Vj ∈ X1 and V 2
j = MT

r Vj ∈ X2. In
addition, since ai ∈ X2, we also have MT

r ai = ai . Then

aT
i MT

r j = ai, j , i = 1, . . . , p, (92)

where MT
r j is the j th column of MT

r and ai, j is the j th com-
ponent of ai . Therefore, MT

r j ∈ X2 is a steady state of the
map (88). Further, if the learning process (9) starting from
initial condition W (0) converges to the coupling matrix W∞,
then W∞ = W (0)(I − Mr) + Mr .

For r = n, we have X2 = Rn and consequently, for any
initial conditions W∞ = Mr , which completes the proof.

Appendix C: Proof of Theorem 3

The dynamics of a Su network can be described by the map:

x(t + 1) = Ws x(t) (93)

with the appropriately selected coupling matrix Ws and initial
conditions x(0) = x0.
(i) If the novel stimulus has the form e = (0, e2, e3)

T, then
the dynamics of the network is given by the map (93) with
x0 = (x0

1 , e2, e3)
T and

Ws =




w11 w12 w13

0 1 0
0 0 1



 , (94)

where wi j are the corresponding elements of the matrix (20).

123

390 Biol Cybern (2008) 98:371–395

First let us assume that a3b2 = a2b3. Then Ws = I ,
which implies that x(t) = (x0

1 , e2, e3)
T. For a3b2 "= a2b3

the eigenvalues of (94) are (1, 1, λ3). Moreover, λ3 = (B2
2 +

B2
3)/(1 + B2

2 + B2
3), hence 0 ≤ λ3 < 1. The corresponding

eigenvectors are (−B3, 0, 1)T, (−B2, 1, 0)T, and (1, 0, 0)T.
Then the general solution of (93) is

x1(t) = (B2e2 + B3e3)(λ
t
3 − 1) + x0

1λt
3, x2,3(t) = e2,3,

(95)

which for t → ∞ converges to (24).
(ii) If e = (0, 0, e3)

T, then the dynamics of the network is
given by (93) with x0 = (x0

1 , x0
2 , e3)

T and

Ws =




w11 w12 w13
w21 w22 w23

0 0 1



 , (96)

where wi j are the corresponding elements of the matrix (20).
It can be shown that the eigenvalues of (96) are λ =

(1, 1, λ3). Moreover, λ3 = B2
3/(1 + B2

2 + B2
3), hence 0 ≤

λ3 <1. The corresponding eigenvectors areχ1 =(−B3, 0, 1)T,
χ2 = (−B2, 1, 0)T, and χ3 = (1/B2, 1, 0)T. Then the gen-
eral solution of (93) is given by

x(t) = e3χ1 + C2χ2 + C3χ3λ
t
3, (97)

where

C2 = x0
2 +B2(e3 B3−x0

1)

1+B2
2

, C3 = B2(x0
1 + x0

2 B2+e3 B3)

1+B2
2

.

(98)

For t → ∞ (97) converges to (25).

Appendix D: Proof of Theorem 4

The proof is similar to the proof of Theorem 3.

(i) If the novel stimulus has the form e = (0, e2, e3)
T,

then the eigenvalues of (94) with damping factors are
(1, 1, d1/(1 + d1)) with the corresponding eigenvec-
tors (−B3, 0, 1)T, (−B2, 1, 0)T, and (1, 0, 0)T. Thus
the general solution of (93) is given by (95) with λ3 =
d1/(1 + d1), which defines the relaxation rate.

(ii) If e = (0, 0, e3)
T, then the eigenvalues of (96) with

damping factors are

λ1,2 = 1, λ3 = d1d2 − 1
(1 + d1)(1 + d2)

. (99)

For positive damping factors 0 < λ3 < 1. The corresponding
eigenvectors are

χ1 = (−B3, 0, 1)T, χ2 = (−B2, 1, 0),

χ3 =
(

1+d2
1+d1

B2, 1, 0
)T

.
(100)

Then the general solution of (93) is given by

x1(t) = B3e3
1+d2

2+d1+d2

(
λt

3 − 1
)
,

x2(t) = B3e3
B2

1+d1
2+d1+d2

(
λt

3 − 1
)
,

x3(t) = e3.

(101)

For t → ∞ (101) converges to (27). λ3 defines the relaxation
rate. (28) immediately follows from (101).

