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Abstract The ultimate navigation efficiency of mobile
robots in human environments will depend on how we will
appraise them: merely as impersonal machines or as human-
like agents. In the latter case, an agent may take advantage of
the cooperative collision avoidance, given that it possesses
recursive cognition, i.e., the agent’s decisions depend on the
decisions made by humans that in turn depend on the agent’s
decisions. To deal with this high-level cognitive skill, we pro-
pose a neural network architecture implementing Prediction-
for-CompAction paradigm. The network predicts possible
human—agent collisions and compacts the time dimension
by projecting a given dynamic situation into a static map.
Thereby emerging compact cognitive map can be readily
used as a “dynamic GPS” for planning actions or mental
evaluation of the convenience of cooperation in a given con-
text. We provide numerical evidence that cooperation yields
additional room for more efficient navigation in cluttered
pedestrian flows, and the agent can choose path to the tar-
get significantly shorter than a robot treated by humans as
a functional machine. Moreover, the navigation safety, i.e.,
the chances to avoid accidental collisions, increases under
cooperation. Remarkably, these benefits yield no additional
load to the mean society effort. Thus, the proposed strategy
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is socially compliant, and the humanoid agent can behave as
“one of us.”
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Compact cognitive maps - Dynamic GPS - Decision making -
Nonlinear dynamics

1 Introduction

Flexible and efficient navigation in dynamically changing
situations is a key step toward developing artificial agents
capable of sharing with people the same social environment.
While the electromechanical platforms of modern robots
advance quite rapidly, their cognitive abilities remain rela-
tively limited. This restricts significantly the robot deploy-
ment in our daily life. There is a certain lack of mathemati-
cal models simulating the human-robot cooperation when
the robot moves through a space structured by the activ-
ity of humans (Trautman et al. 2013). Existing approaches
can be roughly subdivided into three main classes: (i)
heuristic deterministic algorithms, (ii) probabilistic mod-
els, and (iii) neural networks mimicking cognitive processes
in living beings. The latter approach is relatively new and
less explored. However, growing neurophysiological data
encourages modeling natural cognition from the first bio-
physical principles (Schmidt and Redish 2013).

The cooperation among human pedestrians has been ini-
tially addressed by means of heuristic arguments. Deter-
ministic models simulating interaction among humans in
the framework of self-driven many-particle systems repro-
duced some phenomena of self-organization and disasters
observed in human crowds (Helbing and Molnar 1995; Hel-
bing et al. 2000; Dyer et al. 2008). In particular, Mous-
said et al. (2011) recently proposed a simple multi-agent
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model based on two empirical observations: In normal con-
ditions, humans try to maintain comfortable velocity and fol-
low straightforward directions to the target but keeping pru-
dent distance with obstacles. The model reproduces collec-
tive collision avoidance, formation of unidirectional lanes,
and stop-and-go waves. However, the local decision mak-
ing behind such algorithms may frequently lead to subopti-
mal behaviors and unnecessary random maneuvers in situa-
tions without feasible solutions (Conn and Kam 1998). Other
models exploit the idea of creating potential fields on the
basis of proximity among pedestrians and rapid replanning.
They provide suitable trajectories in low-density crowds
(Svenstrup et al. 2010), but if the environment surpasses a
certain complexity level, there appears the “freezing” robot
problem when all forward paths are considered unsafe (Traut-
man and Krause 2010). Then, a probabilistic model simulat-
ing the joint collective avoidance can “make” room for safe
trajectories (Trautman et al. 2013). For a similar purpose,
Kuderer et al. (2012) used empirical human’s trajectories for
fitting a model of the probability distribution that underlies
human navigation behavior.

Heuristic algorithms and probabilistic models enlight-
ened the pivotal role of cooperation, but they did not tackle
the problem of how cognition appears. A neural network
approach simulating cognition and cooperation as an emerg-
ing property (i.e., not rule-imposed) has been significantly
less explored. Existing neural network models are mostly
devoted to imitation of specific human actions and compre-
hension of human intentions (Dillmann et al. 2004). Archi-
tectures relying on a bottom-up approach to robot navigation
still show limited cognitive abilities (Schilling et al. 2013).
Besides, existing neural networks mainly deal with noncoop-
erative navigation (Villacorta-Atienza et al. 2010; von Hun-
delshausen et al. 2011).

In this work, we study how a neural network generating so-
called compact cognitive maps supports cognitive processes
that enable global decision making for navigation in social
environments. In order to dissect the problem into basic
building blocks, we consider two opposite scenarios: coexis-
tence of robot with humans (no collaboration from humans
is expected) and cooperation (both the robot and humans
change trajectories to avoid collisions). In the latter case, the
problem is equivalent to the cooperation of an agent possess-
ing Theory of Mind or ToM (Premack and Woodruff 1978)
that considers other agents as also having ToM. Then, recur-
sive cognition emerges: an action of an agent will depend
on decisions made by other agents that in turn depend on the
decisions made by the agent and so on (Dennett 1987). There-
fore, a neural network exhibiting recursive cognition should
encapsulate the dynamics of decision-making processes of
similar or higher complexity.

Here, we show that compact cognitive maps support recur-
sive cognition, which leads to significantly different per-
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ception and behaviors both in structured and unstructured
crowds. We conclude that, in general, cooperation offers
significant benefits to the robot. Remarkably, these benefits
assume no additional load to the society effort, i.e., under
cooperative navigation, the agent does not destabilize the
society and can behave as “one of us.”

1.1 Prediction-for-CompAction paradigm (PfCA)

In the last decades, diverse experimental findings provided
insight into the neural mechanisms of cognition. It has been
shown that for navigation in space animals use a GPS-like
abstract representations of the environment, called cognitive
maps (O’Keefe and Nadel 1978; Schmidt and Redish 2013).
A cognitive map contains critical information for planning
movements in space, such as the subject location (codified by
place cells), objects obstructing free ways (boundary cells),
and space metric (grid cells) (Pfeiffer and Foster 2013). This
concept has been successfully used for robot navigation, but
mostly in static environments (Franz and Mallot 2000; Meyer
and Filliat 2003).

