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Totalistic cellular automata (CA) are an efficient tool for simulating numerous wave phe-
nomena in discrete media. However, their inherent anisotropy often leads to a significant

deviation of the model results from experimental data. Here we propose a computation-
ally efficient isotropic CA with the standard Moore neighborhood. Our model exploits
a single postulate: the information transfer in an isotropic medium occurs at constant
rate. To fulfill this requirement we introduce in each cell a local counter keeping track of

the distance run by the wave from its source. This allows maintaining the wave veloc-
ity constant in all possible directions even in the presence of nonconductive local areas
(obstacles) with complex spatial geometry. Then we illustrate the model on the prob-

lem of real-time building of cognitive maps used for navigation of a mobile robot. The
isotropic property of the CA helps obtaining “smooth” trajectories and hence natural
robot movement. The accuracy and flexibility of the approach are proved experimentally

by driving the robot to a target avoiding collisions with obstacles.
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1. Introduction

Simulation of different wave phenomena using cellular automata (CA) had its origins

in the 1950s, when von Neumann, following the proposal made by S. Ulam, applied

a fully discrete approach to describe the dynamics of spatially distributed systems.

Later, due to the approach simplicity and computational efficiency, CA have become

widespread in different fields such as hydrodynamics [1], physical chemistry [2],

microelectronics [3], material science [4], and biophysics [5], among others. In the

last decades CA have also been proposed as an efficient tool for finding a path among

two or more locations in a map or among vertices in a graph, a problem tightly

related to studies of the algorithms for robot navigation in complex environments

(for short review see, e.g., [6]).

Although important advances have been achieved, one of the main disadvantages

of the standard CA resides in their intrinsic anisotropy, which frequently contradicts
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the properties of modeled natural media and processes. For example, a roving robot

in a free space can move equally in any direction, while a CA may “prefer” some

of them depending on the lattice geometry. Figure 1 shows canonical examples of

the excitations generated by a point source (single-cell). In all cases the wavefront

significantly deviates from a circular shape typically expected in natural systems

and thus reveals the anisotropic structure of the CA. Note that the anisotropy comes

both from the discrete nature of the lattice and from the local rules defining the

cell states at each time step.

Fig. 1. Canonical forms of wavefronts (left to right): in triangular, square with the von Neumann
neighborhood, square with the Moore neighborhood, and hexagonal lattices. All waves deviate
significantly from circular shape.

Attempts to overcome the CA anisotropy were made in numerous studies (see,

e.g., [2, 7–10]). In particular, Karafyllidis and Thanailakis [9] proposed a computa-

tionally efficient CA model for fast simulation of a forest fire, which involved global

normalization (i.e., nonlocal knowledge). The model indeed reproduces a circular

front, but its linear velocity decreases with time and it may not go through gaps

among nonconductive local areas (obstacles). Later, Delorme and colleagues [10]

showed that the circular wavefront in CA with binary states can be obtained with

high-level algorithms only. Most of the recent works in this direction departure

from the use of totalistic CA to automata with continuous state variables. Such

models exploit the diffusion process (see, e.g., [2]) and/or the use of time delay [3]

or virtually continuous time [11]. Then, the problem becomes similar to modeling

reaction-diffusion processes by lattices of ordinary differential equations, known to

produce circular fronts. Other methods employ extended Moore neighborhoods thus

pushing the borders of local interactions in CA or make use of random variables,

such as, e.g., random selection of neighboring cells [7, 12, 13]. Recently, Ortigoza

[14] proposed an interesting approach, consisting in the use of a non-uniform trian-

gular lattice. The method splits the space into finite elements and admits complex

boundary conditions in problems focused on geographic applications. It has been

shown that the model partially neutralizes the CA anisotropy. Nevertheless, design-

ing an accurate and fast simulation by CA of the process of propagation of waves

in isotropic media containing obstacles remains an open problem.

