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Recovering EEG brain signals: Artifact suppression with
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bstract

Independent component analysis (ICA) has been proven useful for suppression of artifacts in EEG recordings. It involves separation of measured
ignals into statistically independent components or sources, followed by rejection of those deemed artificial. We show that a “leak” of cerebral
ctivity of interest into components marked as artificial means that one is going to lost that activity. To overcome this problem we propose a
ovel wavelet enhanced ICA method (wICA) that applies a wavelet thresholding not to the observed raw EEG but to the demixed independent
omponents as an intermediate step. It allows recovering the neural activity present in “artificial” components. Employing semi-simulated and real
EG recordings we quantify the distortions of the cerebral part of EEGs introduced by the ICA and wICA artifact suppressions in the time and

requency domains. In the context of studying cortical circuitry we also evaluate spectral and partial spectral coherences over ICA/wICA-corrected
EGs. Our results suggest that ICA may lead to an underestimation of the neural power spectrum and to an overestimation of the coherence between
ifferent cortical sites. wICA artifact suppression preserves both spectral (amplitude) and coherence (phase) characteristics of the underlying neural

ctivity.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Nowadays in the medical practice the Fourier transform
FT) and spectral coherence (SC) are the mathematical methods
ost widely used for the analysis of electro-encephalo-graphic

ecordings (EEGs). The FT allows studying local (univariate)
pectral density of the EEG power across different frequency
ands. The SC is a bivariate characteristic that determines the
egree of synchrony of oscillations recorded at a pair of elec-
rodes. It allows inferring on the presence and strength of func-
ional association between the corresponding cortical areas, thus
roviding a rough insight on the cortical circuitry. For three
or more) simultaneously recorded (multivariate) EEG signals,
artial spectral coherence (PSC) extends the limits of the SC, dis-
riminating direct from indirect connections (Brillinger, 1981;

endat and Piersol, 1986).

A direct use of any of the above mentioned tools with “raw”
EG recordings is strongly restricted by the presence of artifacts
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from eye movements, blinking, muscle activity, etc.), whose
agnitude may be much higher than that of the neural signal.
urrently, a widely used way to get rid of artifacts is manual
r semi-automatic selection of artifact free data segments or
pochs. Although in many cases being practical, this artifact
ejection procedure is subjective, requires a high skill of the
perator and leads to a great decrease of the amount of data avail-
ble for the subsequent analysis. As an example, from a 10 min
ong EEG of a healthy subject, one usually obtains roughly a

inute of joined artifact free data. In the medical practice a
assive presence of artifacts in, e.g. EEGs of children (Tran et

l., 2004) or patients with certain injuries (Urrestarazu et al.,
004) makes the data reduction even higher and strongly limits
he efficiency of this procedure and is an obstacle for a reliable
iagnosis on the basis of the above mentioned derived charac-
eristics. Besides the data reduction, segmentation leads to other
ssues like data stationarity across distant epochs, cerebral activ-
ty during or including artifact episodes. Hence, employing a

on-cutting (filtering-like) procedure for data cleaning becomes
ven more attractive.

An EEG recording from a single scalp electrode can be con-
idered as a mixture of signals from different brain regions and

mailto:vmakarov@opt.ucm.es
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rtifacts. In the first approximation signals of the neural origin
an be considered independent on artifacts [for details see, e.g.
Jung et al., 2000b; James and Hesse, 2005)]. With this in mind
ecently a non-cutting method of artifact suppression based on
ndependent component analysis (ICA) has been proposed (Bell
nd Sejnowski, 1995). Later several modifications of the original
lgorithm have been introduced (Anemüller et al., 2003; James
nd Gibson, 2003; James and Lowe, 2003; Joyce et al., 2004;
lexer et al., 2005; Melissant et al., 2005). ICA tries to separate

he recorded EEG signals into statistically independent sources
components), and then rejects those responsible for artifacts.
he majority of EEG applications of ICA focus on the removal
f ocular artifacts, where it has been shown to be very useful
Vigario, 1997; Jung et al., 2000a,b; Tong et al., 2001; Joyce et
l., 2004; Flexer et al., 2005). Currently ICA is perceived as a
otentially robust and powerful method for the artifact removal
n EEG data and receives an increasing attention (Jung et al.,
000a,b; Vigario et al., 2000; Tong et al., 2001; Iriarte et al.,
003; Tran et al., 2004; Urrestarazu et al., 2004). However, there
re still several issues that should be addressed:

a) The identification of components responsible for artifacts
requires experience of the operator and a priori knowledge
about the artifact structure. Besides, an optimal algorithm
application is achieved with relatively short (around 10 s)
data segments (Jung et al., 2000a). This counterintuitive
result: “more data are not always better” has been discussed,
e.g. in (Brown et al., 2001) and it assumes a laborious
sequential analysis of EEG divided into many short epochs.
As a step towards an automatic artifact removal, James
and Gibson (2003) proposed to use independent compo-
nents constrained to be similar to some reference signal
incorporating a priori information on the artifact temporal
structure. Another approach for detection of the components
responsible for ocular artifacts uses correlation between
electro-oculograms and independent components (Flexer et
al., 2005).

b) While ICA is now considered an important technique for
removing artifacts in EEG signals, there are still little quan-
titative results showing its advantages and limitations. Exist-
ing studies have focused almost exclusively on the spectral
improvements provided by ICA decomposition when sup-
pressing typical artifacts. Although it has been proven that
ICA-corrected EEGs exhibit a strong reduction in the spec-
tral bands corresponding to artifacts (Tong et al., 2001; Tran
et al., 2004), recently there has appeared an alert that the arti-
fact suppression may also corrupt the power spectrum of the
underlying neural activity (Wallstrom et al., 2004; Kierkels
et al., 2006). Thus the question: how the ICA-correction dis-
torts the spectrum of the underlying cerebral activity needs
to be quantitatively studied.

c) One of the challenging applications of EEGs is the study
of cortical circuitry and its reorganization as the brain state

changes [see, e.g. (Rodriguez et al., 1999; von Stein et al.,
1999; Varela et al., 2001)]. The current literature lacks eval-
uation of ICA artifact suppression for analysis of synchrony
between different electrodes. The non-local characteristics
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like spectral and partial spectral coherences depend on the
phase relation between signals recorded at different elec-
trodes. Thus coherence distortions due to artifacts and their
rejection in general are not reducible to the power (ampli-
tude) spectrum distortions. Hence for a reliable circuitry
analysis, the coherence distortion should also be quantified.