Growing experimental evidence suggests that the neural
structures generating cognitive maps (e.g., the hippocampus
and medial prefrontal cortex) also participate in the repre-
sentation of dynamic situations. For instance, place cells also
encode speed, turning angle, and direction of moving objects
(Ho et al. 2008). At larger scale, chemical damage of the rat
hippocampus impairs avoidance of moving obstacles, with no
effect on other critical abilities (Telensky et al. 2011). Thus,
in mammals, cognition of dynamic situations is built over
cognitive maps and involves coordinated network activity of
entire brain areas.

In order to generalize the cognitive maps to dynamic envi-
ronments, recently we have proposed an approach, called
Prediction-for-CompAction (PfCA) (Villacorta-Atienzaet al.
2010). The PfCA postulates that our brain does not explic-
itly code the time dimension of dynamic situations. Instead,
it forecasts locations where collisions with real obstacles
may occur and then transforms them into effective obsta-
cles. We note that in static environments, effective obstacles
coincide with real ones and the compact cognitive maps are
naturally reduced to the ordinary cognitive maps (Villacorta-
Atienza et al. 2010). Therefore, the compact cognitive maps
extend the properties of ordinary cognitive maps to dynamic
situations. They act as a dynamic GPS, providing us with
the information required for navigation in time-changing
situations.

1.2 Two complementary concepts of navigation in social
environments

As we mentioned above, there exist two navigational scenar-
ios: coexistence and cooperation. As we will show below,
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they are complementary and the choice between them
depends on the context.

1.2.1 Coexistence: machine avoids us (AvUs)

A robot regarded by humans merely as a functional machine
should not expect any cooperation from people during its
ordinary tasks. The machine must move among humans
without disturbing us. We will call such a noncooperative
behavioral paradigm a machine Avoids Us (AvUs). Most
of the contemporary robot navigation strategies implicitly
implement AvUs, assuming that the robot must “do all the
work” to navigate safely, avoiding collisions (Philippsen and
Siegwart 2003; Ziebart et al. 2009; Villacorta-Atienza et al.
2010).

Based on the PfCA concept, in our previous works, we
have proposed a neural network for cognitive navigation in
noncooperative but dynamic situations (Villacorta-Atienza
et al. 2010; Makarov and Villacorta-Atienza 2011). We
assumed that the time evolution of the environment cannot
be altered by the agent’s behavior. Thus, any recursive inter-
action between the agent and its environment, e.g., coop-
eration or competition, has been left outside the model. In
Sect. 2, we will briefly revisit our previous works and dis-
cuss key points of the PfFCA concept and compact cognitive
maps.

1.2.2 Cooperation: machine cooperate with us (CoUs)

The AvUs strategy is sensible for robots with limited embod-
ied cognition. However, this paradigm contrasts with real
human behavior. People are predisposed to ascribe a mind to
artifacts exhibiting a certain degree of social connections and
human likeness (Waytz et al. 2010). An artificial agent look-
ing, moving, and behaving as a human may elicit cooperation,
so the robot-society loop closes. At the risk of a collision, a
human pedestrian will cooperate with a humanoid agent and
deviate from his initial trajectory. We will call this paradigm
a machine Cooperates with Us (CoUs).

A remarkable difference of CoUs from AvUs strategy is
that the former requires recursive higher-level cognition. Ear-
lier a recursive ToM has been used for algorithmic modeling
of collision avoidance (Takano and Arita 2006). In particular,
it has been shown that the algorithm performance depends
on the level of recursion. In this work, for the first time,
we introduce the human—robot cooperation in the concept of
compact cognitive maps and provide a neural network basis
for ToM recursion (Sect. 3). Then, using numerical simula-
tions, we show that the network supports robot—human recur-
sive cognition (Sect. 4). Finally, in Sect. 5, we discuss the
results.

2 Cognition through compact cognitive maps

Neural network implementation of cognition of static and
dynamic situations may differ significantly. In this context,
the concept of compact internal representation provides an
elegant way to unify the description of both static envi-
ronments and dynamic situations (Villacorta-Atienza et al.
2010).

2.1 Cognitive maps for static environments

Let us consider a situation sketched in Fig. la. A walking
humanoid agent comes across two obstacles: a human and a
chair. Both obstacles are immobile, and therefore, the agent is
in a static environment. Then, the navigation can be fulfilled
by using standard cognitive maps [see e.g., (Franz and Mallot
2000)]. Earlier we provided a neural network implementation
of this general concept (Villacorta-Atienza et al. 2010).

In real space, the chair occupies some space, whereas
the agent and the human are represented by their personal
areas (Hall 1963) (Fig. 1b, left panel). To represent “men-
tally” the real space, we now introduce a 2D neural network,
an (n x n)-lattice of locally coupled neurons (Fig. 1b, right
panel). This, so-called causal neural network (CNN, “Appen-
dix A”), receives as an input the spatial configuration of the
real space. In the network space
D={Gj): i,j=1,2,...n} (1)
the agent is reduced to a single neuron, while its dimension is
properly added to the obstacles’ dimensions, thus proportion-
ally increasing their sizes (Lozano-Perez and Wesley 1979).

In the network space D, the agent has to create a cogni-
tive map of the environment. It is fulfilled by virtual simula-
tion of all possible agent’s movements using a wave process.
Since the agent can walk in any direction, its virtual posi-
tions (locations occupied by virtual agents) at the next time
step will form a circle with the agent in the center (Fig. 1c).
The radius of this circle will grow with time as virtual agents
will move away from the center. Thus, the process of mental
exploration of the environment can be described by a solitary
wave propagating in the network outward the agent’s initial
position. The wavefront detects all obstacles, rounds them,
and hence finds possible paths among them. We note that this
procedure is computationally/biologically efficient, since the
mental exploration is achieved in a single run independently
on the complexity of the environment.

