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Development of spiking neural networks (SNNs) controlling mobile robots is one of
the modern challenges in computational neuroscience and artificial intelligence. Such
networks, being replicas of biological ones, are expected to have a higher computational
potential than traditional artificial neural networks (ANNs). The critical problem is in the
design of robust learning algorithms aimed at building a “living computer” based on
SNNs. Here, we propose a simple SNN equipped with a Hebbian rule in the form of
spike-timing-dependent plasticity (STDP). The SNN implements associative learning by
exploiting the spatial properties of STDP. We show that a LEGO robot controlled by the
SNN can exhibit classical and operant conditioning. Competition of spike-conducting
pathways in the SNN plays a fundamental role in establishing associations of neural
connections. It replaces the irrelevant associations by new ones in response to a change
in stimuli. Thus, the robot gets the ability to relearn when the environment changes.
The proposed SNN and the stimulation protocol can be further enhanced and tested
in developing neuronal cultures, and also admit the use of memristive devices for
hardware implementation.

Keywords: spiking neural networks, spike-timing-dependent plasticity, learning, neurorobotics, neuroanimat,
synaptic competition, neural competition, memristive devices

INTRODUCTION

The adoption of brain-inspired spiking neural networks (SNNs) constitutes a relatively novel
paradigm in neural computations with high potential, yet not fully discovered. One of the most
intriguing and promising experimental illustrations of SNNs was the development of robots
controlled by biological neurons, the so-called neuroanimates, proposed at the end of the XX
century and currently attracting much attention (Meyer and Wilson, 1991; Potter et al., 1997;
Reger et al., 2000; Izhikevich, 2002; Pamies et al., 2014; Dauth et al., 2016). In those experiments,
neural networks self-organized in dissociated neuronal cultures, which was suggested to be used as a
decision-making element in robotic systems. In the earlier 1990s, Meyer and Wilson introduced the
term an animat, as a composition of words “animal” and “automat,” referring to a robot exhibiting
the behavior of an animal (Meyer and Wilson, 1991). Later, several research groups developed
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prototypes of hybrid systems composed of a robot controlled by
a living neural network. The main idea was to achieve adaptive
learning in biological SNNs with a real physical embodiment.

Learning is inevitably linked with the interaction of an
agent with its environment. Therefore, to implement learning
in vitro, a neural network should be equipped with a “body”
interacting with the environment. The first neuroanimat was
proposed by Mussa-Ivaldi’s group (Reger et al., 2000). To
control a tiny wheeled robot Khepera, they used electric
potentials recorded from brain slices of the sea lamprey
fed by signals from light sensors. Almost in parallel with
this study, Potter et al. (1997) suggested connecting a
neuronal culture grown on a multielectrode array (MEA)
to animate a roving robot (DeMarse et al., 2001). They
succeeded in constructing a virtual neuroanimat capable of
moving in the desired direction within 60◦ corridor after
2 h of “training” with a success rate of 80% (Bakkum
et al., 2008). Shahaf et al. (2008) used ultrasonic sensors
detecting the presence of an obstacle in the trajectory of
a neuroanimat by stimulating a neuronal culture, which,
in turn, controlled the movement. Obstacles located on the
right or left side provoked population bursts with different
spiking signatures. Then, a computer algorithm detected and
classified the population bursts and moved the robot in the
corresponding direction.

Despite extensive experimental studies conducted over the
last decades, the high computational potential of SNNs has not
been really achieved. The main problem faced by the researchers
building “living computers” is the absence of robust learning
algorithms. Unlike the backpropagation algorithm (Rumelhart
et al., 1986) and deep learning approaches (Lecun et al., 1998),
which revolutionized artificial neural networks (ANNs), SNNs
still lack similar methodology. In a more general context, the
learning principles of biological neural networks are not explored
up to the level sufficient for designing engineering solutions
(Gorban et al., 2019). Several attempts were made to adapt the
backpropagation algorithm and its variations to SNNs (Hong
et al., 2010; Xu et al., 2013). Within this approach, an ANN is
subject to learning, and then the obtained weights are transferred
with some limitations to a similar SNN (Esser et al., 2016).
However, SNNs trained in such a way usually do not achieve a
level of accuracy similar to their ANN counterparts. This can be
explained both by the formulation of the recognition problem
and by the nature of the tests (Tavanaei et al., 2019).