Appendix E: Proof of Theorem 5

Let Vj (t) denote the j th column of the matrix W T(t). Then
from (10) we have

Vj (t + 1) =
(
I − εξ(t − 1)ξT(t − 1)

)
Vj (t)

+εξ j (t)ξ(t − 1).
(102)

Since a1, . . . , ap are nonzero orthogonal vectors, hence for
p < n we can select n − p nonzero orthogonal vectors
α1, . . . , αn−p ∈ Rn such that the space spanned by them
is orthogonal to the space spanned by {a1, . . . , ap}. Conse-
quently, we can introduce two orthogonal subspaces

X1 =
{
kp+1α1 + · · · + knαn−p : kp+1, . . . , kn ∈ R

}
,

X2 =
{
k1a1 + · · · + kpap : k1, . . . , kp ∈ R

}
.

(103)

Clearly, Rn = X1 ⊕ X2. From (32) it follows that

MT
pj = a2 j

‖a1‖2 a1 + · · · + apj

‖ap−1‖2 ap−1 + a1 j

‖ap‖2 ap ∈ X2.

Now we define a linear map L from Rn into itself

L(Vj) =
(

I − εξ(t − 1)ξT(t − 1)
)

Vj , (104)

and then for Vj ∈ X1 we have

L(Vj) = Vj , (105)

since ξ(t) ∈ {a1, . . . , ap} and X1 is orthogonal to X2. For
Vj = k1a1 + · · · + kpap ∈ X2, from (104) the first two
iterations for ξ(0) = a1 and ξ(1) = a2 are

L1(Vj) =
(
I − εa1aT

1

)
(k1a1 + k2a2 + · · · + kpap)

=
(
1 − ε‖a1‖2) k1a1 + ∑p

i=2 ki ai

and

L2(Vj) = L(L1(Vj)) =
(
I − εa2aT

2

)
L1(Vj)

=
(
1 − ε‖a1‖2) k1a1 +

(
1 − ε‖a2‖2) k2a2 + ∑p

i=3 ki ai .

Proceeding further the pt th iteration is given by

L pt (Vj) =
p∑

i=1

(
1 − ε‖ai‖2

)t
ki ai ∈ X2. (106)

If (30) is satisfied, then limt→∞ L pt (Vj) = 0.
Now let us consider the following map, equivalent to

(102),

Vj (t + 1) = L(Vj (t)) + εξ j (t)ξ(t − 1) (107)

123

Biol Cybern (2008) 98:371–395 391

with the initial condition Vj (0). We obtain

Vj (t + 1) = V 1
j (0) + Lt+1(V 2

j (0))

+
t∑

k=0

Lt−k (
εξ j (k)ξ(k − 1)

)
,

where we have used (105) and the decomposition Vj (0) =
V 1

j (0)+V 2
j (0) associated with the direct sum Rn = X1⊕X2.

Thus, if the iteration (107) in X2 converges to V̂ j ∈ X2, then
for any Vj (0) it converges to V 1

j (0) + V̂ j .
Notice that

aT
i MT

pj = ai+1, j , i = 1, . . . , p (i mod p).

Consequently, MT
pj ∈ X2 is a steady state of the map (107)

in X2 since

MT
pj − L(MT

pj) = MT
pj − (I − εξ(t − 1)ξT(t − 1))MT

pj
= εξ(t − 1)ξT(t − 1)MT

pj = εξ j (t)ξ(t − 1).

Now substituting Vj (t) = MT
pj + V̄ j (t) into (107) we get

V̄ j (t + 1) = L(V̄ j (t)), V̄ j (t) ∈ X2. (108)

Equations (108) and (106) imply that V̄ j (t) → 0, and hence
the steady state MT

pj of the map (107) restricted to X2 is
globally asymptotically stable (provided that (30) is satis-
fied). Thus in Rn Vj (t) → V 1

j (0) + MT
pj , as t → ∞ and

hence

lim
t→∞ V (t) = V 1(0) + MT

p .

Therefore, we have

lim
t→∞ W (t) = W̃ + Mp,

where W̃ = V 1(0)T.
Obviously, for zero initial conditions W (0) = 0, V 1(0) =

0, thus W∞ = Mp. Besides, if p = n, then X2 = Rn , and
for any initial conditions W̃ = 0, which completes the proof.