Each neuron (i, j) records the time instants ¢;; when the
wavefront passes through it. Thus, we create a 2D potential
profile

c:D—>R (2)
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Fig. 1 Cognition through compact cognitive maps in a static environ-
ment. a A humanoid agent (green circle) walks avoiding collisions with
a static human (black circle) and a chair (black square). b The situa-
tion is mapped from the real space (leff) to the network space (right)
described by a 2D neural lattice. ¢ A wavefront propagating in the lattice
simulates multiple agent’s trajectories (three snapshots at mental time
T = 11,2,3). The front explores the environment and creates a gradient

or a cognitive map (Fig. 1d, contour curves). Going up the
gradient V¢ (transversally from red to blue curves), the
agent can follow one of the virtual trajectories (Fig. 1d,
blue arrowed curves). These trajectories ensure collision-
free walking in the real space. Figure le illustrates one of
the possible ways of navigation in this static environment.

2.2 Compact cognitive maps for dynamic situations

Figure 2a sketches a situation similar to that considered in
Fig. 1a. However, now the human is going toward the chair,
and therefore, the agent is in a dynamic situation, which chal-
lenges standard cognitive maps.

The core of the Prediction-for-CompAction paradigm
relies on two basic elements: (i) prediction of the movements
of objects and (ii) simulation of all possible agent’s trajecto-
ries. A special neuron network matches these processes and
generates a compact cognitive map. Functionally, this map is
equivalent to a standard cognitive map, i.e., it is a static struc-
ture given by Eq. (2), which allows for tracing collision-free
trajectories.

2.2.1 Prediction of object trajectory

To predict trajectories, we use a dynamic memory imple-
mented in a so-called trajectory modeling neural network
(TMNN, “Appendix A.1”) (Villacorta-Atienza et al. 2010;
Makarov and Villacorta-Atienza 2011).
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profile. d Final cognitive map with effective obstacles (in black). Going
up the gradient, the agent can reach the target avoiding obstacles (blue
arrowed lines). e Example of navigation. The agent follows one of the
possible trajectories (superimposed frames with increasing green inten-
sity correspond to progressively increasing time instants) (color figure
online)

A trajectory of a moving object (e.g., of the human in
Fig. 2a) is a smooth function of time s : R — R? that can be
approximated by the Taylor expansion [similar to the spline
method used by Kuderer et al. (2012)]:

Vi 2
s(t) = s(0) + 5 (0) + % + 0 3)

Such an assumption is valid, at least, for inanimate objects
and, as we will see below, for humans under the AvUs par-
adigm. The TMNN predicts future object’s locations within
the model (3), S, by iterating a linear map (Wkso)kEN, where
W is a matrix describing couplings among neurons and
so = (s(0), s'(0), s”(0)7T is the vector of initial momenta
of the object (i.e., position, velocity, and acceleration). Then,

§ =5§(t;s0) 4)

is the trajectory in the network space D and mental time
T = kh, where h is the time step and k € N.

For correct predictions, the TMNN must be trained,
i.e., the connectivity matrix W must be properly tuned
(Villacorta-Atienza et al. 2010). Once the learning is finished,
the TMNN is ready to predict the movement of objects solely
based on their positions acquired by the sensory system at the
present (t = 0) and two time instants in the past (t = —2h
and ¢t = —h). Such predictions are quite robust against sen-
sory noise (Villacorta-Atienza and Makarov 2013).
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Fig. 2 Cognition through compact cognitive maps in a dynamic situ-
ation. a Same as in Fig. 1a, but now the human walks toward the chair.
b Simulation of the agent’s movements (wavefront) and matching them
with obstacles’ movements (human’s trajectory, dashed line, is pre-
dicted by the TMNN). Collisions of the wavefront and virtual obstacles

2.2.2 Simulation of agent’s movements and matching them
with predicted trajectories of objects

As in the static case, the CNN simulates all possible move-
ments of the agent by a wavefront (Fig. 2b). However, since
now the human moves in the environment, his trajectory,
S(7), is predicted by the TMNN, and expected future posi-
tions are fed to the CNN (compare Figs. 1¢ vs. 2b). Collisions
of the wavefront and virtual objects in the network space
correspond to possible collisions of the agent with objects in
the real space. In the CNN, these locations delimit effective
obstacles (Fig. 2b; “Appendix A.3”).

Once the network space has been explored, the dynamic
situation is represented as a static map (Fig. 2c¢):
c=c(x;8), xXeD (®)]
The mobile (human) and immobile (chair) objects are
replaced by the corresponding effective obstacles (joint black
area). The gradient profile (contour curves from red to blue)
contains a virtually infinite set of pathways that can be
followed by the agent (Fig. 2c shows two representative
examples):

d =d(x; Vo) (6)
Note that by simply avoiding static effective obstacles in

c(x), the agent avoids collisions with the human and the
chair. Thus, the selected trajectory can be converted to motor

produce effective obstacles. ¢ Compact cognitive map (the time dimen-
sion has been compacted) with static effective obstacle (black). Going
up the gradient (blue arrowed curves) ensures collision-free walking. d
Agent navigating in the real space (color figure online)

actions, and the agent can navigate in the real space following
the corresponding path, d(¢), (Fig. 2d).