One of the intriguing brain features is the ability to associative
learning. It is based on synaptic plasticity, most likely of a
Hebbian type (Hebb, 1949). A classic example of associative
learning is Pavlovian conditioning (Pavlov, 1927). Generally, it
binds a conditional stimulus (CS) with an unconditional stimulus
(US). The US always evokes a response in the nervous system,
whereas the CS initially does not. After several presentations of
the US and CS together, the nervous system starts responding
to the CS alone. Hebbian associative learning can be extremely
efficient, given that the neural input dimension is high enough
(Gorban et al., 2019; Tyukin et al., 2019). Experimentally,
associative learning is often achieved in the form of operant
or instrumental conditioning, which is characterized by the

presentation of stimuli to an animal depending on its behavior
(Pavlov, 1927; Hull, 1943; Dayan and Abbott, 2001).

There are several approaches to implement associative
learning in mathematical models. One is to incorporate US and
CS events as spiking waves or patches of activity propagating
in neural tissue and associate them through a spatiotemporal
interaction. Learning underlying such a “spatial computation”
can be implemented by using spike-timing-dependent plasticity
(STDP) (Gong and van Leeuwen, 2009; Palmer and Gong,
2014). The STDP implements the Hebbian rule. In this
case, repeated arrival of presynaptic spikes a few milliseconds
before the generation of postsynaptic action potentials leads
to potentiation of the synapse, whereas the occurrence of
presynaptic spikes after postsynaptic ones provokes synaptic
depression (Markram et al., 1997; Bi and Poo, 1998; Sjöström
et al., 2001). A different approach to the conditioning paradigm
uses reinforcement learning, e.g. on the basis of an eligibility trace
and dopamine modulated STDP (Houk et al., 1995; Izhikevich,
2007). Based on this type of plasticity, a robot interacting with
humans capable of associating color and touch patterns was
recently designed (Chou et al., 2015). However, this approach
is quite complicated and was implemented only in model
neural networks.

Many attempts to implement learning features in
neuroanimats have been made in cultured neural networks
grown in vitro. The use of synaptic plasticity as a mechanism
of reinforcement or control of functional connections was
demonstrated only in the case of relatively simple adaptive
changes in the network. It has been suggested that the network
homogeneity (e.g. unstructured connectivity) precludes the
emergence of more complex forms of learning (Pimashkin
et al., 2013, 2016). Earlier, we proposed an approach to explain
the problems of learning in unstructured neural networks
by the competition between different pathways conducting
excitation to a neuron or set of neurons (Lobov S. A. et al.,
2017; Lobov S. et al., 2017b). Recently, the possibility to
structure the network geometry by directing axon growth was
demonstrated experimentally (Malishev et al., 2015; Gladkov
et al., 2017), which opens a new venue to build network
architectures in vitro.

In this article, we study how spatial or topological properties
of STDP can be used to implement associative learning in
small SNNs. We show that the competition of spike-conducting
pathways in a network plays an essential role in establishing
the association of neural connections. In particular, on the
network scale, STDP potentiates the shortest neural pathways
and depresses alternative longer pathways. It permits replacing
irrelevant associations by new ones in response to changes
in the structure of external stimuli. We show that a roving
robot controlled by an especially designed SNN can exhibit
classical and operant conditioning. Application of the shortest-
pathway rule allows the robot to relearn sensory-motor skills
by rewiring the SNN on the fly when the environment changes.
The developed SNN topology and the stimulation protocol
can be adapted further for structured neural network cultured
in vitro and for designing hardware SNNs based on, e.g.
memristive plasticity.
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MATERIALS AND METHODS