Another popular technique of the signal analysis is the
avelet transform (WT) (Mallat, 1998). It allows signal decom-
osition on multiple scales with further analysis of the wavelet
oefficients, and for instance suppression of some of them
esembling “undesirable” properties in the signal. The WT has
een used for analysis of EEGs from the very beginning in
ifferent contexts: detection of seizure (Schiff et al., 1994);
haracterization of epilepsy (Goelz et al., 2000; Alegre et al.,
003; Mormann et al., 2005); study of event-related potentials
Quiroga and Garcia, 2003; Makinen et al., 2004) and men-
al tasks (Murata, 2005); separation of fetal ECG from mother
CG (Mochimaru et al., 2004); reduction of ballistocardiogram
rtifacts (Wan et al., 2006), etc. Recently, Rong-Yi and Zhong
2005) showed that wavelet denoising of raw EEG may improve
erformance of the following ICA decomposition.

In this paper we first provide a novel method for artifact sup-
ression in EEG recordings: wavelet enhanced ICA (wICA).
he method relies on ICA and makes use of wavelet thresh-
lding not for denoising of the observed raw EEG but as an
ntermediate step to the demixed independent components. The
hresholding allows conservation of the time-frequency struc-
ure of artifacts and recovering of the cerebral activity “leaked"
nto the components. Then we quantify distortions introduced
y the conventional ICA and wICA methods in the time and
requency domains with semi-simulated and real EEG record-
ngs. Finally, with the perspective of studying cortical circuitry
e, for the first time, provide results on spectral and partial

pectral coherences evaluated over ICA- and wICA-corrected
EGs.

. Materials and methods

.1. EEG recordings

EEG data were acquired following standard guidelines
Privik et al., 1993) from healthy subjects with the eyes open.

e used the ECI Electro—Cap System with 19 scalp electrodes
laced according to the International 10–20 System. The signals
ere digitized at a rate of 256 Hz and further filtered (notch filter

t 50 Hz, and band pass filter 4–45 Hz).

.2. Semi-simulated data

We manually cut out of a real EEG artifact free non-
verlapping epochs collecting this way 15 s clean signals. Then
e simulate eye blinking and heart beat artifacts and mix them

ith the clean EEG accounting for the artifact morphology, spa-

ial distribution, and scalp topographies using mixing matrix
rom a real recording (Hori et al., 2004; Delorme et al., 2005). To
eproduce the shape of eye blinking episodes we use a band pass
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ltered (1–3 Hz) Poisson random process of 0.3 s per episode.
he heart beat is simulated by a pulse train at 1 Hz.

.3. Spectrum estimation

We use a multi-taper Fourier transform for continuous data
ets. The algorithm reduces the variance of spectral estimate by
sing a set of tapers rather than a unique data taper or spec-
ral window. It is especially effective for short data segments
Thomson, 1982; Percival and Walden, 1993). A MatLab tool-
ox is freely available at http://chronux.org/chronux(Jarvis and
itra, 2001).

.4. Inferring on functional connectivity

To infer on the topological structure of the interaction
etween different brain regions a common approach uses spec-
ral coherence (SC) and partial spectral coherence (PSC). To
valuate the SC and PSC we use a MatLab toolbox available at
ttp://bci.tugraz.at/∼schloegl/matlab/eeg/gdf4/.

.4.1. Spectral coherence
The SC is a normalized measure of the cross-spectrum

xy(ω) = Px(ω)P∗
y (ω) of two EEG signals, x(t) and y(t),

ecorded at different sites:

Cxy(ω) = Pxy(ω)√
Pxx(ω)Pyy(ω)

. (1)

f the SC equals to zero for all frequencies, ω, the two pro-
esses are linearly independent, i.e. no interaction between the
wo measured EEG signals exists. |SC| = 1 indicates a perfect
inear relationship between the two processes, i.e. the dynamics
f one signal is completely explained by the other. A signifi-
ant (see Section 2.4.3) level of the SC between these extremes,
≤ |SC| ≤ 1, in a certain frequency band means association (in

erms of synchronization) between the signals and it is a sign of
he functional connectivity between the corresponding cortical
reas.

.4.2. Partial spectral coherence
The PSC of two EEG signals, x(t) and y(t), is given by:

SCxy|C(ω) = − gxy(ω)√
gyy(ω)gxx(ω)

, (2)

here g(ω) = P−1(ω) is the inverse matrix of the cross-spectra,
nd C denotes all the other signals. The PSC is also a bounded
unction, 0 ≤ |PSC| ≤ 1. To decide whether two sites are (func-
ionally) coupled directly or not, we apply the same criterion as
or the SC.