Compact cognitive maps generalize the traditional con-
cept of cognitive maps extending it to time-changing sit-
uations. They compress spatiotemporal information about
where and what may happen into static structures. The
decision-making scheme can be represented as a unidirec-
tional chain:

s@) — 8(t) — c(x) — d(x) — d(@)
(N

We note that at first glance the situation presented
in Fig. 2a may be considered delusively simple. Some
geometric-based methods could provide solutions to this path
planing problem (Moussaid et al. 2011). However, in the
presence of several moving objects, the problem becomes
practically unsolvable for geometric algorithms or they
would provide suboptimal solutions. Indeed, any trajectory
deviation caused by avoidance of the first obstacle will induce
changes in the configuration of possible collisions with the
second obstacle, etc. Thus, the calculation diverges. Nev-
ertheless, our neural network approach efficiently resolves
navigation problems of practically arbitrary complexity.!

I Examples, simulations, and videos are available at http://www.mat.
ucm.es/%7Evmakarov/research.php.
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3 Cognitive navigation in social environments

The agent’s behavior in an environment with other cogni-
tive agents (humans, animals, and/or robots) will depend on
whether or not it can elicit cooperation of other parties.

3.1 Machine avoids us (AvUs): noncooperative navigation

An AvUs agent expects no cooperation from humans and
hence should move among people without disturbing them,
“doing all the work™ to navigate safely. Thus, an AvUs agent
can consider humans as “inanimate” but moving objects, i.e.,
agent’s decisions/actions, d(t), produce no feedback to the
human’s trajectory, s(z).

Figure 3aillustrates an AvUs agent approaching a human.
The agent assumes noncooperative behavior of its human
partner. Thus, the predicted human’s movement depends
uniquely on the initial conditions and will not be affected
by the agent’s decisions (given that the human will not sud-
denly change the trajectory). Thus, the basic Prediction-for-
CompAction concept described in Sect. 2.2 [information flow
(7)] is sufficient to resolve this situation.

Figure 3b shows the resulting compact cognitive map (the
process of creation is analogous to that shown in Fig. 2b). The
map contains a relatively big effective obstacle (black area)
representing possible collisions with the human. Thus, the
agent must steer around the effective obstacle to guarantee
safety of the human and itself (Fig. 3b, blue arrowed curve).

3.2 Machine cooperates with us (CoUs): cooperative
navigation

Let us now assume that humans are predisposed to cooperate
with a properly looking and behaving humanoid agent. At the
risk of a collision, both the human and the agent will make
a step out from their straight trajectories thus helping each
other (Fig. 4a).

The original Prediction-for-CompAction paradigm
assumes the feedforward information flow (7). However, now
the agent’s decision (i.e., the chosen trajectory d (¢)) will have
a feedback to the movement of the human, s = s(¢; d(t)),
which closes the information loop through the environment,
and the process becomes recursive:

s(t)y — s(z) — c(x) — dx) — d()

environment

®)

This significantly challenges cognition. Indeed, the agent
should simulate all possible decisions (i.e., it should cre-

@ Springer

ate ¢(x) and then d(x) on the basis of §(7)). In turn, each
decision, d(t), will provoke a reaction of the human, thus
changing s(¢) and hence the predicted trajectory s(7). Then,
this new prediction should be taken into account to create
new c(X), etc.

To cope with recursive cognition, the agent must be able
to model possible humans’ actions using an internal loop:

s(t)y — s(r) — c(x) — dx) — d()
internal loop

environment
9

This internal loop should be flexible enough to account for
the great variety of possible situations, according to the law
of requisite variety by Ashby (1968).

3.2.1 Heuristic model of human perception-for-action

Earlier studies have shown that during walking humans per-
ceive possible obstacles within certain visual angle and can
estimate the time to collision (Schrater et al. 2000; Hop-
kins et al. 2004). If a CoUs agent crosses the reaction zone
(Fig. 4b), then the human tends to cooperate. To describe
phenomenologically the human’s behavior, we adopt the fol-
lowing heuristics [similar to Guy et al. (2011)]:

— A human will cooperate in collision avoidance only if
another agent crosses his reaction zone under the angle
Qerss € (—5°, 5°) with the main visual axis (dashed line
in Fig. 4b). Otherwise, no cooperation is expected, i.e.,
if |@erss| = 5°, then the ,will be forced to behave like an
AvUs one.

— Under cooperative behavior, to avoid collision humans
change their velocity vector: Vpew = Voig + W, where
Vold 1s the initial velocity and w is the normal vector to
Voud (J|W] = % [Iv]l, w-v = 0). The direction of w depends
on the movement of the other agent.

We note that the second heuristic allows humans to keep the
velocity in the target direction, which is useful, e.g., when
moving in a group.

3.2.2 Compact cognitive maps under CoUs paradigm

In the network space, the agent’s dimension is reduced to a
single neuron (Fig. 4c, green point), while the lengths of the
human’s reaction, d, and personal, r, zones increase, accord-
ingly. In agreement with the Prediction-for-CompAction
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A NONCOOPERATIVE NAVIGATION

Fig. 3 Noncooperative navigation (AvUs paradigm). a An agent
expects no cooperation from a human. At the risk of a collision, the
agent steps away (light green arrow), while the human goes straightfor-

A COOPERATIVE BEHAVIOR

B AGENT'S ENVIRONMENT

B COMPACT COGNITIVE MAP

ward (black arrow). b Compact cognitive map. The effective obstacle
(black area) forces the agent to steer its trajectory (blue arrowed curve)
(color figure online)