The SNN Model
To simulate the dynamics of a SNN, we adopt the approach
described elsewhere (Lobov S. A. et al., 2017). Briefly, the
dynamics of a single neuron is given by Izhikevich (2003):

dv
dt
= 0.04v2

+ 5v+ 140− u+ I(t), (1)

du
dt
= a(bv− u), (2)

where v is the membrane potential, u is the recovery variable,
and I(t) is the external driving current. If v ≥ 30, then v ← c,
u← u + d, which corresponds to generation of a spike. We set
a = 0.02, b = 0.2, c = −65, and d = 8. Then, the neuron is silent
in the absence of the external drive and generates regular spikes
under a constant stimulus, which is a typical behavior of cortical
neurons (Izhikevich, 2003, 2004). The driving current is given by:

I (t) = ξ (t)+ Isyn(t)+ Istml(t), (3)

where ξ (t) is an uncorrelated zero-mean white Gaussian noise
with variance D, Isyn(t) is the synaptic current, and Istml(t) is the
external stimulus. As a stimulus, we use a sequence of square
electric pulses of the duration of 3 ms delivered at 10 Hz rate,
with the amplitude sufficient to excite the neuron.

The synaptic current is the weighted sum of all synaptic inputs
to the neuron:

Isyn (t) =
∑

j

gjwj(t)yj(t), (4)

where the sum is taken over all presynaptic neurons, wj is the
strength of the synaptic coupling directed from neuron j, gj is
the scaling factor, in this paper we set them equal to 20 or -20
(Lobov S. A. et al., 2017) for excitatory and inhibitory neurons,
respectively, and yj(t) describes the amount of neurotransmitters
released by presynaptic neuron j.

To model the neurotransmitters, we use Tsodyks-Markram’s
model (Tsodyks et al., 1998) that accounts for short-term
depression and facilitation. We use this model with the
following parameters: the decay constant of postsynaptic currents
τI = 10 ms, the recovery time from synaptic depression
τrec = 50 ms, the time constant for facilitation τfacil = 1 s.

The dynamics of the synaptic weight wij of coupling from
an excitatory presynaptic neurons j to a postsynaptic neuron
i is governed by the STDP with two local variables (Song
et al., 2000; Morrison et al., 2008). Assuming that τij is the
time delay of spike transmission between neurons j and i,
a presynaptic spike fired at time tj and arriving to neuron
i at tj + τij induces a weight decrease proportional to the
value of the postsynaptic trace si. Similarly, a postsynaptic
spike at ti induces a weight potentiation proportional
to the value of the presynaptic trace sj. The weighting

functions obey the multiplicative updating rule (Song et al.,
2000; Morrison et al., 2008). Thus, the weight dynamics
is given by:

dsi

dt
= −

si

τS
+

∑
ti

δ (t − ti) , (5)

dsj

dt
= −

sj

τS
+

∑
tj

δ(t − tj − τij), (6)

dwij

dt
= λ

[
(1− wij)sjδ (t − ti)− αwijsiδ

(
t − tj − τij

)]
, (7)

where τS = 10 ms is the time constant of spiking traces, λ = 0.001
is the learning rate, and α = 5 is the asymmetry parameter.

We implemented the SNN model (see below) as custom
software NeuroNet developed in QT C++ environment. For
the axonal delays, we used τij = 3 ms for parallel connections
and τij = 4.2 ms for diagonal coupling. The selected delays are
proportional to the interneuron distances and thus take into
account the network topology. The app supports SNNs with up
to 104 neurons. On an Intel R© CoreTM i3 processor, the simulation
can be performed in real time for a SNN with tens of neurons.

Mobile Robot and Unconditional Motor
Response
We built a robotic platform from a LEGO R© NXT Mindstorms R©

kit. Figure 1A shows the mapping of the robot sensors
and motors to the sensory- and motoneurons, respectively.
NeuroNet software was used to implement SNNs of different
types controlling the robot behavior. Figure 1B illustrates the
simplest SNN providing the robot with unconditional responses
to touching events (see below). The software was run on a
standalone PC connected to the robot controller through a
Bluetooth interface.