.4.3. Surrogate data test
To conclude positively on the connectivity (synchrony)

etween two EEG channels the coherence (either SC or PSC)

hould be higher than the significance level obtained under
ssumption of the null hypothesis that time series are statisti-
ally independent. In other words we have to estimate the level of
andom leak between the channels. To evaluate the significance

m

c
p
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evel we use surrogate data test (Theiler et al., 1992; Schreiber
nd Schmitz, 2000). The surrogate time series are obtained from
he original by randomizing phase relations keeping intact other
rst order characteristics (Korzeniewska et al., 2003).

.5. ICA based artifact suppression

ICA is based on the three following assumptions: (i) exper-
mental data is a spatially stable mixture of the activities of
emporarily independent cerebral and artifactual sources, (ii)
he superposition of potentials arising from different parts of
he brain, scalp, and body is linear at the electrodes, and propa-
ation delays from the sources to the electrodes are negligible,
nd (iii) the number of sources is no bigger than the number of
lectrodes.

ICA starts assuming that K simultaneously recorded EEG
ignalsX(t) = {x1(t), . . . , xK(t)} are linear mixtures of N (N ≤
) a priori unknown independent components (sources) S(t) =
s1(t), . . . , sN (t)} including artifactual and of the neural origin:

(t) = MS(t), (3)

here M is the unknown mixing matrix defining weights at
hich each source is present in the EEG signals recorded at the

calp. Topography scalp maps of the components provide addi-
ional information on the localization of the sources. The aim of
CA is to estimate both S(t) and M from X(t). We use infomax
lgorithm proposed by Bell and Sejnowski (1995) and further
odified by Amari et al. (1996) and Lee et al. (1999). The algo-

ithm is implemented in EEGLAB MatLab toolbox (Delorme
nd Makeig, 2004) available at http://sccn.ucsd.edu/eeglab. It
ses neural networks maximizing the joint entropy and min-
mizing the mutual information among the output components
f a neural processor. For crosschecking we also employ another
CA implementation, FastICA (Hyvärinen and Pajunen, 1999),
vailable at http://www.cis.hut.fi/projects/ica/fastica.

Once the algorithm has been applied we analyze the temporal
tructure and topography of the components S(t) (e.g. the ocu-
ar artifacts mainly project to frontal sites) and identify among
hem those components that account for artifacts. Then we set
he identified artifactual components to zero, sartf(t) = 0, obtain-
ng a new component matrix Ŝ(t) where the artifactual sources
ave been rejected. Finally, we reconstruct ICA-corrected EEG
ignals as:

ˆ (t) = MŜ(t). (4)

Obtained this way the new data set X̂(t) represents the ICA
stimation of the original, artifact free data.

.6. Wavelet enhanced ICA (wICA) artifact removal

Let us now introduce our method that uses Wavelet tech-
ique to enhance the performance of the ICA artifact suppression

ethod.
When dealing with real EEGs, ICA estimated independent

omponents capturing artificial sources, besides of strongly
resent artifacts, frequently contain a considerable amount of

http://chronux.org/chronux
http://bci.tugraz.at/schloegl/matlab/eeg/gdf4/
http://sccn.ucsd.edu/eeglab
http://www.cis.hut.fi/projects/ica/fastica
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is of low amplitude and has a broad band spectrum (Fig. 1B and
C). These properties fit well with the wavelet decomposition
technique that provides an optimal resolution both in the time
and frequency domains, without requiring the signal stationarity.

The continuous wavelet transform of the independent com-
ponent s1(t) (somehow similar to the Fourier transform) reads:

Ws(d, b) = 1√
d

∫
s1(t)ψd,b(t) dt, ψd,b = ψ

(
t − b

d

)
, (7)

where Ws(d, b) is the wavelet representation of s1(t), ψ is the
mother wavelet with b and d defining the time localization and
scale. The WT (7) is redundant and therefore in practice its dis-
crete counterpart (DWT) is usually used (a MatLab package
is available at http://www.dsp.rice.edu/software). In the DWT
the time scales and localizations take only fixed values, usu-
ally d = 2j , b = k2j with integers j and k playing roles of
the decomposition level and temporal localization at this level,
respectively. Using Eqs. (5) and (7) we can write:

Ws(d, b) = Wa(d, b) +Wn(d, b), (8)

where Wa(d, b) and Wn(d, b) are the wavelet coefficients
obtained by the transformation (7) of the artificial and neural
parts of the component, respectively. As above mentioned the
coefficients corresponding to artifacts will be of high amplitude
and well localized in time and scales, while the neural coef-
ficients will be distributed across all scales, and will have a
wide spectrum of low energy. To illustrate this we apply the
continuous WT (7) to the three signals shown in Fig. 1. Fig. 2
shows the independent component and its parts in the wavelet
space. Indeed, the artificial component, a(t), has high amplitude
wavelet coefficients (Fig. 2B) localized in time windows of the
blinking episodes (see also Fig. 1), and in long enough scales.
The neural part, n(t), is small and spreads homogeneously over
the whole spectrum of scales and localizations. Accordingly,
the decomposition procedure (5) can be generally described as
a thresholding: all wavelet coefficients above a certain threshold
are set to zero, and then the resulting structure is used for the
ig. 1. Decomposition of an independent component into artifactual and neural
arts. (A) The independent component found by ICA has two episodes of eye
linking (around 0.8 and 5.5 s). (B) Artifactual source presented in the compo-
ent. (C) Underlying signal of the neural origin leaked into the component.

erebral activity. The later may occur, e.g. due to the limita-
ion on the maximal number of independent sources, restriction
n temporal independence or suboptimal algorithm application
Jung et al., 2000a; Brown et al., 2001). Rejection of such
omponents supposes a loss of a part of the cerebral activity
nd, consequently, distortion of the artifact free EEG (Friston,
998). Fig. 1A illustrates the first independent component, s1(t),
ound by ICA and identified as corresponding to blinking arti-
acts. According to the ICA assumptions this component cannot
nclude other artifacts independent of the ocular. The component
an be split into a high amplitude artifact a(t) (Fig. 1B) and a
ow amplitude residual neural signal n(t) (Fig. 1C):

1(t) = a(t) + n(t). (5)

Note that the ocular artifact vanishes outside of the blinking
pisodes (Fig. 1B), however, the component has a significant
mount of the persisting neural signal (Fig. 1A–C).