The applications of CA to the pathfinding problem range from the use of binary

CA driven by simplistic rules [15–17] to modeling the foraging mechanism of slime

mold [18]. Simple CA are attractive for the use in real-time tasks, but they usually

exhibit significant pitfalls. For example, a non-Euclidian CA metric implies that the
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trajectory length cannot be directly assessed [15, 17]. This can cause a situation

when a CA finds a suboptimal path. Besides, the commonly considered assumption

that the agent has eight possible directions of motion on a square grid leads to

unnatural low efficient robot movements [19, 20]. Furthermore, most of the recent

works search for the shortest path by starting the excitation in CA from the target

position (see, e.g., [15, 19, 20]). This has two drawbacks: i) the target must be a

priori designated, which sometimes is unfeasible [21] and ii) single solution signifi-

cantly reduces the agent flexibility. Meanwhile, an advanced cognitive robot capable

of interacting with humans will demand diverse criteria to judge the optimality of

solutions beyond the trajectory length [22, 23].

Recently, we proposed to use the wave dynamics for building cognitive maps [24]

(see also [25, 26] for biophysical details). In this case, a wave front starting from the

agent position virtually explores the environment and generates a so-called com-

pact cognitive map [23]. Such an egocentric map contains information on possible

collisions with obstacles in the Euclidean metric and can be used for planning mul-

tiple trajectories to multiple targets. Thus, this approach naturally avoids most of

the above mentioned limitations. Its drawback is the relatively high computational

load, which stems from the modeling of a rather large 2D neural network. While

other methods cannot achieve the desired real-time performance [27], the use of a

fast isotropic CA for building compact cognitive maps may significantly improve

the dynamic characteristics of robots.

In this work, we propose a model of an isotropic active medium based on tra-

ditional totalistic CA. To gain speed we departure from the common approach of

discretization of the reaction-diffusion equation. Instead, at the heart of the model

there is an analogy with the well-known Huygens’ principle, whereby every point

of the medium reached by the wave becomes a source of a secondary circular wave.

Thus, we use local information representing the distance of each cell to the closest

source of excitation. However, as we will show below in the case of a CA, secondary

sources may also appear at certain cells of contact of the wave with obstacles. The

simplicity and efficiency of the basic equations allow applying this algorithm to real-

time tasks. We then illustrate the model on a problem of controlling the navigation

of a mobile robot through building cognitive maps. In contrast to other CA meth-

ods, our approach provides a variety of smooth (physically plausible) trajectories

to the target, and the agent can choose among them according to the particular

situation by optimizing the length, safety, or cooperation.

2. Model of isotropic totalistic CA

Let us now introduce a CA model and then provide evidence on its isotropic prop-

erty, i.e., a constant velocity of the wave propagation in all directions.
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2.1. CA model: Definitions

We simulate a CA on a two-dimensional square (L× L)-lattice:

Λ = {(i, j) ∈ N2 : 1 ≤ i, j ≤ L}. (1)

The state of each cell (i, j) at discrete time instants t = 1, 2, . . . is described by two

discrete variables: at(i, j) ∈ {0, 1, . . . , L2} and zt(i, j) ∈ {0, 1, . . . , L2}2 (the upper

limit, L2, corresponds to the number of cells in the lattice). at(i, j) accounts for

the cell activation (cell (i, j) is activated if a(i, j) > 0 and not-activated otherwise)

and keeps an information on the wave source that provoked the activity (see below),

while zt(i, j) is an auxiliary counter that stores information on the propagation path

to cell (i, j). The first component of zt(i, j) is the total number of steps performed

to arrive to cell (i, j), whereas the second one is the number of diagonal steps among

them (Fig. 2).

i

j
1

2
3...

1 2 3 . . .

t = 6

~z6(3, 8) = (3, 2)

~z6(5, 2) = (4, 1)

Fig. 2. Example of calculation of the auxiliary variable zt for t = 6 (the wave source is in the

center of the lattice). Although several shortest paths may lead to the same target cell, they
provide unique counter value.

At t = 1 the CA is initialized by activating one or several cells (initial sources):

a1(i, j) =

{
1, (i, j) is initial source

0, otherwise,

z1(i, j) = (0, 0), ∀(i, j) ∈ Λ.

(2)

It allows modeling situations with multiple or/and spatially extended initial sources.

Then we denote the set of the activated cells in the CA at time t by:

At = {(i, j) ∈ Λ : at(i, j) > 0}. (3)

A1 thus corresponds to the set of initial sources. As we will see below, an activated

cell cannot be deactivated and the number of the activated cells can only grow, thus

At ⊆ At+1.
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For further calculations we introduce the following sets:

• B ⊂ Λ representing cells occupied by obstacles,

• Γ ⊂ Λ corresponding to secondary wave sources (see below),

• Et = (Λ\(At ∪ B)) ∪ Γ denoting the set of cells that can be activated

(“empty” space).

