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Evolved living beings can anticipate the consequences of their actions in complex

multilevel dynamic situations. This ability relies on abstracting the meaning of an action.

The underlying brain mechanisms of such semantic processing of information are poorly

understood. Here we show how our novel concept, known as time compaction, provides

a natural way of representing semantic knowledge of actions in time-changing situations.

As a testbed, we model a fencing scenario with a subject deciding between attack and

defense strategies. The semantic content of each action in terms of lethality, versatility,

and imminence is then structured as a spatial (static) map representing a particular

fencing (dynamic) situation. The model allows deploying a variety of cognitive strategies

in a fast and reliable way. We validate the approach in virtual reality and by using a real

humanoid robot.
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1. INTRODUCTION

Efficient object manipulation is simultaneously one of the most apparent features of humans’ daily
life and one of the most challenging skills that modern humanoid robots largely lack (see e.g.,
Calvo et al., 2018b; Billard and Kragicet, 2019 and references therein). The sensory-motor abilities
ordinarily exhibited by humans may appear dull at first glance. However, children spent years to
acquire adult-equivalent skills in manipulation (Thibaut and Toussaint, 2010). Therefore, such
simple-but-difficult tasks possess vast intrinsic complexity, which impedes robots to mimic even
basic human abilities in real-life scenarios.

Modern robots are capable of manipulating objects in repetitive and controlled conditions, e.g.,
in industrial assembly setups. In such tailor-made scenarios, a purely programmatic approach to the
problem of limb movement works rather well (Choset et al., 2005; Patel and Shadpey, 2005). The
development of adaptive techniques, the use of control theory, and learning in neural networks
made it possible to adjust the robot’s trajectories to comply with some degree of uncertainty.
Nowadays, robots can retrieve objects at different locations, e.g., from a conveyer belt or even
catch fast-moving objects (Kim et al., 2014; Nguyen et al., 2016; Bouyarmane et al., 2018; Mason,
2018). There is a growing body of approaches addressing the problems of a robust prediction of
trajectories of objects, fast calculation of feasible postures and movements of limbs through, e.g.,
splines, etc. (Riley and Atkeson, 2002; Aleotti and Caselli, 2006; Xiao et al., 2016).

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2020.00004
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2020.00004&domain=pdf&date_stamp=2020-02-13
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:vmakarov@ucm.es
https://doi.org/10.3389/fnbot.2020.00004
https://www.frontiersin.org/articles/10.3389/fnbot.2020.00004/full
http://loop.frontiersin.org/people/893687/overview
http://loop.frontiersin.org/people/893593/overview
http://loop.frontiersin.org/people/839926/overview
http://loop.frontiersin.org/people/893561/overview
http://loop.frontiersin.org/people/755494/overview
http://loop.frontiersin.org/people/81396/overview
http://loop.frontiersin.org/people/16564/overview


Calvo Tapia et al. Semantic Representation of Dynamic Situations

Although robots strive to dexterous object handling and
gradually improve skills in orientation in space (Billard and
Kragicet, 2019), they still undergo difficulties in handy and
safe interactions with humans in time-evolving situations. Such
cooperation requires the implementation of motor cognition at
different levels of decision-making, including the abstract one
(Villacorta-Atienza and Makarov, 2013). The latter, in particular,
can be approached through studies of brain structures and
functions involved in cognitive phenomena (Sporns, 2011; Calvo
et al., 2020).

The remarkable human capacity to actuate in complex
situations relies in part on semantic memory (for a review,
see Binder and Desai, 2011). Models of semantic memory have
seen an impressive improvement that has dramatically advanced
our understanding of how humans create, represent, and use
meanings from experiences (for a review, see Jones et al., 2015).
The semantic organization of concepts and features is much
more economical in terms of the memory capacity and ability
of generalization. This advantage enables an efficient building of
unexpected compound strategies and new knowledge.

Semantic memory uses the features and attributes of
experiences that define concepts, and allow us to efficiently
retrieve, act upon, and produce information in the service of
thought and language. While the application of this methodology
to simple concepts made of items (e.g., a lion, a tree, a table)
and their features (e.g., wild, green, long) was hugely successful
(Ralph et al., 2017), it has been used in studies of motor skills to a
much lesser extent.

We will call a motor-motif a particular movement of a limb or
a body in a specific time window. Then, a sequence of motor-
motifs composes a behavior that can be arbitrarily complex
(Calvo et al., 2018a). Each motor-motif is a function of space
and time. The internal representation of such spatiotemporal
objects in the brain is a challenging open problem (Livesey et al.,
2007; Kraus et al., 2013; Bladon et al., 2019). How the brain
generates concepts, and thus semanticmemories frommovement
experiences, is largely unknown. To solve this puzzle, in our
previous works, we proposed a theoretical hypothesis called time
compaction (Villacorta-Atienza et al., 2010, 2015), which recently
received experimental support (Villacorta-Atienza et al., 2019).