In the conventional ICA algorithm the whole component is set
o zero s1(t) = 0 before the signal recomposition, Eq. (4). This
ay in the ICA-corrected EEG we lose a part of the cerebral

ctivity:

ˆj(t) = rj(t) −mj1n(t), (6)

here rj(t) = xj(t) −mj1a(t) is the artifact free signal andmj1
s the corresponding weight from the mixing matrix, M.

Estimating the persisting neural signal n(t) we can further
ubtract it from the component and thus correct the ICA recon-
truction of the artifact free EEG recording. A priori, as it
appens in ICA, the decomposition (5) of the independent com-

onent into artifactual and neural activity is unknown. However,
sing properties of the signals a(t) and n(t) we can estimate
hem. Indeed, the artifact, a(t), has high magnitude (power) and
s localized in the time and/or in frequency domains, while n(t)

Fig. 2. Wavelet representation of the independent component s1(t) (A) and its
parts: artifactual a(t) (B), and neural n(t) (C). Gray intensity codifies the absolute
value of wavelet coefficients. The data corresponds to the voltage traces shown
in Fig. 1.

http://www.dsp.rice.edu/software
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nverse wavelet transformation. Note that the thresholding can
nly be performed with the DWT, where in addition to (8) we
et separation of the wavelet coefficients into “artificial” and
neural”, i.e. if Wa(j, k) = 0 then Wn(j, k) �= 0 and vice versa.
he described procedure is very much similar to the denoising

echnique proposed by Donoho et al. (1995) but here we aim at
he contrary goal: separate useful low amplitude and broad band
ignal from the strong artifacts.

Finally the wavelet enhanced ICA (wICA) algorithm for arti-
act suppression in EEG is:

1) Apply a conventional ICA decomposition to raw EEG thus
obtaining the mixing matrix M and N independent compo-
nents {s1(t), s2(t), . . . , sN (t)}.

2) Wavelet transform components obtaining their representa-
tions {W(j, k)}si .

3) Threshold the wavelet coefficients, i.e. set W(j, k) = 0 for
those that are higher than the threshold, |W(j, k)| > K.

4) Inverse wavelet transform of the thresholded coefficients
W(j, k) thus recomposing components consisting sources
of the neural origin only {ni(t)}.

5) Compose wICA-corrected EEG: X̃(t) = M ·
[n1(t), n2(t), . . . , nN (t)]T.

Selection of the threshold value, K, is an essential element of
he algorithm. Here we use the simplest fixed form threshold:

=
√

2 log Nσ, (9)

here N is the length of the data segment to be processed, and
2 = median(|W(d, b)|)/0.6745 is the estimator of the magni-

ude of the neural wide band signal part. As we shall see further
uch threshold yields a good performance with ocular and heart
eat artifacts. Other thresholding strategies (see review in, e.g.
Debnath, 2002)) can also be applied, possibly providing bet-
er tuning of the algorithm to the particular peculiarities of
ther artifacts or EEGs. Note that our algorithm may be com-
letely automatic, since no laborious visual inspection of the
ndependent components followed by selection of those of them
esponsible for artifacts is required. The components having no
igh magnitude artifacts just pass through the wavelet threshold-
ng (steps 2–4) intact (nk(t) = sk(t)). This allows an automatic
lgorithm application, and consequently its most crucial step 1,
o relatively short (say around 10 s) contiguous epochs as sug-
ested by Jung et al. (2000a).

The wICA algorithm has been realized in MatLab and is
vailable upon request.

. Results

We assess the performance of artifact suppression by the ICA
nd wICA methods when applying them to EEGs with two final
oals: (1) test the quality of recovering of the brain signals under
rtifacts; (2) quantify the distortions of the EEG power spectrum

nd spectral coherences introduced by ICA and wICA.

For the first test we employ semi-simulated recordings where
priori information on the cerebral signals allows estimation of

he recovering quality in the time domain. For the second goal

m
l
e
t

uroscience Methods 158 (2006) 300–312

e use real EEGs. As a reference, in the later case, we use arti-
act free non-overlapping epochs between consecutive blinks
anually delimited off-line in the original EEG recordings by
careful inspection of the channel traces (Jung et al., 2000b) in

uch a way that the other artifacts are not present in the selected
lectrodes (e.g. FP1). Further on we shall refer to these epochs
s control. Once suitable data (ICA/wICA corrected EEGs and
ontrol epochs) have been obtained, posterior spectral and con-
ectivity analyzes are applied. Then we compare the derived
haracteristics (power spectra, coherences) obtained over the
ame epochs in ICA and wICA corrected EEGs with those found
or the control.