The Moore neighborhood of a cell (i, j) can be defined as

Mij = {(k, l) ∈ Λ : ‖(k − i, l − j)‖∞ = 1}. (4)

Note that in our case (i, j) /∈ Mij . Then for each cell (i, j) we define a mapa

rt : Mij → N2

rt(k, l) =

{
(0, 0), if (i, j) /∈ Et ∨ (k, l) /∈ At

zt(k, l) + (1,1Dij
(k, l)), otherwise,

(5)

where 1Dij : Mij → {0, 1} is the characteristic (indicator) function of the diagonal

neighborhood:

Dij = {(k, l) ∈ Λ : |k − i||l − j| = 1} ⊂Mij . (6)

Note that ‖rt(k, l)‖2 have the meaning of the distance to the corresponding wave

source for all activated cells in the Moore neighborhood of (i, j), thus providing

possible values for zt+1(i, j). Then, among these values, we will choose an optimal

one (see below).

2.2. CA model: Computational scheme

Without loss of generality, we can assume that the velocity of a wavefront is equal

to one. Then t characterizes also the distance that the wave has overcome at a given

time step and the rules for updating the CA state are as follows:

Step I : For each cell (i, j) ∈ Λ\B:

(1) Determine the set of cells from its Moore neighborhood that could poten-

tially be sources of activation for the given cell (i, j):

Wt = {(k, l) ∈Mij :

t < at(k, l) + ‖rt(k, l)‖2 ≤ t+ 1}.

(2) Using Wt determine the cell transmitting excitation to (i, j):

(i∗t , j
∗
t ) =

{
argmin{‖rt(k, l)‖2 : (k, l) ∈Wt}, if Wt 6= ∅
(i, j), otherwise.

aTo avoid the notation overloading we omit the index (i, j) in definition (5).
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(3) Update the cell state:

at+1(i, j) =

{
t+ 1, if (i, j) ∈ Γ ∧ (Mij ∩At) 6= ∅
at(i

∗
t , j
∗
t ), otherwise.

zt+1(i, j) =

{
zt(i, j), if (i, j) /∈ Et\Γ ∨Wt = ∅
rt(i
∗
t , j
∗
t ), otherwise.

Step II : Using definition (3) obtain the set of activated cells At+1 from {at+1}.
Repeat Steps I and II in a loop until t = Tmax, where Tmax is the first time

instant when At+1 = At is satisfied.

2.3. Wave propagation in empty space: Critical space scale

Let us now test the algorithm in an empty space (i.e., B = ∅). Due to the discrete-

ness of the space, time, and state variables the wavefront in a totalistic CA may

differ significantly from the circular one (Fig. 1). We then introduce the following

measure of the wave “circularity”

C(t) = 1− ∆S(t)

π(t− 1)2
, (7)

where ∆S(t) represents the measure of the symmetric difference between the set of

activated cells and a circle of the corresponding radius (Fig. 3, red area in inset; for

convenience the cell spatial dimension is (1×1) a.u.). Thus, C = 100% corresponds

to a perfect circle, while low values of C indicate strong deviation of the wavefront

from a circular shape.

We then simulated the process of propagation of a wave generated by a point

source (single cell). Figure 3 shows the measure (7) and examples of the wave

shape obtained by the algorithm for t = 2, 3, 5, and 15. It can be observed that

for each t ≥ 2 the centers of all activated cells belong to the closed disk of radius

t − 1. Thus, our algorithm maximizes the measure (7) for waves propagating with

constant velocity and hence the proposed CA indeed models an isotropic medium.

Insets given in Fig. 3 also show that at the beginning the wavefront is far from

a circle and consequently the circularity measure takes low values. At t = 5, C

reaches the value of 87%, i.e., the wave can be considered circular enough, and then

we observe some “saturation” (C(6) = 88%). The same critical scale (t = 5) also

appears when dealing with the secondary wave sources at obstacle boundaries (see

below). This observation has an important implication. Let us recall an analogy with

the geometric and wave optics. Since for t < 5 the wave is qualitatively different

from a circle, its interaction with obstacles on such space scales (less than 5 cells)

can differ significantly from the process of wave propagation in open space. Thus,

we can introduce a characteristic spatial scale for totalistic CA: λch = 5 cells. In

what follows, we will assume that the distance between adjacent obstacles is higher

than λch, i.e., we omit from consideration the effects of “interference” related to
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Fig. 3. Evolution of the measure of the front circularity during propagation of a wave initiated
by a point source. At t = 5 (thick red dot) the wavefront is considered round enough. This time
instant defines the characteristic length scale λch (see main text for details).

wave optics. This model “granularity” should be taken into account in applications

such as, e.g., robot navigation.