E COMPACT COGNITIVE MAP

CoUs human
e®
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NETWORK SPACE
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Fig. 4 Cooperative navigation (CoUs paradigm). a Same as Fig. 3a,
but now the human cooperates in collision avoidance (light gray arrow).
b Cooperation occurs only if the CoUs agent enters the human’s reac-
tion zone under a proper angle. ¢ The agent can go either to the right,
Rcous, or to the left, Lcous, expecting the human response Ryym and
Lhum, respectively. The intersection of two personal zones forms a vir-
tual obstacle to be avoided (area delimited by black solid curve). d The

concept, a wavefront propagating in the network space simu-
lates all possible agent’s decisions. The wavefront will cross
the human’s reaction zone both from the right and from the
left of the midline. This means that the agent can avoid the
human either from the right or from the left (Fig. 4c, trajec-
tories Rcous or Leous, respectively). In the Reous case, the
human is expected to turn right, Ryym, whereas in the Lcous
case, he will go to the left, Lyyn,. Since the human at the next
time instant can occupy either of the two positions (Fig. 4c,

process of mental exploration of possible movements (note decreasing
size of the virtual obstacle). e Cooperation reduces the effective obstacle
in the compact cognitive map (compare to Fig. 3b) and enables more effi-
cient navigation. f Example of navigation (superimposed frames with
increasing color intensity correspond to progressively increasing time
instants) (color figure online)

red and blue circles), there appears uncertainty in the inter-
nal representation. The overlapping part of the corresponding
personal zones (area delimited by black solid curve) creates
a virtual obstacle that the agent must avoid. Note that the
remaining part of each personal zone is avoided due to the
human-agent cooperation.

Figure 4d illustrates the process of generation of a com-
pact cognitive map. A wavefront propagates outwards the
agent’s initial position. At the beginning (t = 7o, no inter-
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action with the reaction zone), the human is represented as
a moving circular obstacle, according to his personal zone.
When the wavefront reaches the reaction zone, the human
starts cooperating. Thus, the circular obstacle is split into
two circles separating along the time course. This way the
agent simulates the human responses adjusting §(7) accord-
ing to d(7) [internal loop in (9)]. Then, the virtual obstacle
to be avoided is the intersection of these circles, which pro-
gressively diminishes (Fig. 4d, T = 712,3).

Figure 4e shows the final compact cognitive map. It con-
tains a single effective obstacle (black area), which is signifi-
cantly smaller than that in the case of the AvUs agent (Figs. 4e
vs. 3b). Thus, the CoUs agent takes advantage of the human
cooperation and gets more room for walking (blue arrowed
curve). Figure 4f shows an example of the CoUs navigation
in the real space.

4 Navigation in crowd: performance gain due to
cooperation

In order to study the performance gain and drawbacks pro-
vided by cooperation, we simulated navigation of AvUs and
CoUs agents in different human environments. In each situ-
ation, we repeated internal simulations and decision making
according to the two paradigms (Sect. 3). Then, we analyzed
and compared the compact cognitive maps and agents’ tra-
jectories obtained from them.

4.1 Benefits of CoUs strategy: moving against cluttered
pedestrian flow

Letus model a situation frequently observed in the real world:
An agent goes along a corridor against a pedestrian flow
coming out of a door (Fig. 5a, circles correspond to per-
sonal areas). We simulated the pedestrian flow as a cluttered
bunch of humans going in the same direction. The pedestri-
ans’ velocities increase as they move away from the door.
Such behavior is natural when people have room to move
(Helbing and Molnar 1995). Besides, humans tend to opti-
mize their trajectories and follow straight lines (Trautman
and Krause 2010), unless they cooperate for avoiding colli-
sions (Sect. 3.2.1).

Figure 5b shows the compact cognitive maps and paths
to the door found by the AvUs and CoUs agents. The two
paradigms differ significantly in the representation of the
dynamic situation. In general, effective obstacles in the AvUs
map are bigger than in the CoUs one (Fig. 5b, left vs. right).
Few big effective obstacles in the CoUs map appear due to
violation of the condition for cooperation (Sect. 3.2.1). In
this case, the CoUs strategy is reduced to the AvUs one, and
hence, we get similar effective obstacles in both maps. Thus,
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(CoUs vs. AvUs paradigm): a Initial situation. An agent (green circle)
goes along a corridor to a door against pedestrian flow (black circles).
Arrows indicate the pedestrians’ velocities. b Compact cognitive maps
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Black areas correspond to effective obstacles. Arrowed curves show
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the CoUs agent gets more room for movement and, therefore,
can plan more efficient trajectories to the door.

Figure 5c illustrates representative trajectories for both
strategies. To avoid collisions, the AvUs agent steers abruptly
on its path to the door (left subplots). In the same situation,
the CoUs agent takes advantage of the human’s cooperation.
Its trajectory (right subplots) is significantly straighter. Note
how pedestrians cooperate by deviating from straight lines
and leaving more room to the CoUs agent.

To quantify the performance of the AvUs and CoUs strate-
gies and to get deeper insight, we separated agent’s trajec-
tories into two subsets: trajectories reaching the middle part
of the door (central door segment, 1/2 width) and reaching
the door’s extrema (left and right door segments, 1/4 width
each). Then, we evaluated three performance measures (see
“Appendix B”).

Trajectory length Figure 5d (left) shows the mean normal-
ized trajectory lengths for the AvUs and CoUs agents. As
expected, the CoUs agent in general follows shorter paths
to the door relatively to the AvUs. Moreover, the difference
is statistically significant if the agents target the door center
[p = 0.04; here and below, we used ¢ test (Winter 2013)],1i.e.,
if they try to take the shortest way to the door, which favors
cooperation and provides higher benefit. If the agents decide
to go around the crowd to either of the door extrema, the
difference between the AvUs and CoUs strategies decreases
(p = 0.254). It occurs due to low chances of cooperation
with pedestrians on such a route.

Trajectory safety In many real situations, the choice of a
particular trajectory does not solely rely on its length, but
also includes safety as an important factor. We defined the
navigation safety as the fraction of the trajectory passing
sufficiently far away from the effective obstacles, i.e., keep-
ing the distance longer than some critical value. Figure 5d
(middle) shows the trajectory safety for the AvUs and CoUs
agents. Surprisingly, cooperation provides better navigation
safety, especially for trajectories going to the door center
(p = 0.027). We note that this is not due to the trajectory
straightness (length) but due to the reduced size of effective
obstacles (Fig. 5b).

