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Abstract A model of time-delay recurrently coupled spa-
tially segregated neural assemblies is here proposed. We
show that it operates like some of the hierarchical architec-
tures of the brain. Each assembly is a neural network with
no delay in the local couplings between the units. The delay
appears in the long range feedforward and feedback inter-
assemblies communications. Bifurcation analysis of a simple
four-units system in the autonomous case shows the rich-
ness of the dynamical behaviors in a biophysically plausible
parameter region. We find oscillatory multistability, hyster-
esis, and stability switches of the rest state provoked by the
time delay. Then we investigate the spatio-temporal patterns
of bifurcating periodic solutions by using the symmetric local
Hopf bifurcation theory of delay differential equations and
derive the equation describing the flow on the center mani-
fold that enables us determining the direction of Hopf bifur-
cations and stability of the bifurcating periodic orbits. We
also discuss computational properties of the system due to
the delay when an external drive of the network mimicks
external sensory input.
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1 Introduction

Transmission delay seems to play a significant role in inte-
gration of information arriving to a single neuron in different
spatial and temporal windows and also at the network level in
interneuron communication. The delay can cancel or amplify
multiple spikes thus leading to the neural information being
selectively processed. The theoretical study of the dynamics
of simple units organized into networks with delayed cou-
plings revealed a rich variety of possible scenarios of tran-
sition to a global oscillatory behavior induced by the delay
(see, e.g., Bungay and Campbell 2007; Campbell et al. 2005;
Guo 2005; Guo and Huang 2003; Guo 2007; Huang and
Wu 2003; Song et al. 2005; Wu et al. 1999; Wu 1998; Yuan
and Campbell 2004; Yuan 2007; Wei et al. 2002; Wei and
Velarde 2004 and references therein). The emerging oscilla-
tions can exhibit different spatio-temporal patterns sensitive
to the delay. It has been shown that even small, comparing
to the oscillation period, delays may have a large impact on
the dynamics of pulse-coupled integrate and fire oscillators
(Ernst et al. 1995; Gerstner 1996; Timme et al. 2002a,b) and
lead, e.g., to the coexistence of regular and irregular dynam-
ics (Timme et al. 2002b).

Research on Hopfield-type neural networks with delays,
first introduced by Marcus and Westervelt (1989), has also
shown that delay can drastically modify the global dynamics
of the system. Since then delays have been inserted into vari-
ous simple neural networks. Among the most widely studied
phenomena is synchronization, where individual units oscil-
late at common frequency and phase when coupled. In Ikeda
and Matsumoto (1987), Schuster and Wagner (1989), Niebur
et al. (1991), Ramana Reddy et al. (1998), Ramana Reddy et
al. (1999), Seunghwan et al. (1997), and Song et al. (2007),
the authors studied the time evolution of coupled limit cycle
oscillators with time delay. The vast majority of these works
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is devoted to investigation of neural-like networks possessing
linear or circular overall symmetry (units coupled in a one-
dimensional (1D) lattice or in a ring). However, the neural
networks found in the brain are far from being symmetric. As
a matter of fact, the brain organization can be viewed in gross
sense as a number of local subnetworks (gray matter) coupled
by long distance connections (white matter) (Braitenberg and
Schuz 1998; Kandel et al. 2000). Another important obser-
vation is that neural networks in the brain rarely can be con-
sidered autonomous, but instead subjected to external input
or drive. Recently, Campbell et al. (2004) investigated the
stability and bifurcations in the delayed neural network of
two coupled three-neuron subnetworks.

Theblock-likebrainstructurescanbeidentifiedindifferent
sensory pathways. For instance, in the somatosensory system
dorsal column nuclei (DCN) neurons form a complex com-
pactoscillatorynetworkreceivingsensory inputs.Onlypartof
the neurons in DCN project to the thalamus and subsequently
the sensory information (SI) goes to the cortex. In turn DCN
receive corticofugal fibers through the pyramidal tract (see,
e.g., Jabbur and Towe 1961; Valverde 1966) thus closing the
loop. The cortical feedback locally is mediated through excit-
atory synapses, while its effective global action is inhibitory.
This may happen due to corticofugal primary excitation of
inhibitory interneurons. Recent experimental findings
(Castellanos et al. 2007; Malmierca et al. 2009) indicate that a
descending feedback significantly alters (modulates) the
oscillatory and information processing properties of DCN.
The functional coupling between the sensory stimulus and the
neural response in DCN exhibits infra-slow oscillation (about
0.07 Hz). During this oscillation the stimulus coherence can
temporarily fall below the statistically significant level, i.e.,
the functional stimulus-response coupling may be temporar-
ily lost for a single neuron. Activation of the corticofugal
feedback rescues the functional coupling of DCN projecting
neurons to the stimulus. This suggests that the processing of
the sensory input occurs at the network level, while firing of
individual neurons may be unreliable.

Although evolution might maximize brain functionality
by shortening conduction delays (see discussion in Wen and
Chklovskii 2005 and references therein), for modeling pur-
pose we can assume that the transmission delay occurring in
the long scale (inter-block) communications is significantly
longer than the local delays occurring among the interneu-
rons belonging to the same subnetwork (block). Besides, one
can argue that the presence of short intra-block delays may
be “absorbed” by the longer inter-block delays, such that the
global circuit dynamics of a Hopfield-like neural circuit will
depend on the global composite delay (see, e.g., Wei et al.
2002; Wei and Velarde 2004 and references therein). Then the
dynamics of the complete network is expected to be robust
against introducing small but non-zero intra-block delays.
Thus the interneuron short-distance delays can be neglected

in a first approximation. Figure 1a illustrates a rather gen-
eral architecture with two local subnetworks A and B recur-
rently coupled with delays. We assume that the neurons inside
each block (subnetwork) communicate with no delay. Each of
such structures can be considered as a generator of local field
potential (LFP), while the long distance coupling provides a
means for driving, synchronization and/or modulation of the
oscillatory pattern by the other neural assembly. The bot-
tom neuron assembly A also receives an external input that
conveys SI. We shall refer to such a system as a recurrently
delayed coupled neural network (RDCNN).

Recentexperimental resultsshowthefeasibilityofsimulta-
neousmulti-site recordingsandposteriordeconvolutionof the
oscillatory activity of different local neural assemblies in the
rat hippocampus (Makarov et al. 2009), known to be responsi-
ble for spatial information storage (Kandel et al. 2000). It was
found that under different experimental conditions LFP gen-
erators (subnetworks) may show in-phase or delayed activity,
which suggests the presence of a coupling and also points to a
possible nontrivial role of the delay. Thus the study of RDC-
NNs may also shed light into the memory functioning.

The paper is organized as follows. In Sect. 2, we introduce
a minimal model capturing the main architectural properties
of a sensory pathway with mixed (delayed and instantaneous)
interactions. Then in Sects. 3 and 4 we provide its bifurca-
tion analysis and discuss the computational properties of the
system by studying the response of the network to external
stimuli. Finally Sect. 5 summarizes our results.

2 A minimal model of RDCNN

As a first approximation to the general problem of delayed
interaction of spatially separated neural assembles (Fig. 1a)
here we consider two delayed coupled subnetworks, each
consisting of two neurons recurrently coupled with no delay
(Fig. 1b). The first subnetwork A receives an external input
s(t), processes it and sends further to the subnetwork B,
which in turn modulates the dynamics of the subnetwork A
through the feedback. Such simplified scheme resembles the
main architectural properties of the somatosensory pathway.
To describe the dynamics of individual neurons and synaptic
couplings we adopt here the Hopfield-like neural network
paradigm. Accordingly, the governing equations are given
by

A:

{
ẋ1(t) = −x1(t)+ a12 f (x2(t))+ cb f (y2(t − τb))

ẋ2(t) = −x2(t)+ a21 f (x1(t))+ s(t)

B:

{
ẏ1(t) = −y1(t)+ b12 f (y2(t))+ c f f (x2(t − τ f ))

ẏ2(t) = −y2(t)+ b21 f (y1(t))

(1)
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Fig. 1 a Architecture of recurrently delayed coupled neural networks
(RDCNN) resembling the structural organization of a sensory path-
way. The system consists of two subnetworks A and B coupled through
feedforward and feedback links. Neurons inside each local subnetwork
interact with no delay, while the long range couplings produce a delay
in signal propagation between subnetworks. To model sensory input,
the “low level” network A also may receive an external sensory input.
Open and filled terminals correspond to excitatory and inhibitory syn-
apses. b Minimal model of RDCNN. Two subnetworks consisting of two

Hopfield-like neurons are recurrently coupled with delays τ f,b . s(t) is an
external drive. c Partitioning of the parameter space into domains with
qualitatively different behaviors in the zero delay limit and symmetric
case β = α (top). The parameter space is divided by a fold bifurcation
into two domains with monostable and bistable behaviors of the net-
work. The bottom diagrams show two examples of the 3D phase space
projections. Stable steady states are marked by filled circles, whereas
the open circle corresponds to an unstable (saddle) steady state

where x and y account for the neuron trans-membrane volt-
ages in the subnetworks A and B, respectively; ai j and bi j

denote the coupling strengths within the local networks; and
c f,b are the feedforward and feedback long range coupling
weights. For a positive coupling ai j > 0, the j th neuron is
called excitatory and inhibitory otherwise (ai j < 0). In (1)
the delays τ f,b occur in the internetwork couplings only. The
external input to the network A is given by the time depen-
dent function s(t). Further to describe the phase space of (1)
we shall also use vector representation:

u = (x1, x2, y1, y2)
T (2)

The synaptic (transfer) function f : R → R is assumed to
be sufficiently smooth and sigmoidal (e.g., f (x) = tanh(x)
is used for computer simulations). For the stability analysis
we shall only require

f ∈ C1(R), f (0) = 0, f ′(0) = 1 (3)

whereas, for the bifurcation analysis we additionally assume

f ∈ C3(R), f ′′(0) = 0, f ′′′(0) �= 0 (4)

The particular function f (x) = tanh(x) satisfies both condi-
tions with f ′′′(0) = −2.