.1. Suppression of artifacts by ICA and wICA methods

Let us first illustrate artifact suppression on an example of
ejection of eye blinking and heart beat artifacts. The eye blink-
ng artifact appears in EEG as big pulses well localized in time
nd has the strongest impact to EEG signals. The heart beat arti-
act appears when an electrode is placed nearby an artery and
t shows up as a train of short lasting, relatively low amplitude
ulses at frequency about 70 beats per minute. Fig. 3A shows an
xample of EEG taken from a healthy adult subject instructed
o stay at a steady state with the eyes open. The shown data
egment has both artifact types we interest in. Two eye blinking
pisodes (localized around 3 and 7 s) spread over all channels
nd affect most strongly the frontal sites (from FP1 to F8). Con-
rol segments (for FP1) are taken between consecutive artifact
pisodes, e.g. at 3.5–6.5 s. The heart beat artifact contaminates
ostly left tempo-occipital electrodes (T3, T5, O1).
The ICA algorithm separates contribution of the artifactual

nd neural signals into 19 independent components. The first
ndependent component exhibits strong pulses (Fig. 3B) and
rojects mainly to frontal sites (Fig. 3C). This coincides with the
fingerprints” of blinking artifacts whose morphology is char-
cterized by strong short lasting pulses and scalp topography
hows a clear evidence in the frontal sites (Jung et al., 2000a).
sing this a priori knowledge we identify the first component as
responsible of the eye blinking artifacts. Similarly, the fourth

ndependent component (Fig. 3B) captures the rhythmic pulses
rom the heart beat artifact. It projects to the left tempo-occipital
rea (Fig. 3C).

Now according to the ICA artifact suppression method we
et the first and the fourth components to zero and reconstruct
he EEG recording using Eq. (4), thus obtaining ICA-corrected
EG (Fig. 4A). Note that this way in accordance with the ICA
ssumptions we aim to suppress heart beat and ocular artifacts
nly. We also clean the same EEG by the wICA algorithm. Here
e skip the manual analysis of the components, but instead apply

he automatic wavelet thresholding (steps 2–4) followed by the
ignal recomposition (step 5). Fig. 4B shows EEG corrected by
ICA.
Visual inspection of the cleaned EEGs confirms that both
ethods effectively suppress both artifact types. However, ana-
yzing signals first at the frontal electrodes within artifact free
pochs (outside of blinking episodes) we observe some distor-
ions introduced by the ICA method. The EEG signal cleaned
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Fig. 3. An example of ICA decomposition of EEG contaminated by ocular and heart beat artifacts. (A) Original EEG data (a segment of 8 s is shown). (B) Independent
components decomposing the original EEG into 19 sources. The first component is identified as responsible of the ocular artifacts, while the fourth captures the
heart beat artifacts. (C) Scalp maps showing relative projection strengths of the components over all electrodes. Artifactual components “#1” and “#4” project most
strongly to the frontal and left tempo-occipital areas, respectively.
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ig. 4. Artifact suppression and signal distortion by ICA and wICA methods. (A
ICA (B) methods (compare to Fig. 3A). (C) Zoomed signals during a control (

ontrol signal, while ICA introduces some signal distortions. (D) Estimation of

y wICA matches well the control, artifact free signal (Fig. 4C).
uantifying the mean squared error in the time domain:
SE = E[(xICA/wICA(t) − xcontrol(t))
2], (10)

e get for FP1 10.6 and 0.1 �V2 for ICA and wICA, respec-
ively. To characterize the quality of the heart beat correction by

a

F
T

B) Ocular and heart beat artifacts are effectively suppressed by the ICA (A) and
ct free) epoch at FP1 electrode. wICA cleaned signal practically reproduces the
eart beat artifact delved into T5 electrode according to (11).

he both methods we reconstructed the heart beat artifact at T5
lectrode:
heart beat(t) = xraw(t) − x̂ICA/wICA(t). (11)

ig. 4D shows the artifact estimations provided by both methods.
he artifact reconstructions by ICA and wICA retain about 4.1
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nd 0.5 �V2 of the cerebral activity, respectively. We recall that
his activity is lost in the corrected EEG.

To discard a possible fault of a particular realization of the
CA algorithm or oddness of the data set we repeated the same
rocedure employing two different ICA algorithms (Informax
nd FastICA) and using different EEG recordings (including
ecordings where only ocular artifacts have been present). Con-
istently with other studies (McKeown et al., 1998; Brown et al.,
001) both ICA algorithms applied to different recordings gave

imilar results. Thus we conclude that ICA and wICA methods
ffectively suppress ocular and heart beat artifacts, but wICA
onserves much better the cerebral activity outside of the arti-
act episodes.

T
d
o
b
c

ig. 5. Recovering of the brain signal under artifacts on semi-simulated EEG. (A) EEG
8) artifacts (the first 8 of 19 channels are shown). (B) Independent components as fo
orrectly grasp the time courses of ocular and heart beat artifacts, respectively. Howev
oomed control and ICA/wICA cleaned signals within ocular (left, FP1) and heart b
y dashed gray curves. For both artifact types ICA-corrected signals deviate from the
uroscience Methods 158 (2006) 300–312 307

.2. Recovering brain signal under artifacts

Above we saw that ICA may alter the brain signals, while
ICA visually preserves better the brain activity. Let us now
uantify in the time domain the distortions introduced by the
ethods when recovering the brain signals under artifacts.
We generate semi-simulated EEG data by mixing joined pre-

elected artifact free epochs from a real EEG of a healthy subject
t rest, and two types of simulated artifacts: ocular and heart beat.
he mixture conforms to the artifact morphologies and spatial

istributions. Fig. 5A shows an example of such recording. The
cular artifacts propagate through frontal sites, and the heart
eat is mostly present in F8 channel. Following the above dis-
ussed procedure we calculate 19 independent components (Fig.

segment of 8 s exhibiting ocular (electrodes FP1–F4) and heart beat (electrode
und by ICA (the first 4 of 19 components are shown). Components #1 and #3
er, a considerable amount of cerebral activity leaks into these components. (C)
eat (right, F8) artifact episodes. Time courses of simulated artifacts are shown
reference signals considerably stronger than the wICA cleaned traces.
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Table 1
Mean squared error for ICA- and wICA-corrected EEGs in time domain

FP1 channel (�V2) F8 channel (�V2)

Not corrected 92.4 11.2
ICA 9.9 7.5
wICA 1.6 2.3
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observed in the Theta band, while in the other bands spectral

T
M

he first row (not corrected) quantifies the composite strength of ocular and
eart beat artifacts presented in channels FP1 and F8. Each column shows the
rror in the corresponding channel after artifact suppression by ICA and wICA.