Appendix F: Proof of Theorem 6

For a periodic stimulus (29) composed of linearly indepen-
dent vectors a1, . . . , ap, (p ≤ n), we can select auxiliary
nonzero linearly independent vectors such that the space
spanned by {α1, . . . , αn−p} is orthogonal to the space spanned
by {a1, . . . , ap}. Thus we can also introduce two orthogonal
subspaces X1 and X2, which are formally the same as in
(103). Then we note that the matrix W∞ defined by (34) is
the steady state of the map (10) and W∞ ∈ X2. Thus, similar
arguments as those given in the proof of Theorem 5 complete
the proof of Theorem 6.

Appendix G: Proof of Theorem 7

Setting

X1 = {k1a1 : k1 ∈ R}
X2 = {k2a2 + · · · + kn+1an+1 : k2, . . . , kn+1 ∈ R}
we have Rn = X1 ⊕ X2. Then under the assumption (37), the
matrix W∞ defined by (36) is the steady state of the learning
process (10) and W∞ ∈ X2. The rest of the proof is very
similar to the proof of Theorem 5.

Appendix H: Proof of Theorem 8

The proof is similar to the proof of Theorem 3. The dynamics
of a Su network can be described by the map (93) with the
appropriately selected coupling matrix Ws and initial condi-
tions x(0) = x0.
(1) If the novel stimulus has the form e = (0, e2, e3)

T, then
the dynamics of the network is given by the map (93) with
x0 = (x0

1 , e2, e3)
T and (94), where the matrix elements w1 j

are given by the corresponding elements of: (a) the matrix
(38) for the training by one vector, or (b) the matrix (40)
for the training by two vectors. The eigenvalues of (94) are
(1, 1, w11) with the corresponding eigenvectors (w13/(1 −
w11), 0, 1), (w12/(1 − w11), 1, 0), and (1, 0, 0). Then the
general solution of (93) is

x1(t)=
w12e2+w13e3

1 − w11

(
1 − wt

11
)
+x0

1wt
11, x2,3(t) = e2,3.

(109)

Thus, if

|w11| < 1 (110)

then (109) converges and diverges otherwise.
(1a) For the training by one vector a

w11 = a2
1

‖a‖2 , w12 = a1a2

‖a‖2 , w13 = a1a3

‖a‖2 . (111)

The convergence condition (110) is always satisfied and the
network relaxes to (52).
(1b) For the training by two linearly independent vectors a
and b from (40) we obtain the matrix elements w11, w12,
and w13. Then using (110) and (109) we derive the stability
condition (53) and the fixed point (54), respectively.

The fixed point (54) satisfies the basic equation if
(

∆12

Γ − ∆11
+ B2

)
e2 +

(
∆13

Γ − ∆11
+ B3

)
e3 = 0. (112)

Without loss of generality in (112) we used B1 = 1. For an
arbitrary novel activation the values in parentheses of (112)
should be together equal to zero. This leads to

(a1 − b1)(a3 + b3)Γ = 0
(a1 − b1)(a2 + b2)Γ = 0

(113)

123

392 Biol Cybern (2008) 98:371–395

For linearly independent a and b (113) is fulfilled if and only
if a1 = b1.
(2) If the novel stimulus has the form e = (0, 0, e3)

T, then
the dynamics of the network is given by the map (93) with
x0 = (x0

1 , x0
2 , e3)

T and (96), where the matrix elements wi j
are given by the corresponding elements of: (a) the matrix
(38) for the training by one vector, or (b) the matrix (40) for
the training by two vectors.
(2a) For the training by one vector wi j = ai a j/‖a‖2. Then
the matrix (96) has three eigenvalues λ1 = 1, λ2 = 0,
and λ3 = (a2

1 + a2
2)/‖a‖2 with the corresponding eigenvec-

tors a/a3, (−a2/a1, 1, 0)T, and (a1/a2, 1, 0)T, respectively.
Using the initial condition we obtain the general solution

x(t) = e3

a3
a +

(
x0

1 a1 + x0
2 a2

a2
1 + a2

2
− e3

a3

)

×(a1, a2, 0)T

(
a2

1 + a2
2

‖a‖2

)t

(114)

and (55) immediately follows.
(2b) For the training by two vectors one eigenvalue of (96)
is λ1 = 1 with the corresponding eigenvector χ1 = (a +
b)/(a3+b3). Let us denote the other two eigenvalues with the
corresponding eigenvectors by λ2,3 and χ2 = (χ21, 1, 0)T,
χ3 = (χ31, 0, 1)T, respectively. Then the general solution is
given by

x(t) = e3

a3 + b3
(a + b) + C2χ2λ

t
2 + C3χ3λ

t
3, (115)

where C2,3 are constants determined by the initial condition
x(0). If |λ2,3| < 1 then (115) converges to (57), otherwise
it diverges. Simple but tedious calculation shows that the
condition |λ2,3| < 1 is reduced to (56), which completes the
proof.