In the uncoupled case, i.e., when the two subnetworks do
not communicate with each other, c f,b = 0, the individual
dynamics of the independent subnetworks is determined by
the local composite gains

α = a12a21, β = b12b21 (5)

Without external input, for

α < 1 (or β < 1 for B)

the zero solution x1 = x2 = 0 (or y1 = y2 = 0 for B) or rest
state is asymptotically stable and unstable otherwise. One can
show that in the latter case the subnetwork is bistable. Besides
the unstable (saddle) steady state in the origin, the system has
two symmetric stable steady states (x̄1, x̄2) and (−x̄1,−x̄2).
Depending on the initial conditions trajectories in the phase
space tend to one or the other state. Thus recurrently inhibi-
tory (both a12,21 < 0) or excitatory (a12,21 > 0) subnetworks
with strong enough synapses (α > 1) are switchable, i.e.,
applying an appropriate stimulus one can switch the network
from one state to the other.
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In the coupled case (c f �= 0, cb �= 0), similarly to (5) it is
useful to define the global composite gains

γb = a21cb, γ f = b21c f (6)

As we shall discuss later on, a RDCNN without delay (τ f,b →
0) in the symmetric case (β = α,γb = γ f = γ , and s(t) = 0)
has asymptotically stable zero solution u = 0 if

α < 1 − |γ |
otherwise the system shows multistability. Thus connecting
two subnetworks decreases the region of global stability of
the rest state u = 0. Figure 1c illustrates two sections of the
parameter space and shows examples of typical trajectories
for the two qualitatively different behaviors.

For the sake of simplicity we shall restrict the study of the
network (1) to the symmetric case, i.e., we assume:

a12 = b12, a21 = b21, c f = cb = c, τ f = τb = τ (7)

Then the local and global composite gains are pairwise equal,
i.e., β = α and γb = γ f = γ . In the reminder of the paper
we shall focus on the effect of the time delay τ on the dynam-
ics of the system (1). Generally speaking, long enough time
delay may cause nonlinear oscillations in the network. Most
of these oscillations appear in the form of periodic solutions
with certain spatio-temporal structure and, if stable under
small perturbations, offer a kind of associative memory of
the network (Fuchs and Haken 1988) such that information
can be stored and later retrieved. We first explicitly obtain the
conditions guaranteeing stability of the rest state (u = 0) and
then investigate Hopf bifurcations and the spatio-temporal
patterns of the bifurcating periodic solutions. We also pro-
vide numerical bifurcation analysis using DDE-BIFTOOL v.
2.03 (Engelborghs et al. 2001) and custom software written in
Matlab. Finally, computational network properties (response
to external input) are discussed.

3 Bifurcations of the rest state

3.1 Steady states

In the case of a constant external drive s(t) = s0 the steady
states of (1) are given by

u∗
1 = a12 f (u∗

2)+ c f (u∗
4)

u∗
2 = a21 f (u∗

1)+ s0

u∗
3 = a12 f (u∗

4)+ c f (u∗
2)

u∗
4 = a21 f (u∗

3)

(8)

Depending on the parameter values, (8) can have from one to
nine solutions. If s0 = 0 then (8) always has the zero solution
u∗ = 0 or the rest state.

3.2 Global stability

By constructing a Lyapunov functional we obtain the follow-
ing theorem on the global stability of the rest state u∗ = 0 of
the system (1).

Theorem 1 The zero solution of the system (1) with s(t) = 0
is globally asymptotically stable if the transfer function ful-
fills (3), f ∈ C2(R), and f ′′(x)x < 0 for all x �= 0 and
|a12| + |a21| + |c| < 2.

The proof of Theorem 1 is given in Appendix A.

Remark 1 If the external input to the network is nonzero
though a constant, i.e., s0 �= 0, and u∗(s0) is a steady state of
(1) given by (8), then by changing variables, û = u − u∗(s0)

we translate the system (1) into new coordinates with the
steady state û∗ = 0. Then the stability of the steady state
u∗ of the system (1) is equivalent to the stability of the zero
solution of the translated system. The arguments very similar
to given in the proof of Theorem 1 yield that if the transfer
function fulfills f ′(u∗

j ) = 0 and f ′′(u∗
j + ε)ε < 0 for any

ε �= 0 ( j = 1, 2, 3, 4) then the steady state u∗ of the system
(1) is globally asymptotically stable for any constant input
s0.

3.3 Stability of zero solution and Hopf bifurcations
induced by delay

We assume no external input, i.e., s(t) = 0. Then lineariza-
tion of the autonomous system (1) around the zero solution
u∗ = 0 yields

u̇(t) = M1u(t)+ M2u(t − τ) (9)

where

M1 =

⎛
⎜⎜⎝

−1 a12 0 0
a21 −1 0 0

0 0 −1 a12

0 0 a21 −1

⎞
⎟⎟⎠ , M2 =

⎛
⎜⎜⎝

0 0 0 c
0 0 0 0
0 c 0 0
0 0 0 0

⎞
⎟⎟⎠
(10)

The characteristic matrix of the linear system (9) is given by

∆(τ, λ) = λI − M1 − e−λτ M2

Then the characteristic equation determining the local stabil-
ity of the zero solution can be written as

det∆(τ, λ) = ∆+ ·∆− = 0 (11)

where

∆± = λ2 + 2λ+ 1 − α ± γ e−λτ (12)

Clearly, λ is a root of (11) if and only if either of the
equations ∆+ = 0 and ∆− = 0 is fulfilled. These equations
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belong to the class of the transcendental polynomial equation

λ2 + pλ+ r + qe−λτ = 0 (q �= 0) (13)

which has been extensively studied (see, e.g., Ruan 2001;
Song et al. 2004). In Appendix B, we recall the main results
on (13) related to our analysis. Comparing (12) and (13), one
gets

p = 2, r = 1 − α, q =
{
γ for ∆+
−γ for ∆−

(14)

For τ = 0, i.e., with no delay in the feedforward and
feedback loops (Fig. 1), the four roots of (11) are:

λ1,2,3,4 = −1 ±√α ± |γ |
These roots have negative real parts if the following inequal-
ity holds

α < 1 − |γ | (15)

In other words, the trivial solution of the coupled system (1)
is asymptotically stable if and only if the condition (15) is
satisfied. Thus increasing the strength (modulus) of the inter-
network coupling c we can always make the rest state unsta-
ble through a fold bifurcation. Figure 1c shows the parameter
space and examples of typical trajectories for the non-delayed
case.

For nonzero time delay (τ > 0) we introduce:

τ±
0 = 1

ω±
arccos

(
ω2± + α − 1

|γ |

)
(16)

where

ω± =
√

−1 − α ±
√
γ 2 + 4α (17)

Note thatω± and τ±
0 make sense only when real, i.e., in a lim-

ited parameter domain. Then the characteristic equation (11)
is fulfilled for (see Appendix B):

τ±
j = τ±

0 + jπ

ω±
, j = 0, 1, 2, . . . (18)

As we shall discuss further below, it is convenient to sort
the values τ±

j in the ascending order. Using the fact that
ω+ > ω− we get

τ+
0 < τ−

0 (19)

The sequence of τ for j = 1, 2, . . . depends on the parameter
values, e.g., for α = −4, γ = 4.2

τ+ ≈ 0.84, 2.36, 3.88, . . . ; τ− ≈ 1.88, 4.28, 6.67, . . .

(20)

hence, τ+
0 < τ−

0 < τ+
1 < τ+

2 < τ−
1 < · · ·.

Let us now introduce on the (α, γ )-plane, four domains
counterparts of the domains A1-A3 introduced in Appen-
dix B (Fig. 2a):

D1 =
{
(α, γ )

∣∣ α < −1, 2
√|α| < γ < 1 − α

}
D2 =

{
(α, γ )

∣∣ α < −1, α − 1 < γ < −2
√|α|

}
D3 =

{
(α, γ )

∣∣ (α ≤ −1, |γ | < 2
√|α|

)
∪ (|α| < 1, |γ | < 1 − α)

}
D4 = R

2 − D1 ∪ D2 ∪ D3

where D denotes the closure of the domain D. Using Lemma 6
from Appendix B and (18) we obtain the following result on
the distribution of roots of the characteristic equation (11).

Lemma 1 (i) If (α, γ ) ∈ D4, then the characteristic
equation (11) has at least one pair of roots with posi-
tive real parts

(ii) If (α, γ ) ∈ D3, then all roots of (11) have negative
real parts for τ ≥ 0

(iii) If either α < −1 and γ = ±2
√|α| or |γ | > |1 − α|,

then (11) has a pair of simple purely imaginary roots
λ = ±iω+ at τ = τ+

j

(iv) If (α, γ ) ∈ D1 ∪ D2 and τ−
0 > τ+

1 , then all roots of
(11) have negative real parts for τ ∈ [0, τ+

0 ) and at
least a pair of roots with positive real parts for τ > τ+

0 .

(v) If (α, γ ) ∈ D1 ∪ D2 and τ−
0 < τ+

1 , then there is
a positive integer k such that all roots of (11) have
negative real parts for

τ ∈ [0, τ+
0 ) ∪ (τ−

0 , τ
+
1 ) ∪ · · · ∪ (τ−

k−1, τ
+
k )

but for

τ ∈ (τ+
0 , τ

−
0 ) ∪ (τ+

1 , τ
−
1 ) ∪ · · · ∪ (τ+

k−1, τ
−
k−1)

there is a pair of roots with positive real parts, and
at least a pair of roots with positive real parts for
τ > τ+

k . Moreover, for τ = τ+
j (respectively τ = τ−

j ),
j = 0, 1, 2, . . . , k all roots of (11) have negative real
parts, except for a pair of simple purely imaginary
roots λ = ±iω+ (respectively λ = ±iω−).

(vi) If α < −1 and |γ | = |1 − α|, then the characteristic
equation (11) has at least one root λ = 0 and a pair of
simple roots λ = ±i

√−2(1 + α) at τ = τ+
j . More-

over: if α ≥ −1 and α �= 1, τ �= 2
|γ | , then λ = 0 is a

single root; if (α, γ ) = (1, 0) or α > 1, |γ | = α − 1
and τ = 2

|γ | , then λ = 0 is a double root.

Using Lemma 1, the transversality condition (37) and the
Hopf bifurcation theorem for functional differential equa-
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Fig. 2 a Parameter plane of the RDCNN (1) with symmetric architec-
ture. In the region D3, the rest state u∗ = 0 is asymptotically stable
for all τ ≥ 0. It is unstable in D4 for any τ . If (α, γ ) ∈ D1 ∪ D2,
then the stability depends on the delay. There are windows for the delay
τ where the trivial solution is either stable or unstable. b Examples
of two phase space projections for parameters from D3 (star #1 in a:
α = −2, γ = 1, τ = 1) and from D4 (star #2 in a: α = 1, γ = −2,
τ = 4). The asymptotic behavior is similar to the network without

delay (Fig. 1c). However, the transient behavior differs, e.g., in D4 a
long decaying oscillation is observed. The decay can last hundreds of
oscillation periods. c Examples of phase space projections (only final
parts of trajectories are shown) and time evolution of the oscillation
amplitude for the parameters from D2 (star #3 in a: α = −4, γ = 4.2).
The left inset corresponds to the value of τ inside an unstable window,
whereas the right one is for τ = 2 which belongs to a stable window

tions (Hale et al. 1993), we obtain the following result on the
stability and bifurcations of the rest state in the system (1).