B), and identify the components number 1 and 3 as artificial,
esponsible for eye blinking and heart beat, respectively. Note
hat as above mentioned outside of the artifact episodes the com-
onents consist of a considerable amount of cerebral activity that
lso persists in them during the artifact episodes. This persistent
ctivity degrades the quality of cleaning by ICA. wICA allows
ecovering of this activity thus enhancing the signal cleaning
erformance. Fig. 5C illustrates zoomed cerebral activity, simu-
ated artifacts and ICA/wICA recovered signals. Similar to Fig.
C we observe more prominent signal distortion introduced by
he ICA method relative to the distortion by wICA. This holds
or suppression of both ocular and heart beat artifacts.

To quantify the quality of recovering of cerebral signals we
alculate the mean squared residual error between the reference
artifact free) EEG in channels FP1 and F8 and those obtained
fter ICA/wICA processing. Table 1 summarizes the results. The
resence of ocular and heart beat artifacts in the semi-simulated
EG (Not corrected) is characterized by 92.4 and 11.2 �V2 in

he “recorded” signals relative to the control for FP1 and F8
lectrodes, respectively. EEG cleaning by ICA strongly (about
ine times) reduces the presence of artifacts in FP1 channel
nd moderately (one and half times) in F8 channel. This cor-
esponds to 19.4 and 3.5 dB reduction of ocular and heart beat
rtifacts, respectively. wICA further improves the quality of arti-
act suppression and enhances performance of ICA by six times
n separation of the cerebral activity from ocular artifacts and by

ore than three times in the case of heart beat artifacts. Thus for
ICA we have 35.2 and 13.7 dB reduction of ocular and heart
eat artifacts, respectively.

.3. Power spectrum distortion
Let us now study on real EEG recordings distortions in the
ower spectrum of the cerebral activity introduced by the artifact
uppression.

d
a
s

able 2
ean power density in FP1 channel evaluated for the control and after artifact suppre

Frequency band Power density
(dB) control

Artifact rejection
method

Segment le

4 s

Theta (4–8 Hz) 21.0 ICA 18.8
wICA 20.5

Alpha (8–13 Hz) 17.9 ICA 16.4
wICA 17.8

Beta (13–30 Hz) 16.1 ICA 13.2
wICA 16.1

Gamma (> 30 Hz) 8.6 ICA 5.2
wICA 8.6
uroscience Methods 158 (2006) 300–312

Signal distortions above quantified (see Table 1) in general
ill have an effect on the power spectrum of the cerebral signal:

x̄x̄(ω) = Prr(ω) +�P(ω), (12)

here Prr is the reference power spectrum of the artifact free
ignal, Px̄x̄ the spectrum of the signal processed either by ICA
r wICA, and �P is the spectrum distortion introduced by the
ethods as a side effect, which ideally should be equal to zero.
Assuming that the artifacts are expressed in the first inde-

endent component (as shown in Fig. 3), the power spectrum
istortion of the signal at the j-th electrode introduced by ICA
s given by (Appendix A):

Pj(ω) = −m2
j1Pnn(ω). (13)

here mj1 is the corresponding weight from the mixing matrix
, and Pnn is the spectrum of the cerebral activity persisting

n the independent component (5). According to (13) the power
pectra at all electrodes of the ICA-corrected EEG are underes-
imated with the same spectral function, Pnn, but with different
actors, m2

j1. Since m2
j1 decays with j for ocular artifacts (Fig.

C), the spectral distortions are higher in the frontal sites. The
ICA algorithm drastically reduces the residual cerebral activity

n the artificial component, consequently it strongly decreases
nn, and thus provides potentially a better approximation of the
ower spectrum of artifact free EEGs.

To quantify the degree of spectral distortions introduced
y the artifact suppression methods across different frequency
ands, we calculate the mean power density averaging over ten
pochs and convert it to decibels, for the control (reference) seg-
ents before and after ICA and wICA artifact suppression. We

epeat the same procedure changing the length of the data seg-
ents used for ICA decomposition, but keeping the same time

oundaries of the control epochs. Table 2 summarizes the results.
he spectrum distortion by ICA (difference between the power
ensities evaluated over ICA-corrected and artifact free signals)
ncreases with the length of the data segment used for estimation
f the mixing matrix and independent components. With respect
o frequencies, the Theta and Alpha bands are less affected, while
eta and Gamma suffer more. wICA preserves the signal better
ithin the artifact free time windows, and achieves a consider-

bly lower error of the spectrum estimates. Slight distortions are
ensities are very close to the control values. We also observe
small decrease of the performance with the increase of the

egment length used for evaluation of the independent compo-

ssion by ICA and wICA using the same data epochs

ngth for evaluation of independent components, Power density (dB)

8 s 10 s 15 s 25 s

16.7 16.6 15.9 15.5
20.4 20.3 19.8 18.9
14.2 14.1 13.4 13.2
17.7 17.7 17.6 17.5
11.7 11.8 10.5 10.3
16.0 16.0 16.0 15.9

3.6 3.8 2.4 2.1
8.7 8.7 8.7 8.6
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ig. 6. Spectral coherence for a pair of electrodes FP1 and F7 evaluated for the
tatistical significance. ICA-corrected EEG shows an overestimated coherence.

ents. To keep this controlled we suggest to use segments of no
ore than 15 s long. Fixing it at 10 s (the recommended value for

CA decomposition) we get the absolute values of the spectral
istortion:

�P | = |PICA/wICA − Pcntr|, (14)

ver the Theta, Alpha, Beta and Gamma bands at 4.4, 3.8, 4.3
nd 4.8 dB for ICA; and 0.7, 0.2, 0.1, and 0.1 dB for wICA. Note
hat, as we predicted in (13) the spectrum of the ICA-corrected
EG is always lower than the control spectrum.