3. Secondary wave sources

3.1. Isotropic CA in free space and front breaking at obstacles

The algorithm described in Sect. 2.2 includes a set of “extra” secondary wave sources

Γ. Before defining this set, let us consider a wave propagating in the CA without

them, i.e., we assume Γ = ∅.

t =
45

t =
25

t =
5

20 cell

front 
breaking

Fig. 4. Example of a circular wave propagating in empty space (t = 5 and t = 25; for visual clarity
only the wavefront was drawn) and the front distortion (t = 45) at contact with obstacle (magenta

vertical strip) in the absence of secondary sources, i.e., assuming Γ = ∅.

Figure 4 illustrates the process of propagation of a wave in a CA with a single
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obstacle (magenta vertical bar). In empty space, i.e., before the contact with the

obstacle, the wavefront is circular (measure (7) approaches 100%). Thus, once again

the model indeed implements an isotropic medium. Nevertheless, interaction of

the wavefront with obstacles may lead to unsatisfactory results. Depending on the

obstacle curvature and characteristics of the wavefront at the moment of contact,

the front shape may be distorted, causing the front “breaking” (Fig. 4, arrow).

The reason for breaking the front geometry while a wave bends an obstacle lies

in the violation of the principle of causality. The updating of the cell states (Step

I.3 of the algorithm) involves an implicit calculation of the distance to the original

wave source, rt. Eventually, this distance becomes distorted for certain cells that

are “behind” the obstacle. In turn, this leads to a premature activation of these

cells and disruption of the wavefront geometry.

3.2. Interaction of wave with obstacles: secondary wave sources

To get rid of the effect described in Sect. 3.1, we propose the concept of “additional

secondary” wave sources, which is inspired by the Huygens’ principle. Such sources

appear at contact of the wavefront with certain cells on the obstacle boundary. As

we show below the secondary sources prevent front breaking and thus we obtain

correct wave propagation even in the presence of obstacles.

In what follows we will assume that each obstacle is a connected set of cells with

a minimal “thickness” equal to two cells. To determine the cells corresponding to

secondary sources (i.e., the set Γ) we provide the following algorithm:

(1) Determine potential secondary sources. Cell (i, j) is a potential secondary

source if

card(B ∩Mij) ≤ 4, (i, j) ∈ B.

(2) Enumerate all potential secondary sources following counterclockwise along

the obstacle boundary {(i, j)q}, q = 1, 2, . . . , Q. Then, define vectors:

(kq, lq) = (i, j)q+1 − (i, j)q.

(3) Define secondary sources. A cell (i, j)q is a secondary source if

λch(kq−1lq − kqlq−1) > max{0, kq−1kq + lq−1lq}.

Condition (1) selects “vertices” of the obstacles, whereas condition (3) discards

among them those cells that involve small enough change in the direction between

vectors (kq−1, lq−1) and (kq, lq). The critical value is defined by the granularity

constant λch (see Sect. 2.3). Note, that this algorithm is applied only once. Then

the set Γ is used in the computational scheme described in Sect. 2.2.

Figure 5a illustrates the process of identification of the secondary wave sources

for two obstacles. On the first step the cells candidates to be secondary sources are

determined (condition (1), yellow and orange cells). Then a part of them is assigned

as secondary sources in agreement with condition (3) (yellow cells).
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(a)

t = 5 t = 25

t = 45 t = 65

20 cell 20 cell

20 cell 20 cell

secondary
sources

correct 
front

secondary source

(b)

potential but not secondary source

Fig. 5. Secondary wave sources. a) Illustration of the algorithm determining secondary wave

sources. Cells on the corners of the obstacle boundary are potential secondary sources (yellow
and orange). Only yellow cells satisfy condition (3) and consequently are assigned as secondary

sources. b) Propagation of a circular wave and its correct interaction with obstacle (see Fig. 4 for

comparison) due to the presence of the secondary wave sources (arrow).