The robot is equipped with two touch sensors and
two ultrasonic sonars (Figure 1C). A sensitive bumper
detects touch stimuli (collisions with obstacles) from the
left and right side of the robot (Figure 1B). When a
touch sensor is on, the corresponding sensory neuron
(either N3 or N4) is stimulated by a train of pulses
delivered at 10 Hz rate (Figure 1C, top-left panel). Such
stimulation models signal processing in the sensory system
of animals. The ultrasonic sonars are located above the
bumper and are coupled to sensory neurons N1 and N2
(Figure 1C, bottom-left panel). A sonar sensor turns on if
the distance to an obstacle is less than 15 cm. Then, the
corresponding neuron is stimulated by a train of square pulses
delivered at 10 Hz rate.

The SNN controls the robot movements through the
activation of motoneurons. Motor neuron N7 produces
tonic spiking with the mean frequency F, which is
mapped simultaneously to the left and right motors. As a
result, the robot moves straightforward with the velocity
proportional to F. Neurons N5 and N6 are coupled to
the right and left motors, respectively. The amount of
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FIGURE 1 | Experimental setup. (A) Mapping of the sensory and
motoneurons in the mobile LEGO robot. (B) Simple SNN controlling basic
robot movements and providing unconditional responses to touch stimuli.
(C) Signaling pathways. Touch (top) and sonar (bottom) sensory neurons
receive stimulating trains of rectangular pulses from the corresponding
sensors. Then, motoneurons drive the robot’s motors.

neurotransmitters released by these neurons modulates
the rotation velocity of the corresponding motor. When
N5 (N6) fires, the right (left) motor slows down (or even
rotates backward if, e.g. F = 0), and the robot turns to
the right (left).

The robot also has three LEDs facilitating its recognition in
the arena by a zenithal video camera. Video frames, captured
at 29 Hz rate, were analyzed offline. Trajectory tracking
was performed by employing a computer vision algorithm
implemented in the OpenCV library. Robot detection is based
on the fact that the robot image is a high gradient area. The
LEDs turn off when a touch sensor is activated, which allows
such events to be detected by analyzing the overall glow of
the robot image.

The touch sensors mediate US (Figures 1B,C, top). When
one of them is activated due to a collision with an obstacle,
the corresponding sensory neuron (N3 or N4) starts firing and
directly excites a motoneuron (N5 or N6, Figure 1B). As a
result, the corresponding motor starts rotating backward, and the
robot turns away from the obstacle and thus avoids the negative
stimulus (Supplementary Video S1).

The sonars are connected to sensory neurons N1 and N2
and mediate CS. At the beginning of learning, the CS in the
form of an approaching obstacle does not evoke any robot’s
response. The goal of learning is to associate CS with US
to avoid the obstacles in advance without touching them. To
provide stimulation of “sensory neurons”, according to the STDP
protocol, the stimulating pulses from the touch sensors have a
10-ms delay relative to the sonar pulses (Figure 1C).

RESULTS

The Shortest Pathway Rule
Let us consider a pair of unidirectionally coupled neurons driven
by periodic stimuli applied to one of them (Figure 2A). Stimuli
excite the first neuron, and then the activation propagates along
the “chain” to the second cell, which fires, given that the coupling
strength w21 is strong enough. Then, the presynaptic spikes
precede the postsynaptic ones, and, as a result, the weight
increases following the STDP rule (the first term in the right-hand
side of Eq. 7). Such a situation can be extended into a chain of
three or even more neurons (Figure 2B). Thus, STDP increases
the corresponding synaptic weights.