Mean social effort Until now, we considered the perfor-
mance gain of the CoUs strategy from the agent’s viewpoint.
However, cooperation also implies elongation of trajectories
of other pedestrians. Thus, as expected, the CoUs strategy
provides benefits to the agent at the cost of inconvenience
for other pedestrians. Such a situation may be socially unsta-
ble. Thus, we measured the impact of cooperation on the
“society” as the mean trajectory elongation averaged over all
pedestrians (including the agent). In the case of targeting the
door center, the CoUs strategy produces no additional load
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Fig. 6 Cooperation can help solve complex navigation problems. a
Initial situation. An agent (green circle) goes against a compact group
of people. Arrows indicate pedestrians’ velocities. b Compact cognitive
maps created by the AvUs (left) and CoUs (right) agents. In the nonco-
operative AvUs case, an effective obstacle closes the corridor impeding
navigation. In the cooperative CoUs case blue arrowed curves indicate
two possible pathways (color figure online)

to the social effort (Fig. 5d, right, p = 0.9). However, the
social load increases (not significantly, p = 0.19) for trajec-
tories going to the door extrema. Thus, in the case of targeting
the door center (natural for human’s behavior), cooperation
provides benefits in terms of the trajectory length (time and
energy consumption) and safety with no additional load to
the society effort.

4.2 CoUs strategy can be necessary for navigation in dense
crowd

Let us now show that besides being convenient cooperation
can be necessary for successful navigation. Figure 6a illus-
trates a situation with an agent going against a compact group
of pedestrians occupying the entire width of the corridor. The
group leaves no room to an AvUs agent. Indeed, the compact
cognitive map provides no solution (Fig. 6b, left), since the
wavefront (simulating the possible agent’s movements) can-
not “leak” through pedestrians. This happens since under
mental simulation the agent’s personal area is added to the
areas occupied by other pedestrians and holes among them
disappear. The CoUs paradigm elicits cooperation. Humans
move away and leave room to the agent, enough to steer
among them (Fig. 6b, right). Thus, cooperation may be not
only beneficial but also necessary to reach the goal.

4.3 Abuse of cooperation may penalize CoUs strategy

Figure 7a shows a situation with a narrow door, which forces
pedestrians line up in a chain. Then, the AvUs agent must
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go around the crowd since effective obstacles completely
occupy the middle part of the cognitive map (Fig. 7b, left).
In the same situation, the CoUs agent can go either around or
through the crowd. Cooperation leads to significantly smaller
effective obstacles leaving holes among them (Fig. 7b, right).
Figure 7c illustrates representative examples of trajectories
performed by both agents. The CoUs agent “pushes” pedes-
trians from its way and reaches the door following practically
a straight line.

Figure 7d provides statistical properties of the AvUs and
CoUs strategies. Since the door is narrow in this case,
we made no distinction between the center and extrema.
The mean trajectory length is lower under cooperation, as
expected (Fig. 7d, left). However, this decrease is not sig-
nificant (p = 0.19). The navigation safety decreases under
cooperation, but again not significantly (Fig. 7d, middle,
p = 0.16). This occurs because trajectories can go through
the pedestrian chain and hence pass nearby humans, which
increases chances of collision. Noteworthy, the cooperative
strategy produces a statistically significant load to the social
effort (Fig. 7d, right, p = 0.02), which is not acceptable for
the robot behavior.

Thus, the cooperative CoUs strategy can lose against the
noncooperative AvUs navigation. This paradoxical situation
may occur in some particular spatial arrangements of the
crowd. Indeed, the chain arrangement (Fig. 7a) forces many
pedestrians to stand away and the CoUs agent “squeezes”
through the crowd. Humans usually do not follow such
sociopathic behavior, since it is socially not acceptable
and increases the risk of collisions with many pedestrians.
Therefore, abuse of cooperation by the CoUs agent may be
inconvenient.

5 Discussion

Artificial cognition largely deals with the comprehension of
relationships among elements in the environment. Nowadays
the theoretical concept of cognitive maps, as a mean for
understanding static situations, received strong experimen-
tal support (Schmidt and Redish 2013). However, in dynamic
situations, spatial relationships among objects evolve in time.
Therefore, the corresponding cognitive map should also
change in time, which contradicts the very concept of a map.

In this work, first we revisited the question of how the the-
ory of compact internal representation (Villacorta-Atienza
et al. 2010) can generalize the concept of cognitive maps
upon dynamic situations. The used neural architecture con-
sists of two coupled neural networks. A recurrent neural net-
work predicts positions of the obstacles for t > 0. These data
are mapped into the other 2D neuronal lattice that simulates
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what will happen if the agent will take this or that trajectory.
A wavefront propagating over the lattice collides with obsta-
cles provided by the first network and forms a static poten-
tial field surrounding “islands” of effective obstacles (Fig. 2).
Thus, a dynamic situation can be “mentally” represented as
a static structure similar to a classical map. We called this
process Prediction-for-CompAction (PfCA). The obtained
compact cognitive map serves as a dynamic GPS that enables
navigation avoiding collisions both with static and moving
obstacles. In this work, we revised the lattice dynamics [ear-
lier proposed by (Villacorta-Atienza et al. 2010)] in such a
way that the new neural network implementation makes no
a priori distinction between obstacles and targets. Thus, new
compact cognitive maps are more universal, since the same
object in a map can be assigned as a target or as an obstacle
and the agent can plan a chasing or escaping actions.