To illustrate the effect produced by the secondary wave sources on the wave

propagation, we repeated the numerical experiment shown in Fig. 4. Figure 5b

shows the process of wave propagation in the presence of secondary wave sources.

At the beginning (t = 5, t = 25) there is no difference with the previous calculation

(see Fig. 4). However, when the wave reaches the tip of the obstacle, one of the

secondary sources is activated and generates a “secondary” wave (drawn in red in

Fig. 5b, t = 45). As a result, the wavefront keeps physically plausible geometry and

we obtain a circular wave “behind” the obstacle, as expected.

4. Modeling wave interaction with complex obstacles

Let us now illustrate the process of wave propagation in a CA with multiple obstacles

of different spatial geometries.

Figure 6 shows numerical simulation of a CA consisting of (400 × 400) cells.
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100 cells

t = 110

initial 
source

t = 160

secondary 
sources

t = 220 t = 340

Fig. 6. Wave propagation in an isotropic (400 × 400) totalistic CA with obstacles of complex
geometry (painted in dark blue). The color from red to blue corresponds to parts of the wave

generated by different secondary wave sources. Circle obstacle generates the highest number of
secondary waves (most colorful part of the wave).

A wave, generated by a single initial source (Fig. 6, t = 110, arrow), propagates

among four obstacles (drawn in blue). When touching obstacles new secondary

sources are activated and the state variable, at(i, j), of these cells receives the value

corresponding to the time instant of activation. Each of the activated secondary

sources (Fig. 6, t = 160, arrows) generates a new wave. Consequently all cells

receiving activation from a certain secondary source inherit this new value of the

state variable a. This mechanism of changing a(i, j) enables simple visual tracing

of the propagation of excitation in the lattice. We painted the wave in different

colors in line with the wave sources generating the corresponding part of the wave.

In particular, dark red color corresponds to cells whose activation can be traced

back to the initial source, whereas colors from red to blue mark parts of the wave

generated by secondary sources (Fig. 6, t = 220 and t = 340).

Analyzing Fig. 6 we observe that the most complicated thing in terms of the

number of secondary sources is the process of bending by the wave of the circle

obstacle. This process involves seven secondary sources, while rounding rectangle

requires three sources. Such a difference stems from the discrete nature of CA.

Indeed, secondary sources appear on convex “corners” in the obstacle boundary

(see Fig. 5a). Although in a continuous medium a circle has no corners, its discrete

representation in the lattice creates multiple corners (Fig. 3, insets). The other three
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obstacles (rectangle, triangle, and star) have simpler structures from the viewpoint

of secondary sources. Therefore, the wave rounds such obstacles without exciting

many secondary sources and we observe fewer color changes.

5. Application of CA to robot navigation

Let us now provide an example of a sensible application of the proposed CA model.

As it has been mentioned in the introduction, the wave dynamics can be used for

building cognitive maps, which in turn can be used for robot navigation (for details,

see, e.g., [23, 24]).

Figure 7a illustrates an experimental setup consisting of a (255× 345) cm arena

simulating a corridor with obstacles (painted in orange). A wheeled robot, Pio-

neer 3DX (Adept Mobilerobotics, linear sizes (l×w×h): 45.5×38.1×23.7 cm), should

cross the corridor avoiding obstacles and reach “exit” (blue strip). No direct route

to the target is available.

To solve this task the robot was equipped with an onboard computer (NUC,

Intel) with customary software packages written in Matlab (Mathworks). The com-

puter was interfaced through WiFi connection to a zenithal camera and through a

USB-COM adapter to the robot controllers driving the wheels.

The captured visual information (Fig. 7a) is preprocessed: the target, obstacles,

and robot are detected and projected to the floor. Then the obtained abstract image

of the situation is mapped into an (80× 107) CA network (Fig. 7b). This network

size (1 cell ≈ 3 × 3 cm) is a compromise between the computational load and

navigation accuracy. Indeed, from the one hand side 3 cm is below 10% of the robot

size, which is a reasonable tolerance for motion of animated agents. From the other

side, taking into account the linear robot velocity of 30-40 cm/s, we obtain that

the robot advances 1 cell in less than 100 ms, which is about the time necessary

to process visual information. The robot also projects itself into the CA network.

However, in the lattice space the robot occupies a single cell only (thick black dot

in Fig. 7b). Then, to maintain the balance, its real dimension is properly added

to the obstacles (magenta vs. orange color), thus proportionally increasing their

sizes. Such a procedure facilitates searching for possible robot movements since it

allows tracing trajectories regardless the actual robot size and its positioning among

obstacles [28].