However, if we add a new connection from the first neuron to
the third one (Figure 2C), the weight dynamics changes crucially.
Although all synapses are excitatory, the coupling directed from
the second to the third neuron is depressed, while the other
two are potentiated. This occurs because the axonal delay via
the direct way N1–N3 (τ31, Figure 2C) is significantly shorter
than the delay via the pathway N1–N2–N3 (τ321 = τ21 + τ32,
Figure 2C). Thus, the first neuron makes fire directly the third
one (which is also postsynaptic for w32), and its spikes appear
ahead of the spikes coming from the second neuron (presynaptic
for w32). Such an inverse sequence (Figure 2D) forces depression
of the coupling w32 according to the STDP rule (the second
term in the right-hand side of Eq. 7). We thus can formulate the
shortest pathway rule:

• On the network scale, STDP potentiates the shortest neural
pathways and depresses alternative longer pathways.

SNN Exhibiting Non-trivial Associative
Learning
Let us now employ the shortest-pathway rule to implement
conditional learning in an SNN. Figure 3A shows a simple
SNN consisting of four neurons, which can exhibit associative
learning. The SNN receives two types of inputs: CS and US
applied to neurons N1 and N3, respectively. To comply with
the STDP protocol of paired stimulation, we assume that the US
pulses arrive with a delay of 10 ms relative to CS pulses (see
also Figure 1C).

At the beginning, the coupling between N1 and N3, w31, is
not sufficient to excite N3 through the CS pathway. However,
under stimulation, it is potentiated due to the appropriate delay
between US and CS. At the same time, the coupling between N2
and N3, w32, is depressed due to the shortest pathway rule. Thus,
after learning, we get the network shown in Figure 3B and the CS
alone can activate neuron N3 and then the motoneuron. We also
note that, similarly, if the CS is applied to N2 instead of N1, then
w32 will be potentiated, while w31 depressed, and we get the same
effect of associative learning.

SNN Driving Robot
The above-discussed SNN (Figure 3) has one motoneuron and
hence can drive one motor channel. To process events coming
from the right and left sensors of the robot, we need to extend
the SNN to account for two motor channels. Thus, we duplicate
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FIGURE 2 | The shortest pathway rule. STDP potentiates the shortest pathways and inhibits alternative connections (Wij , τi j are the weight and axonal delay of the
coupling from neuron j to neuron i). (A,B) Left: Initial situation. Right: After STDP. The link width corresponds to the synaptic strength. Presynaptic spikes in a
unidirectional chain precede postsynaptic spikes and STDP potentiates synaptic couplings. (C) The shortcut from neuron N1 to N3 makes the coupling from N2 to
N3 “unnecessary” and STDP depresses it. (D) Spikes in the network and evolution of synaptic weights.

FIGURE 3 | Associative learning based on the spatial properties of STDP.
(A) The initial SNN. (B) Potentiation of the coupling w31 and depression of w32

during simultaneous stimulation of neuron N3 and N1 (US pulses are applied
with a delay of 10 ms relative to CS pulses in order to comply with the STDP
protocol).

the SNN shown in Figure 3 but, at the same time, share some of
the neurons between two copies of the SNN (Figure 4A). The
resulting SNN contains four sensory neurons (N1, N2 for CS
and N3, N4 for US, Figure 4A) and two motoneurons N5, N6
modulating the rotation velocities of the left and right motors,
respectively (see also Figure 1). Neurons N3 and N4 are mutually
inhibitory coupled with fixed synaptic weights (w34 = w43 = 1).

The pair of neurons receiving CS (N1, N2) can be
connected to the pair of sonars in an arbitrary order (left–
right or right–left). Depending on the connection, there
can be two types of associations between the stimuli and
motors: either with strong “parallel” (PA) or strong “diagonal”
(DA) pathways (Figure 4B). Such freedom ensures that
there is no a priori chosen structure in the complete SNN.
Instead, the SNN adapts to the stimuli coming from the
environment. Thus, the mutual exchange of the CS sources
can simulate a situation with a change in the environment,
which should induce relearning in the SNN and adaptation

to novel conditions. Note that the bidirectional coupling
between neurons N1 and N2 plays a fundamental role by
providing synaptic competition while training couplings to
neurons N3 and N4.