Theorem 2 Assume that α, γ , ω± and τ±
j are defined by

(5), (6), (17), and (18), respectively. Then for any time delay
τ ≥ 0 the rest state u∗ = 0 of the RDCNN (1) is unstable for
(α, γ ) ∈ D4, and it is asymptotically stable for (α, γ ) ∈ D3.

For (α, γ ) ∈ D1 ∪ D2:

(i) If τ−
0 > τ+

1 , the rest state is asymptotically stable for
τ ∈ [0, τ+

0 ) and unstable for τ > τ+
0 .

(ii) If τ−
0 < τ+

1 , then there is a positive integer k such that
the rest state is asymptotically stable for

τ ∈ [0, τ+
0 ) ∪ (τ−

0 , τ
+
1 ) ∪ · · · ∪ (τ−

k−1, τ
+
k )

and unstable for

τ ∈ (τ+
0 , τ

−
0 ) ∪ (τ+

1 , τ
−
1 ) ∪ · · · ∪ (τ+

k−1, τ
−
k−1)

∪ τ > τk

The RDCNN (1) undergoes a Hopf bifurcation at: i)
τ = τ±

j if (α, γ ) ∈ D1 ∪ D2; and ii) τ = τ+
j if |γ | > |1−α|.

Figure 2a shows the splitting of the (γ, α) parameter plane
into regions with qualitatively different behaviors of the
RDCNN. In regions D3 and D4 the asymptotic behaviors are
qualitatively similar to the corresponding behaviors shown
in Fig. 1c for the network without delay. In D3 the perturba-
tions decay to u∗ = 0 (Fig. 2b, left inset), whereas in D4 we
have bistability (Fig. 2b, right inset). The difference with the
non-delayed case appears in the transient dynamics. Partic-
ularly, in D4 for sufficiently long delay the trajectories can
oscillate for a long time around the unstable trivial solution
u∗ = 0 before approaching one of the stable steady states.

Relative to the non-delayed case (Fig. 1c) two new regions
D1 and D2 appear in the parameter plane (Fig. 2a). The net-
work dynamics in these regions significantly depends on the
actual delay value. One of the conclusions of Theorem 2 is
that for appropriate parameter values along the delay axis τ
there exist k switches from stability to instability and back
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to stability. This means that the rest state of the RDCNN
can be switched from stable to unstable and back to stable
and so on just by progressive increase of the delay in the
feedforward and feedback couplings. Such changes may
occur in the somatosensory pathway, e.g., during develop-
ment. Figure 2c shows two examples with opposite behav-
iors obtained for the same parameter values of the local and
global composite couplings but for different delays. Note-
worthy is that the oscillatory behavior can be observed for a
lower delay (τ = 1 in Fig. 2c) than the delay values (τ = 2
in Fig. 2c) at which the trivial solution u∗ = 0 is globally
asymptotically stable. Such surprising behavior will be fur-
ther analyzed in Sect. 4.

When the parameters α and γ fulfill one of the conditions
of Lemma 1 (item vi) the qualitative behavior of solutions of
(1) in the neighborhood of the origin is quite complex, lead-
ing to a Bogdanov–Takens bifurcation and steady-state/Hopf
collision.

3.4 Direction and stability of Hopf bifurcations

Theorem 2 provides conditions on the parameter values
(including delay) at which the trivial solution u∗ = 0 of
the system (1) undergoes Hopf bifurcations. Besides, it also
states that there is no Hopf bifurcation in the domain D3

(Fig. 2a). For (α, γ ) ∈ D4, Lemma 1 ensures that the char-
acteristic equation (11) has at least one pair of roots with
positive real parts. Thus for |γ | > |1 − α| (region D4) the
limit cycles emanating from Hopf bifurcations are unstable
in the whole phase space (although they may be stable on
a central manifold). Figure 2b (right inset) also indirectly
confirms this. Indeed, rotating trajectories suggest that there
is a saddle type limit cycle surrounding the origin. Trajec-
tories stay for a long time nearby the limit cycle but finally
leave the region towards one of the two stable steady states.
Thus similarly to the non-delayed case (Fig. 1c) the RDCNN
can show bistability in this region, but the transient behavior
can be oscillatory. However, as we shall show in Sect. 4 the
evolution of the RDCNN could be more complex than its
non-delayed counterpart, as expected.

In the remainder of this section we shall consider Hopf
bifurcations of the steady state u∗ = 0 occurring in the region
D1 ∪ D2.

We denote the critical value of the time delay at Hopf
bifurcation by τ∗, and define a new bifurcation parameter

µ = τ − τ∗ (21)

According to Theorem 2, for µ = 0 the characteristic equa-
tion (11) has a pair of purely imaginary roots λ = ±iω0 with
ω0 given by (17): ω+ for τ+

j and ω− for τ−
j .Without loss of

generality, in this section we assume that the transfer func-
tion satisfies both inequalities (3) and (4). Then, following the
procedure based on the center manifold theorem and normal

form reduction described by Faria and Magalháes (1995a,b)
we determine the direction and stability of Hopf bifurcations
by deriving explicitly the normal form of the system (1) on
the associated 2D center manifold at µ = 0 (Appendix C):


̇ = K1µρ + K2ρ
3 + O

(
µ2ρ + |(ρ, µ)|4

)
ξ̇ = −Ω + O(|(ρ, µ)|)

(22)

where (
, ξ) are the polar coordinates in the 2D manifold,
Ω = ω0τ∗ is the oscillation frequency, and K1,2 are constants
defined by (59) and (60), respectively:

K1 = �(A1) = −4ω0�(û)
K2 = �(A2) = 1

2
f ′′′(0)τ∗‖v‖2 (�(û)− ω0�(û)

) (23)

where û is given by (53). Denoting

Π = f ′′′(0)
(�(û)− ω0�(û)

)
(24)

we also have K2 = τ∗‖v‖2Π/2.
The sign of the product K1 K2 determines the direction of

the Hopf bifurcation (Chow and Hale 1982). The bifurcation
is supercritical for K1 K2 < 0 and subcritical if K1 K2 > 0.
The sign of K2 determines stability of the emanating peri-
odic orbit. The orbit is stable for K2 < 0, and unstable for
K2 > 0.

To determine the signs of K1,2 we use (53) and (17).
The latter equation can also be written as ω2

0 + 1 = −α ±
2
√
γ 2 + 4α. For α < 0 (required for the existence of the

domains D1 and D2, Fig. 2a) we obtain

�(û) = 2|û|2
(

2 + τ∗ − τ∗α
ω2

0 + 1

)
> 0

−ω0�(û)=
2τ∗ω2

0|û|2
(
±2
√
γ 2 + 4α

)
ω2

0 + 1

{
> 0, for τ∗ =τ+

j
< 0, for τ∗ =τ−

j

which together with (23) yield

K1>0, for τ∗ =τ+
j , and K1 < 0, for τ∗ =τ−

j (25)

and

sgn(K2) =
{

sgn( f ′′′(0)), for τ∗ = τ+
j

sgn(Π), for τ∗ = τ−
j

(26)

Equations (25) and (26) directly lead to the following
theorem.

Theorem 3 If the transfer function f (·) satisfies (3) and (4),
and the composite couplings (α, γ ) ∈ D1 ∪ D2, then the
direction of the Hopf bifurcations of u∗ = 0 and stability of
the bifurcating periodic solutions are determined by:

(i) the sign of f ′′′(0) at τ = τ+
j . If f ′′′(0) < 0 (> 0,

respectively), then the Hopf bifurcations occurring on
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the center manifold of (1) are supercritical (subcriti-
cal, respectively), with non-trivial periodic orbits stable
(unstable, respectively) on the center manifold.

(ii) by the sign ofΠ at τ = τ−
j . IfΠ < 0 (> 0, respectively),

then the Hopf bifurcations occurring on the center man-
ifold of (1) are subcritical (supercritical, respectively),
with non-trivial periodic orbits stable (unstable, respec-
tively) on the center manifold.

The condition (ii) of Theorem 3 can be simplified. Indeed,
for τ = τ−

j we can estimate the second term of Π :

�(û)−�(û)ω− = 2|û|2
(

2+τ−
j +τ−

j ω
2− + τ−

j α
ω2− − 1

ω2− + 1

)

> 2|û|2
(

2 + τ−
j + τ−

j ω
2− + τ−

j α
)

= 4|û|2
(

1 − τ−
j

√
γ 2 + 4α

)

Thus, assuming that τ−
j < 1/

√
γ 2 + 4α and f ′′′(0) < 0

(respectively, >0), the Hopf bifurcations for u∗ = 0 occur-
ring on the center manifold of (1) at τ = τ−

j are subcritical
(respectively, supercritical), with non-trivial periodic orbits
stable (respectively, unstable) on the center manifold.

The stability and direction of Hopf bifurcations can be
determined for almost all critical values τ−

j when (α, γ ) is

on or sufficiently close to the curve α = −γ 2/4.

Remark 2 Lemma 1 ensures that the characteristic equation
(11) has at least one root with positive real part for (α, γ ) ∈
D1 ∪ D2 and τ > τk . Thus, in this case the bifurcating peri-
odic orbits are always unstable even though they may be
stable on the center manifold.

Remark 3 The stability of the bifurcating periodic solutions
on the center manifold coincides with that in the whole phase
space only for (α, γ ) ∈ D1 ∪ D2 with the critical values τ±

j
if j ≤ k.

Remark 4 From (37), (39), item (iii) of Lemma 1, the nor-
mal form (22) with (25) and (26), we also obtain that for
−∞ < α < −1 and γ = ±√−4α the zero solution of the
system (1) is stable for τ ≥ 0.

The particular function f (x) = tanh(x) has negative third
derivative ( f ′′′(0) = −2). Thus using Theorem 3 we obtain
that the Hopf bifurcations occur at the right neighborhood of
τ+

j , and the bifurcating periodic solutions are stable on the
center manifold.