Once visual information has been properly mapped into the CA, the robot simu-

lates the exploration of the environment by a wave process (Fig. 7c). Note that this

exploration is done in internal or “mental” time τ and due to the computational

efficiency of the CA model it is fast enough. The wave starts from the robot position

(single cell) and finds all possible gaps between obstacles, and finally reaches the

target. A quite complex intermediate wave profile at τ = 70 evidences nontrivial

possibilities of solving the navigation problem.

Finally, the wave dynamics builds a cognitive map of the given situation (for
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target

robot

obstacles

30 cm robot

obstacles

target

15 cells

(a) (b)

(d)

⌧ = 70

(c)

Fig. 7. Application of CA to cognitive navigation. a) Experimental setup (top view). A wheeled
robot (Pioneer 3DX) moves along a corridor to an exit (blue stripe) avoiding obstacles (orange).
b) Abstract visual perception of the situation shown in (a) and its mapping on the CA lattice. The

robot is represented as a black dot (occupies one cell in CA), whereas all obstacles are increased by
the robot dimensions. Red arrow indicates the robot head direction. c) A snapshot (at τ = 70, τ is
the simulation or “mental” time of the robot) of the process of building a cognitive map in the CA

model. Black dots in obstacle boundaries represent secondary wave sources. Colors show the wave
origin (as in Fig. 6). d) Cognitive map of the situation built by the CA and feasible trajectories

(red one is the shortest). Contour lines show the configuration of the wavefront at different time

instants.

details, see [24, 27]). The map is obtained by a local sum over time (Fig. 7d):

Pij =

Tmax∑
t=1

1At
(i, j). (8)

Then, by the gradient descend method adapted to the discrete nature of CA we

can trace several trajectories to the exit (target). Figure 7d shows four qualita-

tively different ways to reach the exit. The trajectory smoothness enables natural

movement of the robot, not restricted to piecewise linear paths in eight direction

commonly adopted in other works (see e.g., [15, 20]). The selection among different
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t = 2s

t = 0s

t = 6s

Fig. 8. Three consecutive snapshots of the robot movement. The robot follows one of the trajec-
tories found by the CA (red in Fig. 7d). Thin yellow stripes delimit the “corridor” and blue stripe
marks the “exit” (target). The video is available at: http://www.cogneubotics.com/research.html

trajectories requires a motivation criterium and in general can be achieved by using

a motivation neural network [29]. Here we choose the shortest way to the exit (Fig.

7d, red curve).

Once a trajectory has been obtained, the robot can perform specific motor com-

mands and, if the cognitive map has been built correctly, it will reach the target

avoiding collisions with obstacles. Since our agent is a differential wheeled robot,

it requires angular velocities as input [30]. Thus, instead of advancing to the next

cell in the path in one of the eight discretized directions, the robot uses a smooth

trajectory built up from appropriate arcs. As a result the robot moves along a

physically plausible path without sharp changes of the direction requiring “stop-

and-go” movements. We note that the Pioneer 3DX embedded controller estimates

the position of the robot in space (through odometry), which we used in a feedback

loop to ensure precise positioning of the robot. This approach allows reaching an

accurate execution of trajectories. To crosscheck the motor accuracy we estimated
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the deviation of the robot from a target point after following a trajectory of 6 m

long. The error obtained on a circle trajectory was 2.9± 1.4 cm, while following an

“8” shape trajectory it slightly increased up to 5.7 ± 2.5 cm, which is satisfactory

for real-life applications.

Figure 8 shows three consecutive snapshots of the robot moving in the arena

following the red trajectory shown in Fig. 7d. It successfully avoids obstacles and

reaches the exit, as expected.

(b)

(a)

(c)

Fig. 9. Robot navigation in drastically and unexpectedly changing environment. a) Initial sit-

uation. The robot builds a cognitive map and starts moving to the target (similar as in Figs.
7 and 8). b) On the go the situation changes unexpectedly. The z-shape obstacle in the cen-
ter of the corridor is rotated and blocks the robot path. The robot slows down and recalcu-

lates the cognitive map. c) New trajectory to the target is executed. The video is available at:
http://www.cogneubotics.com/research.html

In experimental conditions the process of building a cognitive map takes around
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300 ms, which is close to the human reaction time [31]. Taking into account the

linear robot velocity 30-40 cm/s (robot displacement < 15 cm), a cognitive map

can be obtained in real-time. We then repeated experiments in several different en-

vironments including time evolving. Figure 9 shows an example of such a situation.