The human behavior differs significantly from the behav-
ior of inanimate but moving objects. Therefore, cognition
of situations involving humans brings another dimension of
complexity. In this case, the agent’s actions depend on cog-
nitive decisions made by humans and vice versa. Thus, the
cognitive process becomes recursive (Dennett 1987). In this
article, within the PfCA paradigm, we addressed the first level
of recursion. The agent assumes that its human partner under
the risk of a collision will deliberately change his trajectory.
Thus, the original concept of the trajectory prediction, based
solely on initial conditions (Villacorta-Atienza et al. 2010),
should be corrected for humans. Then, we equipped the agent
with an internal heuristic model of the human behavior, simi-
lar to that proposed by Guy et al. (2011). The model assumes
that a human changes the velocity vector once the agent
enters his reaction zone (Vpew = Void + W). This prediction
is introduced into the 2D neuronal lattice and, as in the inan-
imate case, a wavefront explores all possible agent’s actions
and generates a compact cognitive map describing recursive
cognition (Fig. 4). Thus, the novel PfCA theory allows for
coexistence of cognitive agents and cooperation emerges as
a product of the neural network dynamics.

In order to investigate the plausibility and performance
of the proposed theory, we simulated navigation of an agent
in different social environments. Two behavioral paradigms
have been tested: “machine avoids us” (AvUs) and “machine
cooperates with us” (CoUs). For navigation under either of
the paradigms, the agent builds a compact cognitive map.
The map structure (position and size of effective obstacles)
depends on the assumed human behavior, either cooperative
or noncooperative. We have shown that the CoUs strategy siz-
ably reduces effective obstacles comparing to the AvUs map
(Fig. 5). Therefore, in the same situation, a CoUs agent gets
more room for movement than an AvUs one. Thus, in many
realistic situations, including navigation in cluttered pedes-
trian flows, a CoUs agent can choose significantly shorter
paths to the target (and hence spend less time and energy).

Moreover, the navigation safety (i.e., chances to avoid acci-
dental collisions) increases under cooperation.

Cooperative navigation usually forces pedestrians turn
aside from their straight courses. This inevitably elongates
trajectories of all partners. The acceptable degree of coop-
eration in human society and the ensuing performance drop
depend on many factors (e.g., cultural, emotional, or environ-
mental). Then, the CoUs strategy will be socially acceptable
if its cost to human pedestrians will be reasonable (similar
to human cooperation). Thus, we measured the mean impact
of the CoUs strategy on the society, i.e., the mean elongation
of the trajectories averaged over all pedestrians including the
agent. We have shown that in unstructured, low-dense pedes-
trian flows (such as in Fig. 5), the CoUs agent produces no
additional load to the society effort. Thus, a PfCA equipped
artificial agent can behave as “one of us”.

Another advantage of the CoUs strategy appears in
extremely dense environments. It may happen that a group
of people leaves no room for passing through (Fig. 6). Then,
the AvUs strategy provides no way to the target, whereas the
cooperative behavior of people helps a CoUs agent find a
path through the bunch of people. It is worth noting that the
PfCA allows detecting situations with no solution, as, e.g.,
in Fig. 6 under AvUs. Thus, we can estimate chances of suc-
cess without taking unnecessary risks of pursuing unreach-
able targets. This is a key attribute of the global decision
making, distinguishing evolved animals from simple living
beings (Villacorta-Atienza and Makarov 2013).

Though cooperation is usually beneficial, humans do not
always exploit it. We provided an example of such a situation:
an agent going against a dense, chain-like pedestrian flow
coming from a narrow door (Fig. 7). We have shown that in
this situation, the CoUs strategy loses against the noncooper-
ative AvUs navigation. This paradoxical result occurs due to
the spatial arrangement of the crowd, which constrains many
pedestrians to give pass to the CoUs agent squeezing its way
through the crowd. Humans usually avoid such sociopathic
decision, since it highly increases the risk of collisions with
many pedestrians and is socially reproachable. Therefore, in
certain situations, cooperation may be inconvenient. Then,
prior to taking any action, an agent equipped with compact
cognitive maps could “mentally” evaluate the advantages and
risks of the CoUs and AvUs behaviors and adopt the correct
decision.

In conclusion, the proposed neural network architecture
provides cognitive skills necessary for versatile and efficient
navigation in social environments. The introduced AvUs and
CoUs navigation strategies are complementary, and their use
depends on the context. An advanced artificial agent should
test both of them and select the appropriate for each situation.
Moreover, the PfCA theory enables high-level cognitive abil-
ities like learning and memory, which is a sensible challenge
for any artificial system (Villacorta-Atienza and Makarov
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2013). Then, successful experiences can be learnt and trans-
formed into efficient automatic-like behaviors. The proposed
approach has been tested focusing on the agent’s internal
simulation and decision making. Its capacity in dealing with
uncertainty and deviation of humans from the assumed coop-
erative or noncooperative behavior is an open question left
for further studies.

Appendix A: Neural network implementing compact
cognitive maps

The main principles and details of the compact internal rep-
resentation (CIR) have been discussed elsewhere (Villacorta-
Atienza et al. 2010; Villacorta-Atienza and Makarov 2013).
Briefly, the CIR is generated by a causal neural network
(CNN) that receives as an input locations of all objects in
the arena predicted by the trajectory modeling neural net-
work (TMNN). The joint network dynamics forms effective
static elements (e.g., effective obstacles) and a potential field
¢ in the network space D, which constitute a compact cogni-
tive map. Then, the map can be used to trace trajectories to
a target.

A.1 Trajectory modeling

The TMNN implements a dynamic memory by means of a
recurrent neural network (Makarov et al. 2008). It models the
object trajectory s(¢) by a quadratic polynomial [see Eq. (3)].
In 2D space, we have two components s(t) = (x(¢), y(t)),
each of which is modeled by one TMNN. Each TMNN con-
sists of three recurrently coupled neurons with external input
k) € R3 and output n(k + 1) € R3, wherek =0,1,2, ...
is the discrete mental time (Villacorta-Atienza et al. 2010).
The TMNN dynamics is given by

£(k),
Wn k),

if |&(k)] > 6

otherwise (10)

n(k+1)=[

where W € M343(R) is the coupling matrix and § is the
tolerance constant (8§ = 1079).