Appendix I: Proof of Theorem 9

(i) Similar to the proof of Theorem 8 the dynamics of a Su
network with damping can be described by the map (93) with
the initial condition x(0) = (0, e2, e3)

T and

Ws =




d1

1+d1

a2h1
1+d1

a3h1
1+d1

0 1 0
0 0 1



 . (116)

A simple computation shows

x1(t) = (e2a2 + e3a3)h1

[
1 −

(
d1

1 + d1

)t]
,

x2,3(t) = e2,3. (117)

From (117) the relaxation rate and (61) follow.
(ii) The dynamics of a Su network with damping can be
described by the map (93) with the initial condition x(0) =

(0, 0, e3)
T and

Ws =





d1
1+d1

a2h1
1+d1

a3h1
1+d1

a1h2
1+d2

d2
1+d2

a3h2
1+d2

0 0 1



 . (118)

One eigenvalue of (118) is λ3 = 1 while the other two
λ1,2 are roots of the quadratic equation h(λ) = 0 with

h(λ) = λ2 −
(

d1

1 + d1
+ d2

1 + d2

)
λ + d1d2 − a1h1a2h2

(1 + d1)(1 + d2)
.

(119)

First we note that λ1,2 are real. Then the fixed point of (93)
will be stable if |λ1,2| < 1. The latter is valid if the first two
damping constants d1,2 satisfy the condition h(±1) > 0,
which (for d1,2 > 0) is reduced to a1h1a2h2 < 1, which in
turn is always true for ai "= 0.

We denote by χ = (χ1, χ2, 0)T and η = (η1, η2, 0)T the
eigenvectors associated with eigenvalues λ1 and λ2, respec-
tively. Moreover, the vector b3/a3a is the eigenvector asso-
ciated with λ3 = 1. Consequently, the general solution of the
map (93) is

x(t) = C1χλt
1 + C2ηλt

2 + e3

a3
a, (120)

where the constants C1,2 can be determined from the initial
condition x(0) = (0, 0, e3)

T. Solution (120) converges to

lim
t→∞ x(t) = e3

a3
a, (121)

which is independent of the damping factors, although they
affect the relaxation velocity. To show this we assume that
d1 = d2 = d. Then we have

λ1,2 = d ± √
a1h1a2h2

1 + d
,

∂λ1,2

∂d
= 1 ∓ √

a1h1a2h2

(1 + d)2 > 0,

(122)

which, together with (120), implies that the for large d, the
network slowly approaches the stable solution.

Appendix J: Proof of Theorem 10

(i) Let us first to consider the case of positive vectors a, b > 0.
At t = 0 from (1) and (38) we have

s(0) = aaT

‖a‖2 e = λ1a ≥ 0,

where λ1 = 〈a, e〉/‖a‖2 is a constant. Without loss of gen-
erality we assume that

λ1a j > e j (j = 1, 2, . . . , n − 1), λ1an ≤ en . (123)

This yields

s j (0) > e j (j = 1, 2, . . . , n − 1), sn(0) ≤ en (124)

123

Biol Cybern (2008) 98:371–395 393

Inequality (124) together with (3) implies

x(1) = (λ1a1, . . . , λ1an−1, bn)T. (125)

For the next iteration the recurrent input is given by

s(1) = aaT

‖a‖2 x(1) = λ2a ≥ 0, (126)

where using (123)

λ2 = 1
‖a‖2

(
anen + λ1

n−1∑
k=1

a2
k

)

= λ1 + en−λ1an
‖a‖2 an ≥ λ1

(127)

From the inequality (127) and (125), (126) we have

s j (1) ≥ x j (1) > e j (j = 1, 2, . . . , n − 1).

Comparing the last element of the output and the recurrent
vectors we obtain

xn(1) − sn(1) = (en − λ1an)

(
1 − a2

n

‖a‖2

)
≥ 0,

which, together with (125), lead to

sn(1) ≤ en .