Classical or Pavlovian Conditioning
To implement Pavlovian (classical) conditioning, let us, for
a moment, deactivate neuron N7 responsible for forward
movement. If an object approaches the robot from one side,
the corresponding touch sensor is activated, and we get
an unconditional response (Figure 4C and Supplementary
Video S1). At the same time, the corresponding sonar is also
triggered on, and paired trains of stimuli innervate sensory
neurons with a time delay of 10 ms.

We repeated such a stimulation alternately on the left and right
sides of the robot. This protocol led to the potentiation of two
associations for the left and right sides. Five stimulating cycles
applied to the right and left sides were sufficient to achieve robust
learning. After switching the connections of the sonars between
sensory neurons N1 and N2, the SNN was able to relearn the
associations (i.e. to switch between PA and DA, Figure 4B) after
about 10–15 stimulus cycles.

In practice, to avoid obstacles successfully, the robot should
gain high selectivity of the right and left channels. Then, in
the presence of an obstacle on the left side, neuron N5 fires
while neuron N6 is silent, which occurs in part due to inhibitory
connections between neurons N3 and N4. Experimentally, the
channel selectivity can be monitored by measuring the ratio of
synaptic weights of “parallel” and “diagonal” connections:

wP = (w31 + w42)/2,wD = (w41 + w32)/2. (8)
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FIGURE 4 | Model of classical conditioning. (A) The design of a two-channel SNN by duplicating the single-channel SNN (Figure 3) sharing some neurons. The
neural circuit includes neurons N1–N4 involved in learning. Motoneurons N5 and N6 provide turning the robot away from an obstacle. (B) The SNN after learning.
PA, parallel association: N1 (N2) is associated with N3 (N4), couplings w31 and w42 are potentiated. DA, diagonal association: N2 (N1) is associated with N3 (N4),
couplings w32 and w41 are potentiated. (C) Application of a stimulus to the touch and sonar sensors. (D) Evolution of the average weights of parallel (wP ) and
diagonal (wD) couplings under classical conditioning. Arrows PA and DA denote the time instants of the beginning of learning with correspondent scheme of the US
mapping; touchL (touchR) is the time course of triggering the left (right) touch sensor.

Figure 4D shows the dynamics of these connections when
simulating classical conditioning. Note that in the case of PA,
the parallel connection wP is potentiated, while the diagonal
connection wD is depressed. This happens due to simultaneous
potentiation/depression of the pairs (w31,w42) and (w41,w32),
according to the shortest pathway rule. After switching the CS
inputs (Figure 4D, DA arrow), the opposite effect is observed,
which leads to relearning in the SNN.

To achieve a high learning rate, our experiments show that the
SNN should satisfy the following conditions:

1. Intermediate noise variance (D = 5.5 in experiments).
2. Bidirectional coupling between CS neurons (N1 and

N2, Figure 4A).
3. Couplings between CS and US neurons are STDP-driven.
4. Inhibitory connections between US neurons (N3 and

N4, Figure 4A).

Condition (1) agrees with our previous findings showing that
the network rearrangement under stimulation takes place in a
certain interval of the noise intensity (Lobov S. A. et al., 2017).
At low noise intensity, the neuronal activation may not reach the
level necessary for STDP-ordered pre and post-synaptic spiking.
At high noise intensity, random STDP events dominate and break
learning (see Supplementary Figure S1). Condition (2) expresses
competition between the synapses involved in the associations
increasing the SNN selectivity. Thus, competition plays a positive

role in learning, unlike the case study reported previously (Lobov
S. et al., 2017b). Condition (3) implies a reduction of the SNN
selectivity due to a negative effect that STDP can have on the
synaptic couplings between CS neurons (w21 and w12). Condition
(4) leads to competition between neurons “for the right” to be
activated and, as a result, to an increase in the selectivity of the
connections of the right and left channels.

Operant or Instrumental Conditioning
Animals learn behaviors through active interaction with the
environment. To model such natural learning, we use operant
(or instrumental) conditioning. To implement it, we activated
motoneuron N7 (Figures 1B,C) responsible for forward
movement and introduced the robot in an arena with several
obstacles (Figure 5A).