The TMNN operates in two phases: learning and predic-
tion. Under learning, the TMNN receives at the input an
object trajectory &£(k) = (x(k), v(k), a()T, where x(k),
v(k), and a(k) are the position, velocity, and acceleration of
the object, respectively. Then, the interneuronal couplings
are updated according to:

Wk+1) = Wk)U — etk — DET (k — 1))
+es(k)ET (k- 1) (11)

where € > 0 is the learning rate. The learning process (11)
converges, given that € is small enough [the critical value €*
is given by Makarov et al. (2008)].
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Once the learning is deemed finished, the TMNN can
predict trajectories. The object initial moments £(0) =
(x(0), v(0), a(0)) are sent to the TMNN at k¥ = 0 and then
&(k) = 0 for k > 0. On the output, we get the predicted tra-
jectory: n(k) = WK&(0). The TMNN performance has been
tested experimentally using as moving objects mobile robots
(Villacorta-Atienza and Makarov 2013).

A.2 Causal neural network

The CNN is a 2D lattice of FitzHugh—Nagumo neurons (80 x
80 cells in numerical experiments). The lattice dynamics is
given by:

Fij = qij (f(rij) — zij +dArij), (G, j) €D
zij = e(rij — Tzij — 2) (12)

where 7;; and z;; are the membrane potential and recovering
variable of the (7, j)th neuron, respectively. Dots represent
derivatives with respect to the mental time v = hk, A is the
discrete Laplacian, and f(r) is a cubic like nonlinear func-
tion. The system (12) is considered with Neumann bound-
ary conditions. In numerical experiments, we used d = 0.2,
e =0.04,and f(r) = (—r> +4r> —2r —2)/7. The function
qij(t) describes effective objects and will be discussed in
Sect. A.3.

At the beginning, all cells are set atrest (r;; (0) = z;;(0) =
0) except one. The neuron (i, j;) corresponding to the
agent’s location has no dynamics ¢;,;, = 0 and hence
Tigj. (T > 0) = r;,;,(0) = 5 (we remind that in the net-
work space D, the agent is reduced to a single cell).

A.3 Compact cognitive map and effective objects

The TMNN predicts movements of the obstacles and targets
in the environment, while the CNN matches this information
with the process of simulation of agent’s movements.

A wavefront propagating from the agent position is gen-
erated in the CNN (see Fig. 2b). It switches cells to upstate.
The time T = ¢ when the cell (i, j) crosses a threshold
(rij(t = ¢) = ry) is stored. Thus, behind the wavefront, we
obtained a potential field {c;;} [see also Eq. (2)].

Let B(k) be a set of cells {(i, j)} € D occupied by obsta-
cles and targets at the mental time k. Then, we define the
following iterative process:

QU =%k -1DUSRK), k=1,2,...; 20)=4¢

(13)

where

§2(k) ={(G, j) € D= rij(kh) € [1,2], (i, ) € Bk}
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The set £2(k) describes effective objects (obstacles and tar-
gets) in the network space D. It is dynamically created as the
wavefront explores D. The set grows (i.e., §§2 (k) # () if the
wavefront touches an object at T = kh. Then, we define the
function ¢ (7) used in Eq. (12) as:

0, if (1, J) e L2(k)
4ij(T) = [ 1, otherwise
The cells in £2(k) will exhibit no dynamics, i.e., the effec-
tive objects are static and the wavefront slips around them
(Fig. 2b, panels 17 3).

Once the exploration of D has been finished, the created
CIR of the dynamic situation represents a compact cognitive
map (Fig. 2¢). It contains spatial relationships (a potential
field c¢) structured by static effective objects. These effective
objects contain critical information about possible collisions
of the agent and obstacles (to be avoided) or targets (to be
pursued).

A.4 Trajectory tracing

To obtain a trajectory, we use the gradient descent method.
Since compact cognitive map does not distinguish between
obstacles and targets, we should designate one (or several)
of the effective objects in the map to be a target. Then, we
start from some point at the effective target and go down the
gradient Y441 = yx — Vc. The obtained trajectory ends at
the agent’s location (the deepest part of the potential).

We note that by construction the potential c(7, j) has no
local minima, and hence, a solution always exists (Fig. 2c,
arrowed curves).

Appendix B: Measures of navigation performance
B.1 Trajectory length

Let us assume that an agent should move from a starting point

A = (xa, ya) to a target point pt = (xT, yT). On its route,
the agent follows a trajectory given by vertices { p; }lN: o> such
that po = pa and ||py — prll < € (€ is the navigation
tolerance and || - || is the Euclidean norm). Then, we quantify
the trajectory length relative to the shortest straight path to
the target:

Z Ilpi = pi- (14)

||PA — prll “

The closer the normalized length L to 1, the shorter the tra-
jectory and the higher the navigation performance (i.e., faster
arrival and smaller energy consumption).

B.2 Trajectory safety

Let d.¢ be a critical distance between the agent and obstacles
at which the navigation is considered safe. Then, we define
the measure of safety of a trajectory I” as the ratio:

card(6I")

B card(I") (15)

where

={p=&,y)el': D(p,$2) <de}

where 2 is the final set of effective obstacles, defined by
(13), and

D(p, $2) = inf |[p — p|
pes2

B.3 Mean social effort

We define the social effort as the average elongation of
the normalized trajectories of all pedestrians, including the
agent:

M
g 2L =D (16)
i=0

where M is the number of pedestrians and L; is the trajectory
length (14) of the ith pedestrian (i = 0 corresponds to the
agent). The higher the value of E, the greater the effort of
the society members to navigate to their goals.
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