Time compaction states that when dealing with time-changing
situations, the brain does not encode time explicitly but embeds
it into space. Then, a dynamic situation (i.e., a spatio-temporal
structure) is transformed into a purely static object, the so-
called generalized cognitive map (GCM). A GCM, in particular,
contains images of motor-motifs in the form of points in some
configuration space. Such an enormous dimension reduction
(compaction of time) significantly reduces brain resources
required for the planning of trajectories in complex situations,
including motor interactions of humans (Villacorta-Atienza
et al., 2015). It also enables building concepts out of motor-motifs
by using the principle of the high-dimensional brain (Calvo et al.,
2019; Gorban et al., 2019, 2020; Tyukin et al., 2019).

Standard cognitive maps (CMs) are abstract internal
representations of static situations in the brain (Tatler and Land,
2011; Schmidt and Redish, 2013; Noguchi et al., 2017). Such
representations enable navigation in static environments, and, to

some extent, can be compared to a modern GPS providing the
ability to plan routes using a map with roads and obstacles (e.g.,
buildings) to be avoided (Schmidt and Redish, 2013). Similar
to a standard CM, a GCM is also an abstract description of
the environment, but it extends CMs into dynamic situations.
Thus, the GCM approach allows selecting different strategies
or motor-motifs to navigate in dynamic situations by using
special maps.

Hypothetically, the GCM approach enables building semantic
motor memory out of motor-motifs embedded as points into
GCMs. However, no successful attempts have been made yet. In
this work, we develop a novel approach to constructing behaviors
based on the semantic description of motor-motifs emerging
from GCMs. The method is illustrated in the simulation of the
combat sport of fencing and further validated experimentally on
a humanoid robot.

2. MATERIALS AND METHODS

We begin with a practical example of the combat sport of fencing
that will help us introduce the main idea of building cognitive
strategies. Fencing is a highly demanding sport based on the
perfect coordination of fast movements, where points are scored
by hitting an opponent by the tip of a foil. Each dynamic, i.e.,
a time-evolving situation, gives rise to an internal brain model.
Such a model includes relevant spatial and temporal aspects
of the situation (Kraus et al., 2013). Our goal is to provide a
semantic description of the strategic planning based on GCMs
and motor-motifs. In the following subsections, we thus briefly
summarize the GCM concept, introduce the configuration space
of a manipulator, discuss how a GCM and motor-motifs can be
constructed in the configuration space, and provide the robot
design for validating the theory.

2.1. Generalized Cognitive Maps
The concept of GCMs stems from standard cognitive maps.
In time-changing situations, e.g., while navigating in a crowd,
standard CMs are not suitable since the maps continuously
change in time. The neural and functional mechanisms behind
human decision making in time-changing situations are mostly
unknown. Recently, a hypothesis that the brain entangles spatial
and temporal dimensions in a single entity has been proposed
(Villacorta-Atienza et al., 2010; Buzsaki and Llinas, 2017), which
in the end gave rise to the GCM concept.

According to the hypothesis, the brain transforms “time
into space” (Villacorta-Atienza et al., 2010; Villacorta-Atienza
and Makarov, 2013). Such a functional mechanism, called time
compaction, allows representing a dynamic situation as a static
map, similar to a standard CM. The resulting generalized
cognitive map also has steady obstacles and can be used to trace
routs for navigation. A standard CM and a GCM of a static scene
are equivalent, i.e., the static obstacles appear in both maps at the
same places.

The advantage of GCMs is the projection of objects moving in
the environment into a map as virtual obstacles. Such projection
or time compaction occurs by identifying places of the potential
collisions of the subject with moving objects. It is achieved by
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predicting and matching all trajectories of the moving elements
and the subject. The latter is accomplished by a wave process
simulating all possible movements simultaneously (Villacorta-
Atienza et al., 2010). The places of potential collisions become
virtual obstacles that subject should stay away to avoid crashes
while navigating.

Time compaction is useful for navigation in different dynamic
situations (Villacorta-Atienza et al., 2015). However, its power
goes far beyond effective or “applied” cognition. The static
representation of the subject’s actions as mere points in a
configuration space enables buildingmemories of static images of
motor-motifs, instead of memorizing the whole spatiotemporal
situations (Villacorta-Atienza and Makarov, 2013). Then, the
subject can establish causal relationships among such images
and build high-level cognitive strategies in complex dynamic
situations. Below we develop a model for semantic knowledge
representation by means of linking images of motor-motifs as
pieces in the Tetris-like game on the abstract cognitive level.

2.2. Model of Fencing in Hand-Space
Figure 1A sketches a typical situation of combat of two fencers.
During training, one of the fencers (a learner, Figure 1A in
blue) responds to the pre-designed movements of the other (a
teacher, in pink). In what follows, we will model the actions of
the learning subject.

2.2.1. Kinematic Model in Workspace
We consider the fencer colored in blue in Figure 1A as a
cognitive subject. Let P be the main plane aligned with the
subject’s upper limb and the foil. For simplicity, we assume
that foils’ tips can contact with the fencers’ bodies within this
plane only. The subject’s limb and the foil can be described
as a three-segment mechanical system with tree joints rotating
within certain physiological limits (Figure 1B). The opponent’s
body in plane P can be represented by the minimal rectangle
(colored in pink).