3.5 Spatio-temporal patterns of bifurcating periodic
solutions

Let us now investigate the spatio-temporal patterns of bifur-
cating periodic solutions emanating from Hopf bifurcations

discussed above. Through this section we shall use the nota-
tion introduced in Wu (1998).

Let G : C → R
n and Γ be a compact group. Then the

dynamical system

u̇(t) = G(ut )

is Γ -equivariant if G(ρ(ut )) = ρG(ut ) for all γ ∈ Γ (Wu
1998; Golubitsky et al. 2003). Let Γ = Z2 be a cyclic group
of order 2. Denoting the generator of this group by γ , its
action on R

4 is given by

ρ(ui ) = ui+2, for all i (mod4) and u ∈ R
4 (27)

Lemma 2 The RDCNN (1) in the symmetric case (7) is Z2

equivariant.

Proof Let G(ut ) = Lτ (ut ) + F(ut , τ ) as defined in (42).
Then, for the generator ρ of Z2, by (27) it is straightforward
to verify that G(ρ(ut )) = ρG(ut ). This completes the proof.

Linear functional differential equations generate a strongly
continuous semigroup of linear operators with infinitesimal
generator A(τ ) given by Hale et al. (1993):

A(τ )ϕ = ϕ̇, ϕ ∈ Dom(A)

Dom(A) = {ϕ ∈ C, ϕ(0) = L(τ )ϕ}
with L(τ ) defined in Appendix C:

Lτ = τM1ϕ(0)+ τM2ϕ(−1)

Moreover, the spectrum σ(A(τ )) consists of roots of the
characteristic equation (11). Thus using results of Sect. 3.3
(Lemma 1) we obtain:

Lemma 3 If (α, γ ) ∈ D1 ∪ D2 and the characteristic equa-
tion (11) has a pair of purely imaginary root λ = ±iω0 at
τ = τ∗, where τ∗ ∈ {τ±

j , j = 0, 1, . . .} and ω0 is given by

ω+ for τ+
j or ω− for τ−

j , respectively, then

(i) The characteristic matrix ∆(τ, λ) is continuously
differentiable with respect to τ .

(ii) The infinitesimal generator A(τ ) of the linear operator
L(τ ) has a pair of simple eigenvalues λ = ±iω0 at
τ = τ∗. Moreover, the other eigenvalues of A(τ∗) are
not integer multiples of ±iω0.

(iii) There exist δ∗ > 0 and a smooth curve λ :
(τ∗ − δ∗, τ∗ + δ∗) → C such that λ(τ∗) = iω0 and
∆(τ, λ(τ)) = 0 for τ ∈ (τ∗ − δ∗, τ∗ + δ∗). Moreover,
d�(λ)

dτ |τ=τ∗ �= 0 as well as dim Uλ(A(τ )) =
dim Uλ(A(τ∗)) for τ ∈ (τ∗ − δ∗, τ∗ + δ∗).

(iv) The generalized eigenspace Uiω0(A(τ∗)), P, of A(τ∗)
for ±iω0 is spanned by the eigenvectors �(eiω0θ v) and
�(eiω0θ v), i.e.,

Uiω0(A(τ∗)) = {x1ε1(θ)+ x2ε2(θ), x1, x2 ∈ R}

123



Biol Cybern (2009) 101:147–167 155

where

ε1(θ) = cos(ω0θ)�(v)− sin(ω0θ)�(v)
ε2(θ) = sin(ω0θ)�(v)+ cos(ω0θ)�(v)

and v is defined by (51), (52) for j even and odd, respec-
tively.

Let ω = 2π
ω0

. We denote by Pω the Banach space of all

continuousω-periodic mappings of R into R
4, equipped with

the supremum norm. Then, for the circle group S1, Z2 × S1

acts on Pω by

(ρ, eiθ )x(t) = ρx(t + θ), (ρ, (θ)) ∈ Z2 × S1, x ∈ Pω

Denote by S Pω the subspace of Pω consisting of all ω-peri-
odic solutions of (1) at τ = τ∗. Then

S Pω = {x1ε1(t)+ x2ε2(t), y1, y2 ∈ R}
For any θ ∈ (0, ω)
Σθ =

{(
ρ, ei 2π

ω
θ
)}

is a subgroup of Z2 × S1. For Σθ, we define the fixed point
subspace

Fix(Σθ , S Pω) =
{

x(t) ∈ S Pω;
(ρ, eiθ )x = x for all (ρ, eiθ ) ∈ Σθ

}
Lemma 4 If either θ = (

n + 1
2

)
ω for ∆+ = 0, or θ = nω

for ∆− = 0, where n ∈ Z, then

Fix(Σθ , S Pω) = S Pω

Otherwise, Fix(Σθ , S Pω) = {0}. Particularly

dim Fix(Σθ , S Pω) ={
2 θ = (

n + 1
2

)
ω for ∆+ = 0, or θ = nω for ∆− = 0

0 otherwise

The proof of this lemma is given in Appendix D.

Lemma 5 Denote the action ofΓ = Z2 on R by ρ(y) = −y
for ∆+ = 0, and by ρ(y) = y for ∆− = 0. Then R is an
absolutely irreducible representation ofΓ, and the restricted
action of Γ on Ker∆(τ∗, iω0) is isomorphic to the action of
Γ on R ⊕ R.

The proof of this lemma is given in Appendix 5.
In addition, it follows from (40), (41), and (18) that for

a positive global composite coupling γ > 0 the even and
odd subscripts j of τ±

j are associated with ∆+ and ∆−,
respectively, but for γ < 0 they are associated with ∆− and
∆+, respectively. This, together with Lemmas 2–5 and the
symmetric Hopf bifurcation theorem for DDEs (Wu 1998),
immediately lead to the following theorem.

Theorem 4 Let j be the subscript of τ∗ = τ±
j defining the

bifurcation point, then near τ∗ there exists a bifurcation of
periodic solutions of the system (1) with the period P ≈
2π/ω0 satisfying:

(i) for (α, γ ) ∈ D1 or γ > |1 − α|

ui+2(t) =
{

ui (t − P/2) , if j is even
ui (t), if j is odd

(28)

(ii) for (α, γ ) ∈ D2 or |γ | > |1 − α| and γ < 0

ui+2(t) =
{

ui (t − P/2) , if j is odd
ui (t), if j is even

(29)

Theorems 3 and 4 ensure that the Hopf bifurcation occurs
at the right neighborhood of τ+

j , and the bifurcating periodic
solution is stable on the center manifold. The emanating peri-
odic orbit for j being even is such that the oscillations in the
subnetworks A and B are in anti-phase, whereas for j being
odd the oscillations are in-phase.

In the case of tanh(x) using (53) and (23) we obtain that

sgn(K2) = −sgn
(�(û)− ω−�(û))

≈
{−sgn(0.0712) < 0 for τ = τ−

0
−sgn(0.0359) < 0 for τ = τ−

1
(30)

Thus at the left neighborhood of τ−
0 the system (1) undergoes

a Hopf bifurcation and the bifurcating periodic orbit is stable
and corresponds to anti-phase oscillations in the subnetworks
A and B. At the left neighborhood of τ−

1 the system (1) also
undergoes the Hopf bifurcation and the bifurcating periodic
solution is stable but the oscillations are in-phase.

4 Numerical analysis

In this section, we numerically crosscheck and extend the
analytical results on the bifurcation analysis of the RDCNN
(1) made above. Then we study the network dynamics under
a change of parameter values and its response to an external
input.

4.1 Bifurcation diagram of the RDCNN

First let us study bifurcations of the steady states and limit
cycles. We choose the synaptic strength of the collaterals
of the projecting neurons a12 (Fig. 1b) as the bifurcation
parameter, while the other parameters are fixed: a21 = −2,
i.e., the interneurons are inhibitory in both subnetworks; c =
2.05, i.e., projections to the other subnetworks are excitatory;
and the internetwork delay is moderate τ = 1.5. Then the
global composite coupling isγ = −4.1, which in turn defines
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Fig. 3 a Bifurcations of steady states (St.St.) (top) and periodic orbits
(P.O.) (bottom) along the parameter a12 describing the strength of (local)
collateral coupling of the projecting neurons (Fig. 1b) for fixed inter-
neuron delay τ = 1.5 (a21 = −2, c = 2.05). The region −2 < a12 < 0
has no qualitative changes in the behavior of the RDCNN and has been

cut out. b Projections of steady states and limit cycles in the phase space
of (1) into (x1, x2)-plane for six representative values of a12 marked by
cycles pointing to the horizontal axis in a. Depending on the parameter
a12 the system can have from one to four attractors

the domains D2: 1.55 < a12 � 2.1; D3: a12 � 2.1; and
D4: a12 < 1.55 (Fig. 2a).

In this subsection, we assume no external input, so (8)
always has a trivial solution u∗ = 0, which corresponds to
the rest state of the RDCNN. One can show that for a12 � 1
this solution is unique. Moreover, according to Theorem 2 it is
stable since we are in D3 and no other attractor is expected.
Thus we can safely start at a big enough positive value of
the collateral coupling, e.g., a12 = 2.5, and then decrease
its value looking for bifurcations of steady states and limit
cycles.

Figures 3a (upper panel) and 3b (phase plane 1) confirm
that the rest state is the only attractor for a12 = 2.5, i.e., the
RDCNN (1) is monostable for strong enough collateral cou-
plings. Decreasing a12 we find a point where the steady state
u∗ = 0 loses stability through a Hopf bifurcation (Figs. 3a,
3b, phase plane 2). The critical coupling value is inside D2

and depends on the delay. Using (16) and Theorem 3 we
can evaluate the parameter values of the Hopf bifurcation
(corresponding to τ−

0 ):

a∗
12 ≈ 2.0356, τ ∗ = 1.5

Numerical results confirm this, also showing that the ema-
nating limit cycle is stable in accordance with the Theorem.
Thus the system stays monostable in a vicinity of a12 � a∗

12,

but now instead of the steady state we observe stable periodic
oscillations.

When decreasing further the local coupling a12, the net-
work undergoes a fold bifurcation on the frontier between
the domains D2 and D4 (a12 = 1.55). For τ = 1.5 (as in
Fig. 3) the new steady states are unstable near the bifurcation
point, but they become stable through Hopf bifurcations at
a12 ≈ 1.50. Thus for the couplings 1.16 � a12 � 1.50 the
RDCNN shows tristable behavior: depending on the initial
conditions we can obtain either a periodic oscillation or one
of the two nonzero steady states (Figs. 3a, 3b, phase plane 3).
These nonzero steady states remain stable for any a12 lower
than the critical value.