In the beginning, the robot could avoid obstacles only
after touching them due to US (Figure 5A). Then, learning
progressively established associations between approaching
obstacles (sonars, CS) and touching events (US). Thus, the
robot learned to avoid obstacles in advance, without touching
them (Figure 5B and Supplementary Videos S2, S3). We then
switched sonars. Similarly to classical conditioning, the robot was
able to relearn the associations (Figure 5C, PA arrow).

The learning rate depends on the total time of activation of the
touch sensors. In turn, this time depends on the configuration
of the arena, i.e. the arena size and the number of obstacles.
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FIGURE 5 | Operant conditioning. (A) Trajectory of the robot in the first 2 min of the experiment. Exclamation marks indicate the positions of collisions with
obstacles. (B) Same as in (A) but after learning. (C) Evolution of the weights of parallel (wP ) and diagonal (wD) couplings (compare to Figure 4D). Beige and
green-blue bars correspond to periods (A,B), respectively.

In the Morris water maze (Figure 5A, 1 m2), learning takes
about 2 min. In a larger room (50 m2) with a few obstacles, the
learning time increases to 10–20 min. Relearning takes about
twice a longer time.

In the operant conditioning, the SNN selectivity did not reach
the value achieved in classical conditioning (compare Figures 4D,
5C). It occurs due to the fact that in the arena, the robot can
approach objects in front. In this case, both sonars detect them,
which leads to a simultaneous generation of stimuli on the
left and right sides and competition between two connections
from the same sensory neuron. Technical constraints, such as
a narrow sensing angle of the sonars, also affect the correct
implementation of the obstacle-avoidance task negatively. All
these factors diminish the learning quality. Therefore, the robot
sometimes collides with obstacles. Thus, in a real environment,
learning does not reach 100% collision avoidance.

DISCUSSION

Competition is a universal paradigm well-extended both in
neurophysiology, e.g. in the form of lateral inhibition (Kandel
et al., 2000) and the ANN studies, e.g. in the form of competitive
learning in Kohonen networks (Kohonen, 1982) or imitation
learning (Calvo Tapia et al., 2018). In this work, we have
proposed an SNN model implementing associative learning
through an STDP protocol and temporal coding of sensory
stimuli. To achieve successful learning, the SNN makes use
of two mechanisms of competition. The first type is neuronal

competition, i.e. different neurons compete to be the first to get
excited. In our case, this mechanism was provided by inhibitory
connections between US neurons.

The second type of mechanism is synaptic competition; i.e.
different synaptic inputs to a single neuron compete to be the
one exciting the neuron. This mechanism has been less addressed
in the literature on learning. Earlier, it was shown that in
unstructured networks, synaptic competition leads to negative
consequences for learning (Lobov S. A. et al., 2017; Lobov S. et al.,
2017b). We have shown that the proposed structured architecture
of the SNN, together with synaptic competition implementing
the STDP-mediated rule of the shortest pathway, can ensure
learning. We also note that the proposed mechanism of synaptic
competition works well in the case of temporal coding of stimuli.
Stimulus coding by the firing rate may require the development
of a different approach. For example, in our recent study (Lobov
et al., 2020), we implemented synaptic competition using synaptic
forgetting, depending on the activity of the postsynaptic neuron.
This allowed performing a mixed type of coding (temporal and
rate) in the problem of recognition of electromyographic signals.

To test the SNN, we used it for controlling a mobile robot.
We have shown that indeed, the robot exhibits successful learning
at the behavioral level in the form of classical and operant
conditioning. During navigation in an arena, the SNN self-
organizes in such a way that after learning, the robot avoids
obstacles without collisions, relying on CS only. Moreover, it
can also relearn if the connection of CS sensors is switched
between the corresponding sensory neurons, and a network
rewiring, widely observed in biological neural networks, is
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required (Calvo Tapia et al., 2020). The mechanism of relearning
can be considered as a model of the animals’ ability to adapt
to changes in the environment. In the SNN, it is possible due
to synaptic competition. Our experiments have also shown that
learning is robust. The robot can operate in environments of
different sizes and with varying densities of obstacles.