At the beginning the robot constructs a cognitive map corresponding to the initial

situation and starts moving to the target (Fig. 9a). However, on the go the situa-

tion changes drastically: the z-shape obstacle is rotated unexpectedly (Fig. 9b) and

blocks the path to the target. As soon as the robot realizes (< 100 ms) that the

situation has been changed and no way to the target is available, it slows down and

builds a new cognitive map. New map provides new trajectory to the target and

hence the robot makes a turn and successfully reaches the target (Fig. 9c).

6. Conclusions

In this work we have proposed a model of a totalistic isotropic CA. It enables the

simulation of the process of wave propagation in media with obstacles (areas not

penetrable for waves). We note that our model differs significantly from other ap-

proaches. Earlier, similar results have been achieved with the use of CA described

by continuous variables, simulating the diffusion equation (see e.g., [11, 32]). Instead

of discretizing the Laplacian our model exploits a single postulate: “the information

transfer in an isotropic medium occurs at constant rate”. To achieve this property

in a totalistic CA we introduced in each cell a local counter keeping track of the dis-

tance run by the wave from its source. This allowed maintaining the wave velocity

equal in all directions. For correct interaction of waves with obstacles we introduced

secondary wave sources in accordance with the Huygens’ principle. Such sources ap-

pear at certain cells on the boundary of obstacles (at certain “vertices”) and allow

keeping physically plausible wavefront geometry. Numerical simulations have con-

firmed that indeed the proposed CA enables fast and correct modeling of the process

of propagation of waves in isotropic media with complex spatial configurations.

Due to its minimalistic nature (simple local rules vs. extended Moore neighbor-

hood used, e.g., in [7, 12]), our model is computationally efficient and it permits

relatively simple hardware implementation on a chip, which may further increase

the calculation speed [32, 33]. Thus, it can be useful for real-time tasks, such as,

e.g., simulation of the heart muscle [34] or building cognitive maps to control mobile

robots [23, 27]. To illustrate this ability we implemented the model on an onboard

computer of a wheeled robot. The CA was used to build cognitive maps [26]. On the

onboard computer this process lasted around 300 ms, independently on the com-

plexity of the environment. This delay falls within the time scale of human reaction

[31], which allows the robot to react promptly to unexpected changes in human

environments [22, 23].

One of the important differences with other approaches (see, e.g., [15, 19, 20])

is the use of egocentric maps. The cognitive maps built by our model admit several

alternative paths (vs. the common approach searching for the shortest trajectory)
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and thus provide flexibility to accomplish the navigation task. Such an ability is

an essential feature of cognitive agents. Then a robot can find optimal trajectories

resembling human displacement, which is a must for pursuing the robots deployment

in our daily life. In addition the egocentric algorithm does not require any a priori

knowledge about the target. It just considers the perceived objects as entities, which

can be reached or avoided according to the motivation and necessities of the agent.

In this way the algorithm enables local and global robot navigation, increasing the

versatility of the decision-making.

Real-time algorithms are for real world. To achieve natural, physically plausible

robot movements we have payed much attention to the trajectory smoothness. This

aspect, frequently overlooked by researchers (see, e.g., [16, 17, 19]), may significantly

improve the robot performance in real-life scenarios. The pursued isotropic property

of CA makes trajectories “smooth” up to the discreteness of the lattice. Then a

complementary smoothing step eliminates the lattice granularity and facilitates

the motor execution of trajectories. As a result the robot can advance naturally,

avoiding sharp jumps, turns, and stop-and-go type of movement. Our experimental

results have shown that: i) The robot equipped with the CA is able to build a

cognitive map and when possible to find an optimal trajectory to a target (it may

not exist). Then the robot successfully navigates to the target, smoothly avoiding

obstacles. ii) If during the robot movement the situation is changed drastically, e.g.,

some obstacle changes position or another one appears unexpectedly and blocks the

path, the robot is able to recalculate the map on the go. Then it selects another

way to the target, and accomplishes the initial task (videos and Matlab code are

available at: http://www.cogneubotics.com/research.html).
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