The three limit cycles born at corresponding three Hopf
bifurcations merge together at a ≈ 1.16 and the system
undergoes a periodic orbit fold bifurcation (multiplier of the
stable limit cycle crosses the unit circle at µ∗ = 1), such that
for −2.55 � a12 � 1.16 there is a single unstable periodic
orbit and two stable steady states, i.e., the network is bistable
(Figs. 3a, 3b, phase plane 4).

At a12 ≈ −2.55 the second fold bifurcation occurs leading
to two new steady states. The new steady states are unstable
near the bifurcation point. They undergo Hopf bifurcations at
a12 ≈ −2.75 with bearing unstable periodic orbits (Figs. 3a,
3b, phase plane 5). The three unstable limit cycles disappear
through a double homoclinic bifurcation at a12 ≈ −2.78.
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Finally, at a12 ≈ −3.06 two more fold bifurcations occur
and we obtain nine steady states in the phase space, four
of which are stable (Figs. 3a, 3b, phase plane 6). Thus for
strongly negative (inhibitory) local coupling a12 the RDCNN
is quadristable.

Now let us liberate the delay parameter τ and continue
in 2D parameter space (a12, τ ) the found bifurcations.
Figure 4a shows splitting of the parameter space into domains
with qualitatively different behaviors of the RDCNN (1). For
long enough delays (τ � 0.7) in the biophysically plausible
region of collateral couplings (0.7 � a12 � 2.1) the bifurca-
tion structure of the RDCNN is quite complex, suggesting a
rich dynamics in this simple network. Besides the already
discussed fold, Hopf, homoclinic, and periodic orbit fold
bifurcations, for longer delays we found multiple branches of
torus bifurcations (two complex multipliers cross the unit cir-
cle). The torus bifurcations enclose regions of the existence
of periodic orbits born at Hopf bifurcations.

Let us for instance consider the first Hopf bifurcation (cor-
responding to τ−

0 ). According to Theorem 3 the limit cycle
emanating from the Hopf bifurcation (solid red curve marked
by dots in Fig. 4a) is stable. The stability region (e.g., filled
by pink in Fig. 4a) of the limit cycle from the left (smaller val-
ues of a12) is bounded by the periodic orbit fold bifurcation
(solid black curve marked by dots in Fig. 4a). From the right
side the stability region is bounded by a torus bifurcation
(solid green curve marked by dots in Fig. 4a) and the Hopf
curve. The stability loss at the periodic orbit fold bifurcation
has been described above and corresponds to collision and
disappearance of three limit cycles (transition from inset 3 to
4 in Fig. 3b). At the torus bifurcation the limit cycle losses
stability through a torus (two complex multipliers cross the
unit circle).

The torus bifurcations lead to oscillatory (limit cycle) mul-
tistability in the system unobservable for shorter delay in
Fig. 3. Figure 4b (left inset) shows a limit cycle and a typical
trajectory approaching it, corresponding to the stable region
of the limit cycle emanating from the first Hopf bifurcation
(point 1 in Fig. 4a). As it follows from Theorem 4 this limit
cycle corresponds to in-phase oscillation in the subnetworks
A and B. Indeed, the oscillation is in-phase y1(t) = x1(t),
which we call IP1. The subindex m = 1 adopted in this nota-
tion defines the sequential number of the Hopf bifurcation,
which corresponds to the subindex j = m − 1 defining the
sequence of Hopf bifurcations (see Eqs. (18)–(20) and Theo-
rems 3, 4). Similar behavior is observed for the second Hopf
bifurcation occurring at τ−

1 (solid red line marked by squares
in Fig. 4a). However, in this case the bearing limit cycle cor-
responds to anti-phase oscillations in the subnetworks A and
B (Theorem 4), denoted as AP2. The borders of the stabil-
ity region (e.g., filled by blue in Fig. 4a) of this limit cycle
are given by torus bifurcations marked by squares in Fig. 4a.
Figure 4b (right inset) illustrates the limit cycle for the

parameter values marked by point 3 in Fig. 4a. Indeed, in the
phase space this limit cycle has the relation y1(t) = −x1(t).
The latter is equivalent to y1(t) = x1(t + P/2) given by
the Theorem. Now we notice that the domains of stability of
the IP1 and AP2 limit cycles overlap. This means that in the
parameter space there exists a region (white in Fig. 4a) of
coexistence of these two stable limit cycles, i.e., appearance
of one or another depends on the initial conditions. Thus the
RDCNN (1) is oscillatory bistable in this domain. Notewor-
thy is that in a part of this region (to the left from dashed blue
curves) there are also stable steady states. Figure 4b (middle
panel) shows two coexisting stable limit cycles IP1 and AP2

and typical trajectories approaching them.
In the parameter space there are domains with even more

complex behavior. For example in the domain IP1 + AP2 +
IP3 (filled by light green in Fig. 4a) three stable limit cycles
coexist (Fig. 4c). Two of them (IP1 and IP3) correspond to
in-phase oscillations of different shapes, while AP2 gives
anti-phase oscillations.

4.2 Switching behavior and hysteresis

Let us now illustrate some of the dynamical phenomena
observable in the RDCNN that directly follow from the anal-
ysis of the bifurcation diagram shown in Fig. 4a.

First is the stability switching and alternation of in-phase
and anti-phase oscillations induced by delay also discussed
in Sect. 3.3 (Theorem 2). We fix the strength of the local
collateral coupling a12 = 2 and change the delay τ in the
interaction of the subnetworks A and B (Fig. 1b) in the range
from 0.5 to 7 in seven steps each lasting 500 time units (Fig. 5,
top). Other parameter values are a21 = −2 and c = 2.05,
same as in Sect. 4.1.

Figure 5 shows the time evolution of the amplitude of
oscillations in the subnetwork A, R(t), and the phase dif-
ference between oscillations in the subnetworks A and B,
∆ϕ(t) = ϕA − ϕB during the whole simulation. According
to the bifurcation analysis (Fig. 4a) for short delays (τ =
0.5) the rest state (u∗ = 0) is globally asymptotically sta-
ble, hence the initial perturbation of the RDCNN decays in
time, R → 0 (first time interval in Fig. 5). By increasing the
delay to τ = 1.5 we enter to the domain of the first Hopf
bifurcation with in-phase oscillations IP1 in the subnetworks
A and B. This leads to an increase of the amplitude of in-
phase oscillation during the second time interval. Jumping to
τ = 2 (interval 3 in Fig. 5) we leave the IP1 domain (Fig. 4a)
and again get monostable behavior with decaying oscilla-
tion. For τ = 3 (interval 4 in Fig. 5) we enter the domain
of the second Hopf bifurcation, hence observing anti-phase
oscillations AP2. Note that switching to the anti-phase oscil-
lations is much faster than the amplitude growth. On the fifth
step (τ = 4) the system is again monostable and the anti-
phase oscillation decays. When switching to the region IP3

123



158 Biol Cybern (2009) 101:147–167

0 0.5 1 1.5 2 2.5

local coupling, a12

-3 -2.5 -2
0

1

2

3

4

5

6

7

in
te

rn
et

w
or

k 
de

la
y,

 τ

D3D4

homoclinic

bistable: 2St.St.

fold

m
on

os
ta

bl
e:

 1
S

t.S
t.

P.O. fold

B.T.

fold

torus

hopf 2

IP

AP

IPIP+AP

hopf

hopf

AP

A
P

+
IP

1

2

3

4

21

IP+AP+IP2 D21 3

2
3

IP+AP3 4(a)

(b)

***1 2 3

-1
0

1

-1
0

1

-1

-0.5

0

0.5

1
point 1

-1
0

1

-1
0

1

-1

-0.5

0

0.5

1
point 2

-1
0

1

-1
0

1

-1

-0.5

0

0.5

1
point 3

-1
-0.5

0
0.5

1

-1
0

1
-1

-0.5

0

0.5

1

point 4

*4

(c)

y
1

x1 x2

AP2

IP3
IP1y

1

x1 x1 x1 x2x2x2

y
1

y
1

AP2IP1 IP + AP1 2

hopf 1

hopf 3

hopf 4

Fig. 4 a Complete bifurcations diagram of the RDCNN (1) (see also
Fig. 3a). Branches of torus bifurcations are marked by green lines. Red
lines correspond to Hopf bifurcations, solid and dashed lines are associ-
ated with stable and unstable limit cycles, respectively. Markers define
the order of the bifurcation. Dots First Hopf, squares second Hopf,
triangles third Hopf, and open circles fourth Hopf. IP and AP stand
for in-phase and anti-phase oscillations in the subnetworks A and B
(Fig. 1b), respectively. Subindex corresponds to the limit cycle num-
ber associated with the corresponding Hopf bifurcation. b Examples of

projections of stable limit cycles (thick curves) with different spatial
symmetry obtained for the parameter values marked by stars 1, 2, and 3
in a and trajectories approaching the limit cycles. Left inset corresponds
to IP1 (in-phase) oscillations, point 1. Right inset corresponds to AP2
(anti-phase) oscillations, point 3. Middle inset shows two coexisting
limit cycles IP1 and AP2, point 2. c Coexistence of three types of stable
limit cycles (point 4 in a), two in-phase (IP1 and IP3) but of different
shape and one anti-phase (AP2)

(τ = 5, interval 6) the anti-phase oscillation becomes unsta-
ble and after a transient the RDCNN returns back to the in-
phase regime. Finally setting τ = 6.5 we again obtain an anti-
phase oscillation corresponding to AP4 in Fig. 4a. The last
switching takes longer transient time. During the transients
one observes phase-modulated oscillations with decreasing
modulation depth.

The second phenomenon is the oscillatory hysteresis. Now
we fix the delay τ = 4.5 and vary quasistatically the collateral
coupling a12 in the range [1, 2]. The RDCNN always stays
oscillatory due to long enough delay (Fig. 4a), but jumps
between different oscillatory patterns.

To study the hysteresis we augment the deterministic
equations (1) with white Gaussian noise by adding the term√

2Dξ1,2(t) to the right-hand side of equations describing
the dynamics of x1 and x2 variables. The obtained stochastic

delay differential equations were integrated by the Euler
method with the time step 0.001 (lowering the step did not
appreciably affect results). For τ = 4.5 we can observe three
different oscillation patterns IP1, AP2, and IP3 (Figs. 4a, 4b).
Varying a12 the system can enter into domains with a sin-
gle stable oscillatory pattern or into domains with multiple
coexisting oscillatory patterns. In the latter case the observed
oscillatory pattern depends on the history, i.e., which oscil-
latory pattern was excited in the RDCNN before. This gives
rise to the hysteresis behavior in the RDCNN (Fig. 6).