Thus we get the second iteration of the map (3)

x(2) = (λ2a1, . . . , λ2an−1, en)T.

Repeating the above described procedure we obtain

x(t) = (λt a1, . . . , λt an−1, en)T, (128)

where λt is

λt+1 =
(

1 − a2
n

‖a‖2

)
λt + anen

‖a‖2 , for t ≥ 1, (129)

which has a globally stable fixed point λ∗ = en/an . Thus
x(t) converges to

x = en

an
a.

Using (129) we obtain

λt =
(〈a, e〉

‖a‖2 − en

an

)(
1 − a2

n

‖a‖2

)t−1

+ en

an
. (130)

Combining (128) and (130) we derive the relaxation trajec-
tory in explicit form.
(ii) For the case a, e < 0, the proof is obtained by substituting
x → −x , a → −a, and b → −b.

Appendix K: Proof of Theorem 11

Let W j (t) denote the j th column vector of the matrix W T(t).
Then from (71) we have

W j (t + 1) =
(

I − εagT(a)
)

W j (t) + εa j a. (131)

The characteristic matrix of (131) is give by

A(λ) = (λ − 1) I + εagT(a).

A straightforward computation shows that

det A(λ) = (λ − 1)n−1
(
λ − 1 + εgT(a)a

)
.

It gives one simple and (n − 1) multiplicative roots

λ1,2,...,n−1 = 1, λn = 1 − εgT(a)a.

Moreover, one can verify that

ξ1 =





g(a2)

−g(a1)

0
...

0




, . . . , ξn−1 =





g(an)

0
0
...

−g(a1)




(132)

are (n − 1) linearly independent eigenvectors of A corre-
sponding to the multiplicative eigenvalues and the vector a
is the eigenvector of A corresponding to the simple eigen-
value λn . Thus the general solution of the map (131) is given
by

W j (t) =
n−1∑

i=1

kiξi + kn

(
1 − εgT(a)a

)t
a + Ṽ , (133)

where the constants k1, . . . , kn ∈ R can be determined using
initial activation W j (0), and Ṽ is a special solution of the
map satisfying

gT(a)Ṽ = a j .

For instance, we can choose

Ṽ = a j

m
(h(a1), h(a2), . . . , h(an))T, (134)

where m is the sum of nonzero values in {g(a1), . . . , g(an)}
and

h(ai) =
{

1/g(ai), if g(ai) "= 0
0, otherwise

(135)

If W j (0) = 0, then using (133)–(135), we obtain

ki = a j
m h(a1)h(ai+1) − a j ai+1

gT(a)a h(a1) (i = 1, . . . , n − 1),

kn = − a j

gT(a)a .
(136)

Combing (132)–(136) leads to

lim
t→∞ W j (t) = W j =

n−1∑

i=1

kiξi + W̃ = a j

gT(a)a
a (137)

123

394 Biol Cybern (2008) 98:371–395

since |1 − εgT(a)a| < 1 holds if and only if the inequality
(72) is satisfied. From (137) it follows that

W T
∞ = (W1, W2, . . . , Wn) = aaT

gT(a)a
. (138)

Since W T
∞ is a symmetric matrix (73) follows from (138).

Appendix L: Proof of Theorem 12

Let Wi (t) be the i th row vector of the matrix W (t). Then (74)
can be rewritten in the form

Wi (t + 1) = Wi (t) − εg(Wi (t)a)aT + εai aT. (139)

The set of fixed points of the map (139) is given by

S = {Wi |W T
i = k1ξ1 + . . . + kn−1ξn−1

+ g−1(ai)
m (h(a1), . . . , h(an))T},

where k1, . . . , kn−1 ∈ R, m is the sum of nonzero numbers
ai in {a1, . . . , an},

h(ai) =
{

1/ai , if ai "= 0
0, otherwise

and

ξ1 =





a2
−a1

0
...

0




, . . . , ξn−1 =





an
0
0
...

−a1




.

Expanding g(Wi (t)a) in Taylor series at Wi a = g−1(ai) up
to the first order, we obtain

g(Wi (t)a) = g(Wi a) + g′(g−1(ai))(Wi (t) − Wi)a
+O((Wi (t) − Wi)a).

Substituting this into (139) and denoting Vi (t) = W T
i (t) −

W T
i , we get

Vi (t + 1)=Vi (t)−εg′(g−1(ai))aaTVi (t)+O(aTVi (t))a.