.4. Artifact suppression and non-local characteristics
erived from EEG

Now let us study how the artifact suppression affects results
f infering on interaction (circuitry) between different sites. In
he simplest case, synchrony between different electrodes can be
rasp by evaluation of spectral and partial spectral coherences
SC and PSC).

Fig. 6 shows an example of the SC evaluated for the pair of
lectrodes FP1 and F7 at control conditions (using artifact free
pochs), and after ICA and wICA artifact suppression. At each

raph we also plot the level of statistical significance obtained
hrough the surrogate data test. Coherence in a given frequency
and above the surrogate level is considered significant and we
onclude on a functional association between these channels.

g
a
t
A

ig. 7. Relative degree of coupling between cortical areas evaluated using partial spe
ontrol conditions. Red and blue lines show spurious hiper- and hipo-coherence link
etween corresponding sites. (For interpretation of the references to color in this figu
rol; and after ICA and wICA artifact suppression. Gray curves depict levels of

he coherence calculated over ICA-corrected EEG is signifi-
antly higher than the control over all frequency bands (Fig.
A and B). This overestimation may lead to a spurious hiper-
onnectivity, i.e. to a false positive conclusion on interaction
etween the corresponding cortical areas. Artifact suppression
y the wICA algorithm offers less amplitude and phase distor-
ions of the cerebral part of EEG and we obtain the coherence
stimate very close to the control conditions (Fig. 6A and C).

Let us now test how the results of artifact suppression affects
he identification of connectivity patterns between EEG signals.
o conclude positively on the presence of a connection between
pair of sites we evaluate elevation of the PSC over the level of

tatistical significance provided by the surrogate data test sim-
larly as it is shown for the ordinary coherence in Fig. 6. If
ositive, this value quantifies the degree of synchrony between
he cortical sites taking into account the dynamics observed at the
ther electrodes. Fig. 7 shows the degree of synchrony calculated
ver ICA- and wICA-corrected EEG relative to the coherence
evel in the control conditions. No line connecting two corti-
al sites means perfect concordance with control conditions,
hereas red or blue links point to hiper- or hipo-connections
ver control conditions, respectively. ICA data processing in

eneral leads to hiperconnectivity over all frequency bands (see
lso Fig. 6). Application of wICA significantly improves predic-
ion providing only a few spurious light links in the Theta and
lpha bands.

ctral coherence. As a reference (zero level) we use the coherence evaluated at
s, respectively. The link width defines the strength of the relative association

re legend, the reader is referred to the web version of the article.)
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To give a clue on the problem of biasing to the hipercon-
ectivity after ICA artifact suppression (Fig. 7) let us consider
case when signals of neural origin from two electrodes, rj(t)

nd rk(t), are statistically unrelated, and consequently have van-
shing cross-correlation and coherence. We assume the signals
o be corrupted by ocular artifacts, a(t). An application of ICA
ives:

ˆk(t) = rk(t) −mk1n(t), x̂j(t) = rj(t) −mj1n(t), (15)

here similar to (6) hatted variables correspond to ICA-
orrected EEG signals, rj,k(t) are the artifact free signals, and
(t) = s1(t) − a(t) is the neural activity persistent in the inde-
endent component responsible for artifacts. From (15) we
mmediately see that although the artifact free signals rj(t) and
k(t) are uncorrelated their ICA counterparts x̂j and x̂k correlate
ue to the presence of the common term n(t). Hence we have
onvanishing, spurious coherence (Appendix A):

SC(ω)| = mk1mj1Pnn√
Px̂kx̂kPx̂j x̂j

≥ 0. (16)

Thus when the residual neural activity in the component iden-
ified as corresponding to artifacts is not vanishing, the spectral
oherence (and partial spectral coherence as well) can be overes-
imated after ICA artifact suppression (Fig. 7). wICA algorithm
ecovers the neural activity persisting in the component, so
mproving results of the coherence estimation.

. Conclusions and discussion

Recent efforts on the artifact removal in EEG recordings has
hown a great utility of ICA signal decomposition. Although the
uccess of ICA is encouraging, it should be treated with caution
Stone, 2002). Existing studies have focused almost exclusively
n the important reduction of the spectral presence of typical arti-
acts in ICA-corrected EEGs [see, e.g. (Tong et al., 2001; Tran et
l., 2004)], while distortions of the cerebral part of EEGs intro-
uced by the method as a side effect have been left unattended.
ecently, there has appeared a few quantitative studies pointing

o a possible spectral distortion of the cerebral activity due to
CA correction procedures (Wallstrom et al., 2004; Kierkels et
l., 2006). Meanwhile, quantification of distortions of non-local
haracteristics (e.g. spectral coherence) was completely lacking
n the literature.

In this paper we have pursued two complimentary goals: (1)
tudy quantitatively how suppression of artifacts in EEG data
istorts the underlying cerebral activity and affects the qual-
ty of derived local and non-local characteristics; (2) propose

novel method that enhances the performance of the con-
entional ICA by reducing the EEG distortions due to artifact
emoval.