4.3 Response of the RDCNN to external stimuli

Let us now illustrate the richness and complexity of the
response of the RDCNN (1) to the external input s(t).
Figure 7 shows four of the most prominent behaviors.
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For short enough delay values and strong collateral cou-
pling the RDCNN is monostable (e.g., τ = 0.7, a12 = 1.6
in Fig. 4a). Consequently the stimulation of the network by
short lasting pulses excites decaying oscillations (Fig. 7a).

Increasing the delay we can make the RDCNN poten-
tially oscillatory. The oscillatory behavior can be suppressed
by an “hipperpolarizing” input. Then a recovering DC-input
excites tonic oscillations (Fig. 7b). Depending on the delay
value the emerging oscillation can be either in-phase or anti-
phase in two subnetworks A and B.

The RDCNN can also detect the stimulus strength. Apply-
ing progressively increasing stimulus s(t) we observed that
the network oscillates in a bounded range of the stimulus
strength (Fig. 7c). Moreover, in this range the oscillation
amplitude depends on the stimulus strength.

Finally, appropriately selecting the network parameter val-
ues (e.g., τ = 3, a12 = 1.6 in Fig. 4a, see also Fig. 6) we
can have oscillatory bistability. Then applying a pulse to the
RDCNN we can switch it from, e.g., anti-phase to in-phase
oscillations (Fig. 7d).

5 Discussion

Communication delay between coupled units has been shown
to play a significant role, generally leading to global behav-
iors unobservable in the absence of delay. A widely extended
example is the onset of oscillations in a symmetric ring of
Hopfield units when the delay (equal for all units) is above a
critical (Hopf) value. Organization of sensory pathways, and
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Fig. 6 Oscillatory hysteresis in the RDCNN induced by the internet-
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in the range a12 ∈ [1, 2]. Middle The oscillation amplitude ‖u‖ changes
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limit cycles and jumps between them when the corresponding limit
cycle loses stability (see also Fig 4). Arrows mark direction of quasi-
static movements. Bottom Phase difference between oscillations in the
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particularly of the somatosensory system, suggests that inter-
neuron delays are not symmetric and consequently their role
in global dynamics may be diverse. Neurons inside spatio-
and functionally-segregated regions may have negligible
delays relative to the interregion delays. Besides, little is
known about the influence of the delay on the SI processing
by a neural network, i.e., the dynamics of the delay differen-
tial equations under an external input.

In this paper we have proposed a general system account-
ing for some of the major structural properties of a sen-
sory pathway (Fig. 1). The system consists of two local
subnetworks recurrently connected by feedforward and feed-
back couplings with delay. Neurons within each local subnet-
work have no delay in their couplings. The first network also
receives an external (sensory) input. Then we introduced a
minimal model of the RDCNN with a pair of coupled neurons
in each of the subnetworks A and B. To accommodate the
known properties of the somatosensory system we assumed
that the interneurons are inhibitory, while the projecting neu-
rons are excitatory.
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We have studied the stability and bifurcations of the
trivial solution u = 0 (or rest state of the network) and spatio-
temporal patterns of bifurcating periodic oscillations in the
RDCNN minimal model. By analyzing the associated char-
acteristic equation, we found that the global dynamics of the
network depends on local α and global γ (short and long
term) composite gains (Theorem 2), which define the local
and global synaptic properties of the network. The rest state
is absolutely stable in the region D3 of the parameter space
(Fig. 2), conditionally stable in the regions D1 and D2, and
unstable in D4. From the SI processing viewpoint the most
interesting regions (D1, D2, and D3) correspond to the pres-
ence of local inhibition-excitation, i.e., in a local network one
neuron should be inhibitory while the other excitatory. Such
organization, i.e., excitation-inhibition local loops are widely
extended in the nervous system including the somatosensory
pathway (Nuñez and Malmierca 2007).

In the conditionally stable regions (D1 and D2) there are
stability switches, i.e., the rest state is unstable in certain
windows of delay values. This means that the rest state of the
RDCNN can be switched from stable to unstable and back
to stable and so on just by progressive increase of the delay
in the feedforward and feedback couplings (Fig. 5). Such
changes seem to occur in the somatosensory pathway, e.g.,
during development, and may be crucial for establishing the
mature network structure. For instance, the response latency
in the cat somatosensory cortex to forelimb stimulation over
9–29 postnatal days are about twice as long as that in adults

(Bruce and Tatton 1980). The longer latency has been shown
to correlate with the slower peripheral and central axonal con-
duction velocity, i.e., with delay, reported for young animals
(see, e.g., Hildebrand and Skoglund 1971; Purpura 1973). In
the motor cortex neurons show widely distributed latencies
during 14–49 day period, and only small part of neurons is
responsive to stimulation. Then at 50 days and older, laten-
cies shorten markedly showing a highly modal distribution
akin to the adult (Bruce and Tatton 1980). Similar results
have been obtained using EEG recordings in humans. The
latency of the event-related potentials of the theta rhythm
decreases with increasing age in children (Yordanova and
Kolev 1997). Our model results also show sensitivity of the
oscillatory patterns to the delay value and to the interneu-
ron coupling strength, and thus are inline with experimental
observations showing that stimulation received in the pre-
natal and immediately postnatal environments may provide
the input required to consolidate some of the somatosen-
sory networks. The consolidation may consist in adjusting
the delay and coupling strength (through synaptic plasticity
and sensory stimulation) such that a particular neural cir-
cuit, belonging to the complete somatosensory loop, could
be optimized for performing a selective information-pro-
cessing task, e.g., stimulus dependent excitation of different
oscillatory patterns.

Using the normal form theory and center manifold reduc-
tion, we determined the direction of the Hopf bifurcations
and stability of the emanating periodic orbits (Theorem 3).
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Then using the symmetric bifurcation theory of delay differ-
ential equations together with representation theory of cyclic
groups we investigated the spatio-temporal patterns of these
bifurcating periodic oscillations. We found different in-phase
and anti-phase patterns. A remarkable finding is that spatio-
temporal patterns of bifurcating periodic oscillations depend
not only on the parity of critical value j , but also on the
parameter region where the bifurcation occurs (Theorem 4).

In general, periodic solutions bifurcating from the Hopf
bifurcation are local, i.e., they exist in a small enough neigh-
borhood of the critical parameter value. We performed
numerical studies and showed that the bifurcating periodic
solutions always exist and they are orbitally asymptotically
stable for τ ∈ (τ+

0 , τ
−
0 )∪ (τ+

1 , τ
−
1 ). For ordinary differential

equations, Mallet-Paret and Yorke (1982) have found that
each source is connected to a sink by an oriented one-param-
eter “snake” of orbits. In our case the bifurcating periodic
solutions for τ ∈ (τ+

0 , τ
−
0 ) or τ ∈ (τ+

1 , τ
−
1 ) have very simi-

lar properties.
The complete numerical bifurcation analysis of the

RDCNN also has shown the presence of homoclinic, periodic
orbit fold, and torus bifurcations (Fig. 4). Noteworthy is that
most of the bifurcations occur in the biophysically plausible
parameter region. Indeed, as a rule (e.g., for the somato-
sensory system Kandel et al. 2000; Nuñez and Malmierca
2007) neurons projecting to other brain areas are excitatory,
which corresponds in the model (1) to positive values of the
couplings a12, b12, cb, and c f , whereas interneurons that
have axons inside subnetworks are usually inhibitory, i.e.,
a21, b21 < 0 in the model. Our findings show that namely this
parameter region (i.e., a21 = −2, c = 2.05, a12 ∈ [1, 2.5],
and τ ∈ [0, 6] in Fig. 4) contains most of the bifurcations
and attractors. Thus the model inherits the adaptability and
flexibility of the mimicked somatosensory system. We have
shown that torus bifurcations lead to oscillatory multistabili-
ty of the RDCNN, i.e., several stable limit cycles may coexist
in the phase space in certain parameter regions. This explains
the oscillatory hysteresis observed for quasistatic changes of
the strength of the collateral coupling (Fig. 6). The oscilla-
tory multistability may be used, e.g., as an adaptive clocking
for sensory-motor commands.

The richness of the dynamical behaviors observed in the
autonomous RDCNN potentially leads to a wealth of com-
putational properties. We have shown that even the sim-
plest RDCNN model possesses several modes of response to
external stimulus (Fig. 7) from generating oscillatory pulses
and tonic oscillations to changing the oscillation amplitude
with stimulus strength and switching from anti-phase to in-
phase oscillations. We note that nonzero delay in the
internetwork communications is necessary for these regimes,
similar to the well known modes of behavior of real neural
assemblies.
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Appendix A: Proof of Theorem 1

Let uss consider the Lyapunov functional:

V (u, t) =
4∑

j=1

u2
j (t)+ |c|

t∫
t−τ

(
f 2(u2(s))+ f 2(u4(s))

)
ds

(31)

The time derivative of (31) using (1) in the symmetric case
(7) gives

dV

dt
= 2

4∑
j=1

u j u̇ j + |c|
{

f 2(u2)− f 2(u2(t − τ))

− f 2(u4(t − τ))+ f 2(u4)
}

= −2
∑

u2
j + 2c {u1 f (u4(t − τ))+ u3 f (u2(t−τ))}

+ 2a12 {u1 f (u2)+ u3 f (u4)} + 2a21

×{u2 f (u1)+ u4 f (u3)} + |c|
{

f 2(u2)

− f 2(u2(t − τ))+ f 2(u4)− f 2(u4(t − τ))
}

where to simplify notation we dropped the default argument
t . Then using the inequality 2axy ≤ |a|(x2 + y2) one can
show that

dV

dt
≤ −2

4∑
j=1

u2
j + |a12|

{
u2

1 + f 2(u2)+ u2
3 + f 2(u4)

}

+|a21|
{

u2
2 + f 2(u1)+ u2

4 + f 2(u3)
}

+|c|
{

u2
1 + f 2(u2)+ u2

3 + f 2(u4)
}

We can rewrite

f (u j (t)) = p j (t)u j (t)

where p j (t) = ∫ 1
0 f ′(su j (t))ds. Due to the C2−smoothness

of f and the concavity conditions, we can find p∗ ∈ (0, 1]
such that p(t) ≤ p∗ for all t ≥ 0. Hence,

dV

dt
≤ −2

4∑
j=1

u2
j + |a12|(u2

1 + p∗2u2
2 + u2

3 + p∗2u2
4)

+ |a21| × (p∗2u2
1 + u2

2 + p∗2u2
3 + u2

4)

+ |c|(u2
1 + p∗2u2

2 + u2
3 + p∗2u2

4)
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≤ − (2 − |a12| − |a21| − |c|)
4∑

j=1

u2
j

If |a12| + |a21| + |c| < 2, then we always have dV/dt ≤ 0.
Thus the Liapunov-type theorem for functional differential
equations (see, e.g., Kuang 1994) ensures that the zero solu-
tion is globally asymptotically stable.