(140)

Then the map (140) has one simple and (n−1) multiplicative
roots

λ1,2,...,n−1 = 1, λn = 1 − εg′(g−1(ai))aTa

with the corresponding eigenvectors ξ1, . . . , ξn−1 and a.
Generally speaking the linear approximation is not suffi-

cient to determine stability if there exists an eigenvalue equal
to 1. However, we can handle the problem as follows. In order
to determine the local stability of the fixed points of (140)
we first put the linear part of (140) in the block-diagonal
form. The matrix associated with the linear transformation

has columns consisting of the eigenvectors of the linearized
map. From the above, it is given by

C = (ξ1, . . . , ξn−1, a).

Thus, setting Vi (t)=CY (t) with Y (t) = (y1(t), . . . , yn(t))T

it follows that

aTC = (0, 0, . . . , ‖a‖), C−1a = (0, 0, . . . , 0, 1)T

and then the map (140) becomes

Y (t + 1) = AY (t) + O(‖a‖2 yn(t))(0, 0, . . . , 0, 1)T (141)

with A = diag{1, . . . , 1, 1 − εg′(g−1(ai))aTa}, which is
equivalent to

yi (t + 1) = yi (t) (i = 1, 2, . . . , n − 1),

yn(t + 1) = (1 − εg′(g−1(ai))aTa)yn(t) + O(yn(t)).

If |1 − εg′(g−1(ai))aTa| < 1, then

Y (t) → (y1(0), y2(0), . . . , yn−1(0), 0)T as t → ∞.

Applying the initial condition Wi (0) = 0 and following the
same procedure as described in the proof of Theorem 11, we
obtain

lim
t→∞ Wi (t) = ag−1(ai)

aTa

and (76) immediately follows.

References

Beer RD (2006) Parameter space structure of continuous-time recurrent
neural networks. Neural Comput 18:3009–3051

Cruse H, Hübner D (2008) Selforganizing memory: active learning of
landmarks used for navigation. Biol Cybern (submitted)

Cruse H, Sievers K (2008) A general network structure for learning
Pavlovian paradigms (in preparation)

Elman JL (1990) Finding structure in time. Cogn Sci 14:179–211
Feynman R (2001) In: Hawking SW (ed) The universe in a nutshell.

Bantam Press, New York
Fuster JM (1995) Memory in the cerebral cortex: an empirical approach

to neural networks in the human and nonhuman primate. MIT
Press, Cambridge

Hopfield JJ (1982) Neural networks and physical systems with emer-
gent collective computational abilities. Proc Natl Acad Sci
79:2554–2558

Hopfield JJ (1984) Neurons with graded response have collective com-
putational properties like those of two state neurons. Proc Natl
Acad Sci 81:3088–3092

Jaeger H, Haas H (2004) Harnessing nonlinearity: predicting chaotic
systems and saving energy in wireless communication. Science
2:78–80

Kühn S, Beyn WJ, Cruse H (2007) Modelling memory functions with
recurrent neural networks consisting of input compensation units:
I. Static situations. Biol Cybern 96:455–470

Kühn S, Cruse H (2007) Modelling memory functions with recur-
rent neural networks consisting of input compensation units: II.
Dynamic situations. Biol Cybern 96:471–486

123

Biol Cybern (2008) 98:371–395 395

Kindermann T, Cruse H (2002) MMC—a new numerical approach
to the kinematics of complex manipulators. Mech Mach Theory
37:375–394

Palm G, Sommer FT (1996) Associative data storage and retrieval in
neural networks. In: Domany E, van Hemmen JL, Schulten K (eds)
Models of neural networks III. Association, generalization, and
representation. Springer, New York, pp 79–118

Pasemann F (2002) Complex dynamics and the structure of small neural
networks. Netw: Comput Neural Syst 13:195–216

Steinkühler U, Cruse H (1998) A holistic model for an internal repre-
sentation to control the movement of a manipulator with redundant
degrees of freedom. Biol Cybern 79:457–466

Strang G (2003) Introduction to linear algebra. Wellesley–Cambridge
Press, Cambridge

Tani J (2003) Learning to generate articulated behavior through the
bottom-up and the top-down interaction processes. Neural Netw
16:11–23

Wessnitzer J, Webb B (2006) Multimodal sensory integration in
insects—towards insect brain control architectures. Bioinspir
Biomim 1:63–75

123