The proposed SNN implements a model with two associations:
left and right sensors “coupled” to the right and left turns. In
general, such associative learning can be extended to multiple
inputs and outputs. Thus, the proposed architecture can be
considered as a perceptron composed of spiking neurons with
two inputs and two outputs, where logical 1 or 0 at an input
corresponds to the presence or absence of a CS, respectively.
Then, the US provides a learning mechanism on how to excite
the target neuron in the output layer, i.e. how to obtain the desired
output. Thus, we get a simple mechanism for supervised learning,
i.e. a replacement of the backpropagation algorithm for SNNs.
However, the question of how many neurons such a spiking
perceptron can contain and, hence, how many classes can be
discriminated in this way requires additional studies.

We note that the parameters of sensory stimuli play a crucial
role in the learning of behaviors. For example, longer delays
between stimuli or their inverse order (CS after US) can impair
learning. In this sense, the temporal coding in SNNs requires
fine-tuning of the neuronal circuits and maybe not robust. The
rate coding using, e.g. the triplet-based STDP rule (Pfister and
Gerstner, 2006), voltage-based STDP with homeostasis (Clopath
et al., 2010), or STDP together with BCM rule (Wade et al., 2008;
Liu et al., 2019) is likely to increase the reliability of robot control.
However, in this case, we may end up with a mixed type of coding
(temporal and rate).

Due to structural simplicity, the proposed SNN and the
learning algorithm admit a hardware implementation by, e.g.
using memristors, which are adaptive circuit elements with
memory. Memristors change their resistance depending on the
history of electrical stimulation (Wang et al., 2019). Since the
first experiments and simulations (Linares-Barranco et al., 2011),
significant progress has been achieved in the implementation
of excitatory and inhibitory STDP by using resistive-switching
devices (RRAM), which are a particular class of memristors with
two-terminal metal–insulator–metal structure. Although most
of STDP demonstrations still rely on a time overlap of pre-
and postsynaptic spikes (Yu et al., 2011; Kuzum et al., 2013;
Emelyanov et al., 2019), the rich internal dynamics of higher-
order memristive devices related to multi-time-scale microscopic
transport phenomena provides timing- and frequency-dependent
plasticity in response to non-overlapping input signals in a
biorealistic fashion (Du et al., 2015; Kim et al., 2015). Memristive
plasticity can be realized at different time scales, in particular
with STDP windows of the order of microseconds (Kim et al.,
2015), which is essential for the development of fast spike
encoding systems.

Upon reaching the technology maturity, arrays of memristive
synapses offer unique scalability being integrated with CMOS
layers and showing spatiotemporal functions (Wang W. et al.,
2018), as well as combined with artificial memristive neurons
(Wang Z. et al., 2018) within a single network. Simple spiking

architectures of Pavlov’s dog association have been proposed on
memristors (Ziegler et al., 2012; Milo et al., 2017; Tan et al.,
2017; Minnekhanov et al., 2019). However, more sophisticated
architectures are required to reproduce different types of
associative learning to be adopted in advanced robotic systems.
We anticipate that, soon, artificial neurons can be realized on
the CMOS architecture, whereas the STDP can be implemented
by incorporating memristors (Emelyanov et al., 2019). It seems
convenient to have paired micro-scaled memristive devices to
reproduce bipolar synaptic weights. They can be mounted in a
standard package for easier integration into the SNN circuits.

Finally, we also foresee that the provided architecture can be
implemented in biological neural networks grown in neuronal
cultures in vitro. Modern technology of microfluidic channels
permits building different network architectures (Gladkov et al.,
2017). On the one hand, such a living SNN could verify if
our understanding of the learning mechanism at the cell level
is correct. From the other side, biological neurons have a
much higher level of flexibility mediated by different molecular
mechanisms that may shed light on how learning and sensory-
motor control are organized in nature.
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