Appendix B: Main results on the roots of (13)

First let us introduce three sets of inequalities for the param-
eters of (13):

A1: Either r2 > q2 and 2r < p2, or (2r−p2)2 < 4(r2−q2)

A2: Either r2 < q2 or 2r > p2 and (2r − p2)2 = 4(r2−q2)

A3: r2 > q2, 2r > p2, and (2r − p2)2 > 4(r2 − q2)

In addition, we denote

τ̃±
j =

{
1

ω±

(
2 jπ + arccos

[
ω2± − r

q

])
, pq ≥ 0

1

ω±

(
2( j + 1)π − arccos

[
ω2± − r

q

])
, pq < 0

(32)

where j ∈ {0, 1, 2, . . .} and

ω± = 1√
2

(
(2r − p2)±

√
(2r − p2)2−4(r2−q2)

)1/2

(33)

For τ = 0, (13) reduces to the second-order polynomial
equation

λ2 + pλ+ r + q = 0 (34)

Then the following Lemma establishes relations between the
roots of Eqs. (13) and (34).

Lemma 6 (i) If A1 holds, then the number of roots of
(13) with positive real parts is the same as that of (34)
for all τ ≥ 0.

(ii) If A2 holds, then the number of roots of (13) with posi-
tive real parts is the same as that of (34) for τ ∈ [0, τ̃+

0 )

and (13) has a pair of simple purely imaginary roots
±iω+ at τ = τ̃+

j .
(iii) If A3 holds, then the number of roots of (13) with pos-

itive real parts is the same as that of (34) for τ ∈
[0,min{τ̃+

0 , τ̃
−
0 }) and (13) has a pair of simple purely

imaginary roots ±iω+ (±iω− respectively) at τ = τ̃+
j

(τ = τ̃−
j respectively).

Now substituting solution

λ(τ) = η(τ)+ iω(τ)

satisfying

η(τ̃±
j ) = 0, ω(τ̃±

j ) = ω±, j = 0, 1, 2, . . .

into (13) and taking derivatives with respect to τ , we obtain

dλ

dτ
= λqe−λτ

2λ+ p − τqe−λτ (35)

and

d2λ

dτ 2 = − 2

λqe−λτ

(
dλ

dτ

)3

+ 2

λ

(
dλ

dτ

)2

−1

λ

dλ

dτ

(
λ+ τ

dλ

dτ

)2

(36)

It follows from (35) that

d�(λ)
dτ

∣∣∣∣
τ=τ̃±

j

= ±ω2±
√
(2r − p2)2 − 4(r2 − q2)(

p + τ̃±
j (r − ω2±)

)2 + (2 + pτ̃±
j )

2ω2±

Thus, for (2r − p2)2 �= 4(r2 − q2) we obtain that

d�(λ(τ̃+
j ))

dτ
> 0,

d�(λ(τ̃−
j ))

dτ
< 0 (37)

and for (2r − p2)2 = 4(r2 − q2)

d�(λ(τ̃+
j ))

dτ
= 0 (38)

On the other hand, from (35), we also get that for (2r−p2)2 =
4(r2 − q2)

dλ

dτ

∣∣∣∣
τ=τ̃+

j

= i E, E = − pω+
2 + pτ̃+

j

This, together with (36), implies that if

(2r − p2)2 = 4(r2 − q2) and p > 0

then

d2�(λ(τ̃+
j ))

dτ 2 = E(ω+ + τ̃+
j E)2

ω+

+ 2E3

(ω2+ − r)2ω2+ + p2ω4+
< 0 (39)

In the case (14), the parameters ω± in (33) reduce to (17).
For the original characteristic equation (11) we also have

r2 − q2 = (1 − α)2 − γ 2

2r − p2 = −2(1 + α)

(2r − p2)2 − 4(r2 − q2) = 4(γ 2 + 4α)

Note that p = 2 > 0 and

2π − arccos

{
ω2± − r

q

}
= π + arccos

{
ω2± − r

−q

}
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Using (32), (12), (14), (16), and Lemma 6 we obtain that
∆+ = 0 is satisfied for

τ = τ̃±
j = τ±

0 +
⎧⎨
⎩

2 jπ
ω± , if γ > 0

(2 j+1)π
ω± , if γ < 0

(40)

and ∆− = 0 for

τ = τ̃±
j = τ±

0 +
{
(2 j+1)π
ω± , if γ > 0

2 jπ
ω± , if γ < 0

(41)

where ω± are given by (17). Combining (40) and (41) we
arrive at (18).

Appendix C: Normal form of the system (1)

First we rescale the time t �→ t/τ to normalize the delay, so
that the system (1) can be rewritten as a functional differen-
tial equation (FDE) in the phase space C = C([−1, 0],R4).
Separating the linear and nonlinear terms, (1) becomes

u̇(t) = Lτ (ut )+ F(ut , τ ) (42)

where ut ∈ C, ut (θ) = u(t + θ) (−1 ≤ θ ≤ 0), and
L : C → R

4, F : C → R
4 are given by

Lτ (ϕ) = τM1ϕ(0)+ τM2ϕ(−1) (43)

F(ϕ, τ ) = τ f ′′′(0)
3!

⎛
⎜⎜⎜⎜⎜⎝

a12ϕ
3
2(0)+ cϕ3

4(−1)

a21ϕ
3
1(0)

a12ϕ
3
4(0)+ cϕ3

2(−1)

a21ϕ
3
3(0)

⎞
⎟⎟⎟⎟⎟⎠+ O(|ϕ|4)

(44)

where ϕ = (ϕ1, ϕ2, ϕ3, ϕ4)
T ∈ C and M1,2 are defined by

(10).
In fact, the linear map Lτ can be expressed in the integral

form

Lτ (ϕ) =
0∫

−1

[dητ (θ)]ϕ(θ)

where ητ : [−1, 0] → R
4 × R

4 is a function of bounded
variation defined by

ητ (θ) = τδ0 M1 − τ∆+M2

with δν = δ(θ + ν) being the Dirac distribution at the point
θ = −ν.

Using the bifurcation parameter µ defined in (21) (42)
becomes

u̇(t) = Lτ∗ut + F̃(ut , µ) (45)

where

F̃(ut , µ) = Lµut + F(ϕ, τ∗ + µ) (46)

Let us define

Ω = ω∗τ∗ (47)

and the associated set Λ0 = {iΩ,−iΩ}. From Lemma 1, it
follows that the characteristic equation for u̇(t) = Lτ∗ut has
a pair of simple imaginary roots λ = ±iΩ and has no other
roots multiples of ±iΩ . Thus, the nonresonance conditions
relative to Λ0 are fulfilled.

Setting C∗ = C([−1, 0],R4∗) with R
4∗ being the 4D

space of row vectors, we define for ψ ∈ C∗, φ ∈ C the
adjoint bilinear form on C∗ × C :

〈ψ(s), φ(θ)〉 = ψ(0)φ(0)

−
0∫

−1

θ∫
0

ψ(ξ − θ)dητ∗(θ)φ(ξ)dξ (48)

Using the formal adjoint theory of FDEs (Hale et al. 1993),
the phase space C can be decomposed byΛ0 as C = P ⊕ Q,
where P is the center space for u̇(t) = Lτ∗ut , i.e., P is the
generalized eigenspace associated withΛ0. Let Φ and Ψ be
a basis for P and for the space P∗ associated with the eigen-
values ±iΩ of the formal adjoint equation, respectively, and
normalized so that 〈Ψ (s),Φ(θ)〉 = I (I is the 4 × 4 identity
matrix).

Using complex coordinatesΦ andΨ will be 4×4 matrices
of the form:

Φ(θ) = (φ1(θ), φ2(θ))

φ1(θ) = eiΩθv, φ2(θ) = φ1(θ), −1 ≤ θ ≤ 0

Ψ (s) = col(ψ1(s), ψ2(s))

ψ1(s) = e−iΩsuT, ψ2(s) = ψ1(s), 0 ≤ s ≤ 1

(49)

where the over-line denotes complex conjugation, T accounts
for transpose, and u, v are vectors in C

4 such that

Lτ∗(φ1)= iΩv, uT L(eiω∗ I )= iΩuT , 〈ψ1, φ1〉 = 1 (50)

From (40), (41), (43), (48), and (50) we can choose v and
u according to the critical values, i.e., for the critical value
associated with ∆+ = 0,

v =
(

1,
a21

iω0 + 1
,−1,− a21

iω0 + 1

)T

u = û

(
1,

iω0 + 1

a21
,−1,− iω0 + 1

a21

)T
(51)

and for the critical value associated with ∆− = 0,

v =
(

1,
a21

iω0 + 1
, 1,

a21

iω0 + 1

)T

u = û

(
1,

iω0 + 1

a21
, 1,

iω0 + 1

a21

)T
(52)
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with

û = 1

4 + 2τ∗ − 2τ∗α
ω2

0+1
+ 2iτ∗ω0

(
1 + α

ω2
0+1

) (53)

As shown in Faria and Magalháes (1995a,b), a phase space
appropriate for considering normal forms of (42) is the
Banach space BC of functions from [−1, 0] into R

4, which
are uniformly continuous on [−1, 0) and with a jump discon-
tinuity at 0. Elements of BC have the form ϕ + X0b, where
ϕ ∈ C , b ∈ R

4 and X0(θ) is defined by

X0(θ) =
{

I, θ = 0,
0, −r ≤ θ < 0

Let π : BC → P denote the projection π(ϕ + X0b) =
Φ[〈Ψ, ϕ〉 + Ψ (0)b]. Using the formal adjoint theory for
FDEs, BC can be decomposed by Λ0 as BC = P ⊕ ker π
with the property that Q ⊂ ker π , where Q is an infinite
dimensional complementary subspace of P in C .