First, we have shown that ICA-corrected EEG may partially
ose the cerebral activity. Indeed, ICA decomposes EEG into
omponents of artificial and neural origins and rejects the for-

er. Such a separation is valid for independent, linearly mixed

ources when their total number does not exceed the number
f recording electrodes (Bell and Sejnowski, 1995). In practice
hese assumptions can be violated leading to a “leak" of the

o
t
E
w

uroscience Methods 158 (2006) 300–312

erebral activity into components deemed artificial. Complete
ejection of such a component supposes a partial loss of the neu-
al signal. To reduce the distortions in corrected EEG we have
roposed a wavelet enhanced ICA (wICA) method that allows
ecovering the cerebral activity leaked into the artificial compo-
ents.

wICA is based on ICA signal decomposition and includes
s an intermediate step the wavelet thresholding of the inde-
endent components. This step recovers the low amplitude,
road band neural activity persistent in the components iden-
ified as responsible for artifacts. Thus, the subsequent dele-
ion of only the artifactual part of the components does not
istort the underlying neural activity in the wICA-corrected
EG. Note that wICA not only recovers the cerebral activity
utside of the artifact episodes, but also it allows substan-
ial recovering of the neural signal under artifacts. Another
dvantage of wICA is its automation. No laborious, ambigu-
us visual inspection of the independent components is required.
nstead, all components are passed through the thresholding pro-
edure and thus only the high magnitude artifacts (e.g. from
ye blinking) are cut out. At this point we recall that the pro-
osed use of wavelet analysis not on raw EEG but on the
ndependent components has the following important advan-
age. Artifacts are concentrated in a few components, where
he ratio artifact magnitude to cerebral activity magnitude is

uch higher than in the artifact affected electrodes. This strongly
mproves the quality of artifact detection, and also simplifies the

ethod application as a fine tuning of the threshold value is not
equired.

Second, we have quantified the performance of the ICA and
ICA artifact suppression methods in the time and frequency
omains using semi-simulated and real EEG recordings. Note
hat quantification of the quality of signal recovering refers to
ontrol, artifact free EEG. In the time domain we have shown
hat ICA effectively (by 19.4 dB) eliminates the presence of
cular artifacts and reduces moderately the heart beat artifacts
by 3.5 dB). wICA offers significant improvements reducing by
5.0 and 13.7 dB the presence of ocular and heart beat arti-
acts, respectively. In the frequency domain, we have shown
hat ICA tends to underestimate the EEG power spectrum over
ll frequency bands. We have estimated theoretically the power
pectrum loss and shown that it is a product of the spectrum of
he persistent neural activity and corresponding weight of the

ixing matrix. This for instance means that spectral loss for
cular artifact suppression is higher in the frontal sites. Cal-
ulating the absolute value of the spectral distortion in FP1
lectrode we found for ICA/wICA: 4.4/0.7, 3.8/0.2, 4.3/0.1 and
.8/0.1 dB in the Theta, Alpha, Beta and Gamma bands, respec-
ively.

EEG recording is a multichannel technique that provides
natural basis for the study of non-local cerebral dynamics

nd cortical circuitry. For the first time we have addressed the
uestion of how the artifact suppression affects the evaluation

f the simplest non-local characteristics, i.e. spectral and par-
ial spectral coherences. Our results suggest that ICA-corrected
EGs may exhibit an overestimated level of coherence, while
ICA overcomes this problem approaching the coherence level
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ound in the control conditions. The overestimation may lead
o erroneous conclusions on the presence of spurious couplings
associations) between the corresponding cortical areas. Indeed,
e have shown that the connectivity pattern provided by partial

pectral coherence evaluated over ICA-corrected EEG is much
ore dense than in the control conditions. wICA solves the prob-

em showing practically the same connectivity pattern as in the
ontrol conditions.
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ppendix A. Derivation of spectral and coherence
istortions

By definition, the power spectrum of a signal v(t) is given by
he Fourier transform of its autocovariance function Cvv(τ) =
v(t)v(t − τ)〉:

vv(ω) =
∫
Cvv(τ) e−iωτ dτ. (A.1)

sing representation (6) of the ICA cleaned EEG signal at j-th
lectrode we obtain its autocovariance:

x̂j x̂j (τ) = Crjrj (τ) − 2mj1Crjn(τ) +m2
j1Cnn(τ), (A.2)

here Cyz denotes the covariance function of signals y(t) and
(t). The covariance of artifact free signal rj(t) and the residual
eural activity n(t) can be represented as:

rjn(τ) = Cx̂js1 (τ) − Cx̂ja(τ) +mj1Cnn(τ). (A.3)

ow we note that (to a first approximation) the artifact does not
orrelate with the neural activity Cx̂ja(τ) = 0, and the compo-
ents are independent Cx̂js(τ) = 0. Then Eq. (A.3) reduces to
rjn(τ) = mj1Cnn(τ). Substituting this to (A.2) and using (A.1)
e obtain the spectrum of the ICA-cleaned EEG:

x̂j x̂j (ω) = Prjrj (ω) −m2
j1Pnn. (A.4)

rom (A.4) the spectrum distortion given by Eq. (13) follows.
Similarly to (A.4), the cross spectrum of two EEG signals

15) cleaned by ICA is:

x̂j x̂k (ω) = Prjrk (ω) −mj1mk1Pnn. (A.5)
hen using the definition of spectral coherence (1), and signal
epresentation (15) we obtain:

Cx̂j x̂k (ω) = Prjrk (ω) −mj1mk1Pnn√
Px̂jx̂j (ω)Px̂kx̂k (ω)

. (A.6)

y the assumption the cross spectrum Prjrk (ω) = 0 and we end
p with (16).

K

K
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