Let A be the infinitesimal generator for the flow of the lin-
ear system u̇(t) = Lτ∗ut . We decompose ut in (42) according
to the decomposition of BC , in the form ut = Φx(t) + yt ,

with x(t) ∈ R
2 and yt ∈ ker π ∩ D(A) = Q ∩ C1de f= Q1

where D(A) is the domain of A. Let us define the 2 × 2
diagonal matrix

B =
(

iΩ 0
0 −iΩ

)

Then we can decompose (42) as

ẋ = Bx + Ψ (0)F̃(Φx + y, µ)

ẏ = AQ1 y + (I − π)X0 F̃(Φx + y, µ)
(54)

where AQ1 : Q1 → ker π is such that AQ1φ = φ̇ +
X0[Lτ∗(φ)− φ̇(0)]. Using first terms of the Taylor expansion
we have

Ψ (0)F̃(Φx+y, µ) ≈ 1

2! f 1
2 (x, y, µ)+ 1

3! f 1
3 (x, y, µ)

(I − π)X0 F̃(Φx+y, µ) ≈ 1

2! f 2
2 (x, y, µ)+ 1

3! f 2
3 (x, y, µ)

(55)

where f 1
j (x, y, µ) and f 2

j (x, y, µ) are homogeneous poly-

nomials in (x, y, µ) of degree j with coefficients in C
2,

ker π , respectively. Therefore, (54) can be written as

ẋ = Bx +
∑
j≥2

1

j ! f 1
j (x, y, µ)

ẏ = AQ1 y +
∑
j≥2

1

j ! f 2
j (x, y, µ)

(56)

Since the nonresonance conditions relative toΛ0 are satis-
fied, the normal form theory (Faria and Magalháes 1995a,b)
implies that the center manifold locally is given by y = 0

and the normal form of (42) on this center manifold of the
origin at µ = 0 is given by

ẋ = Bx + 1

2!g1
2(x, 0, µ)+ 1

3!g1
3(x, 0, µ)+ h.o.t. (57)

where g1
2,3(x, 0, µ) are the second and third order terms in

(x, µ), respectively, and h.o.t stands for higher order terms.
In what follows, we explicitly derive them.

Let V 3
j (C

2) be the homogeneous polynomials of degree j

in 3 variables, x1, x2, µ, with coefficients in C
2, and let M1

j

denote the operator from V 3
j (C

2) into itself defined by

(M1
j p)(x, µ) = Dx p(x, µ)Bx − Bp(x, µ),

where p ∈ V 3
j (C

2). Then, since B is the 2 × 2 diagonal
matrix, it follows from Faria and Magalháes (1995b) that

V 3
j (C

2) = Im(M1
j )⊕ Ker(M1

j ), g1
j (x, 0, µ) ∈ Ker(M1

j )

and

Ker(M1
j ) = span

{
xq1

1 xq2
2 µ

l ek : q1λ1 + q2λ2 = λk,

k = 1, 2, q1, q2, l ∈ N0, q1 + q2 + l = j
}

where λ1 = iΩ , λ2 = −iΩ and {e1, e2} is the canonical
basis of R

2. Hence,

Ker (M1
2 ) = span

{(
x1µ

0

)
,

(
0
x2µ

)}

Ker (M1
3 ) = span

{(
x2

1 x2
0

)
,

(
x1µ

2

0

)
,

(
0
x1x2

2

)
,

(
0
x2µ

2

)}
(58)

Since f ′′(0) = 0, by (55), we have

1

2! f 1
2 (x, 0, µ) = Ψ (0)Lµ(Φx)

=
(

uT

uT

)
(Lµ(φ1)x1 + Lµ(φ2)x2)

and the second order terms in (x, µ) of the normal form on
the center manifold are given by

1

2
g1

2(x, 0, µ) = 1

2
Proj

Ker(M1
2 )

f 1
2 (x, 0, µ)

= Proj
Ker(M1

2 )

(
uT

uT

)
(Lµ(φ1)x1 + Lµ(φ2)x2)

Note that

Lµ(φ1) = iµω0v, Lµ(φ2) = −iµω0v

Thus

1

2
g1

2(x, 0, µ) =
(

A1x1µ

Ā1x2µ

)
with A1 = iω0(u

T v).

From (51) and (52), we have

A1 = 4iω0û. (59)
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Next we compute the cubic terms g1
3(x, 0, µ) appearing

in (57). We first note that

1

3!g1
3(x, 0, µ) = Proj

Ker(M1
3 )

1

3! f̃ 1
3 (x, 0, µ)

= 1

3!ProjS f̃ 1
3 (x, 0, 0)+ O(|x |µ2)

for

S = span

{(
x2

1 x2

0

)
,

(
0
x1x2

2

)}

where 1
3! f̃ 1

3 (x, 0, µ) denotes the third order terms after the
computation of the normal form up to the second order terms.
It is sufficient to compute only ProjS f̃ 1

3 (x, 0, 0) for the pur-
pose of determining the generic Hopf bifurcation. Since
f ′′(0) = 0, implying f 1

2 (x, y, 0) = 0, we can deduce
that, after the change of variables that transformed the qua-
dratic terms f 1

2 (x, y, µ) of the first equation in (56) into
g1

2(x, y, µ), the coefficients of third order at y = 0, µ = 0
are still given by 1

3! f 1
3 (x, 0, 0), i.e.,

1

3! f̃ 1
3 (x, 0, 0) = 1

3! f 1
3 (x, 0, 0)

Under the condition (4), we have F(ϕ) = F3(ϕ)+ h.o.t.,
where F3 is given by the first term in the r.h.s. of (44). Thus,

1

3! f̃ 1
3 (x, 0, 0) = 1

3! f 1
3 (x, 0, 0) = Ψ (0)F3(Φx, τ∗)

= 1

3!τ∗ f ′′′(0)
(

uT

uT

)

×

⎛
⎜⎜⎝

a12(x1v2 + x2v2)
3 + c(x1v4e−iΩ

+x2v4eiΩ)3a21(x1v1 + x2v1)
3

a12(x1v4 + x2v4)
3 + c(x1v2e−iΩ

+x2v2eiΩ)3a21(x1v3 + x2v3)
3

⎞
⎟⎟⎠

We have

1

3!g1
3(x, 0, 0) = 1

3!ProjS f̃ 1
3 (x, 0, 0)

=
(

A2x2
1 x2

Ā2x1x2
2

)

where

A2 = 1

2
τ∗ f ′′′(0)

(
a12u1v2|v2|2 + a21u2v1|v1|2

+ a12u3v4|v4|2 + a21u4v3|v3|2
+ c(u1v4|v4|2 + u3v2|v2|2)e−iω∗

)
This together with (51) and (52) yield

A2 = 1

2
f ′′′(0)τ∗‖v‖2(1 + iω0)u1. (60)

Thus, the normal form (57) becomes

ẋ = Bx +
(

A1x1µ

Ā1x2µ

)
+
(

A2x2
1 x2

Ā2x1x2
2

)

+O
(
|x |µ2 + |x4|

)
, (61)

where A1 and A2 are defined by (59) and (60), respectively.
Introducing polar coordinates (
, ξ): (x2 + x1)/2 = 
 cos ξ ,
(x2 − x1)/2 = 
 sin ξ , we obtain the normal form (22).

Appendix D: Proof of Lemma 4

From (51), (52) and (27), we have

ρ(�(v)) =
{−�(v) for ∆+ = 0

�(v) for ∆− = 0

ρ(�(v)) =
{−�(v) for ∆+ = 0

�(v) for ∆− = 0

Consequently,

ρ(x1ε1(t)+ x2ε2(t)) =
x1

[
cos

(
2π

ω
t

)
ρ(�(v))− sin

(
2π

ω
t

)
ρ(�(v))

]

+x2

[
sin

(
2π

ω
t

)
ρ(�(v))+ cos

(
2π

ω
t

)
ρ(�(v))

]

=
{−(x1ε1(t)+ x2ε2(t)) for ∆+ = 0

x1ε1(t)+ x2ε2(t) for ∆− = 0

and

x1ε1(t + θ)+ x2ε2(t + θ)

= x1

[
cos

(
2π

ω
t

)
cos

(
2π

ω
θ

)

− sin

(
2π

ω
t

)
sin

(
2π

ω
θ

)]
�(v)

− x1

[
sin

(
2π

ω
t

)
cos

(
2π

ω
θ

)

+ cos

(
2π

ω
t

)
sin

(
2π

ω
θ

)]
�(v)

+ x2

[
sin

(
2π

ω
t

)
cos

(
2π

ω
θ

)

+ cos

(
2π

ω
t

)
sin

(
2π

ω
θ

)]
�(v)

+ x2

[
cos

(
2π

ω
t

)
cos

(
2π

ω
θ

)

− sin

(
2π

ω
t

)
sin

(
2π

ω
θ

)]
�(v)

=
(

x1 cos

(
2π

ω
θ

)
+ x2 sin

(
2π

ω
θ

))
ε1(t)

+
(

−x1 sin

(
2π

ω
θ

)
+ x2 cos

(
2π

ω
θ

))
ε2(t)
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Thus in order for the following equality

ρ(x1ε1(t)+ x2ε2(t)) = x1ε1(t + θ)+ x2ε2(t + θ) (62)

to hold, we must have, for ∆+ = 0,

x1 cos

(
2π

ω
θ

)
+ x2 sin

(
2π

ω
θ

)
= −x1

−x1 sin

(
2π

ω
θ

)
+ x2 cos

(
2π

ω
θ

)
= −x2

and, for ∆− = 0,

x1 cos

(
2π

ω
θ

)
+ x2 sin

(
2π

ω
θ

)
= x1

−x1 sin

(
2π

ω
θ

)
+ x2 cos

(
2π

ω
θ

)
= x2

Thus (62) holds if and only if

θ =
(

k + 1

2

)
ω, for ∆+ = 0, or

θ = kω, for ∆− = 0, or

x1 = x2 = 0, otherwise

where k ∈ Z. This completes the proof.

Appendix E: Proof of Lemma 5

According to Golubitsky et al. (2003), R is an absolutely
irreducible representation of Γ. It follows from (50) that

Ker∆(τ∗, iω0) = {(y1 + iy2)v; y1, y2 ∈ R}
Define

J ((y1 + iy2)v) = (y1, y2)
T

Clearly, J : Ker∆(τ∗, iω0) ∼= R
2 is a linear isomorphism.

Note that

ρ((y1 + iy2)v) = (y1 + iy2)ρ(v)

=
{−(y1 + iy2)v for ∆+ = 0
(y1 + iy2)v for ∆− = 0

Consequently,

J [ρ((y1 + iy2)v)] = ρ[J ((y1 + iy2)v)]
which completes the proof.
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