Figure 1C shows the kinematic model of the subject. Without
loss of generality, we assume that the length of the subject’s
forearm is l = 1 a.u. The subject’s shoulder is fixed at the origin
of the (x1, x2)-plane, and it is joined to an articulated elbow
by a rigid segment of length ρ. The forearm joins the elbow
with the hand at Exh. The wrist can flex, thus changing the angle
of the last segment of length h, representing the foil. Besides,
we consider a single-point object Ex, which can have different
semantic meanings, either a target or an obstacle. In numerical
simulations and experimental validation, we use ρ = 1 a.u. and
h = 3 a.u., which is close to the real anthropometry, the robot
sizes, and the foil length used in fencing.

All movements of the subject’s limb and foil are restricted to a
disk of radius (ρ+1+h) centered at the origin.We then introduce
the workspace (reachable space):

W = Bρ+1+h \ {E0} ⊂ R
2, (1)

where Br denotes a closed disk of radius r centered at the
origin. The shoulder, elbow, and wrist joints can rotate within
specific limits posed onto the angles φ, θ , and α (Figure 1C).

Thus, we have defined a redundant three degree of freedom
(DoF) mechanical system working in a 2D workspace W .
For convenience, we also denote by L ⊂ W the union of
the three segments corresponding to the subject’s upper arm,
forearm, and foil.

2.2.2. Hand-Space Representation
The original procedure of building GCMs (Villacorta-Atienza
et al., 2010) assumes that the subject has a rigid body and can
be shrunken into a point. The spatial extension and the changing
geometry of the subject’s limb and foil bring an additional
degree of complexity. To resolve this problem, recently, we
have proposed a transformation from the workspace to a
configuration space that allows extending the GCM-theory into
manipulators (Spong et al., 2006; Calvo et al., 2017, 2018b;
Villacorta-Atienza et al., 2017). The transformation eliminates
the spatial dimensions and rotational degrees of freedom. Then,
the equivalent collision space, called the hand-space, is given by:

H =
(

B1+ρ \ Bmax{0,1−ρ}

)

× J ⊂ R
3, (2)

where J = [αmin,αmax] is the feasible interval of the wrist angle α.
Without loss of generality, we assume ρ ≥ 1. ThenH is a cylinder
(or torus) without the central line.

2.2.3. Mapping From Workspace to Hand-Space
The technique of mapping from W to H has been described
elsewhere (Calvo et al., 2017, 2018b; Villacorta-Atienza et al.,
2017). Here we briefly summarize our earlier results.

2.2.3.1. Shrinkage of limb and foil
The shrinkage of the arm with the foil, i.e., the set L, is given by
the following mapping

C(L) = (Exh,α), (3)

which reduces the three-segment mechanical system L in the
workspace (black and cyan segments in Figure 1C) to the
single point (Exh,α) in the hand-space (blue dot in Figure 1D),
corresponding to the hand position and the wrist angle inW .

2.2.3.2. Extension of objects
The price to pay by applying the shrinkage (3) is the
augmentation of other objects in the hand-space. Let us first
consider a single-point object Ex ∈ W (red dot in Figure 1C).
This point is extended to a set of surfaces E(Ex) ⊂ H (red area
in Figure 1D) corresponding to coincidences of the point object
with the three segments of L in the workspace. Thus,

E(Ex) = E1(Ex) ∪ E2(Ex) ∪ E3(Ex), (4)

where E1,2,3 represent the extensions due to collisions of the
object with the upper arm, forearm, and foil, respectively. Note
that depending on Ex, some of Ej can be empty. For example, if
Ex is located outside the region accessible by the upper arm (i.e.,
Ex /∈ Bρ , as in Figure 1C), then E1(Ex) = ∅.

When dealing with objects of arbitrary shape, the extension
E is applied to each Ex over the object’s boundary. This generates
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FIGURE 1 | Model of fencing: from workspace to hand-space. (A) Sketch of combat of two fencers. The cognitive fencer (the subject colored in blue) is aligned within

plane P. The opponent (in pink) moves the foil along the yellow arrow crossing the plane. (B) In plane P, the subject’s upper limb has three joints (3 DoF), while the

opponent is reduced to a rectangle. (C) Kinematic model of the subject’s limb and foil in the workspace W . Red dot at Ex is a object point. (D) The model in the

hand-space H. The subject’s limb and the foil are reduced to a single point (in blue), while the object point is extended to a surface (in red).

extended objects wrapping volumes in H. If the object moves in
W , then its extension inH changes with time.

Extension due to collision with upper arm, E1. If a point
object at Ex = (x1, x2)

T is reachable by the upper arm, then
the upper arm segment contacts the object whenever φ = 0.
Therefore, we get:

E1(Ex) =
{

F1(θ , Ex) : θ ∈ [0,π]
}

× J, (5)

where

F1 (θ , Ex) =M

(

ρ − cos θ
sin θ

)

, M =
1

‖Ex‖

(

x1 −x2
x2 x1

)

. (6)

Note that the constraint on θ in (5) is imposed by assuming that
the elbow joint can rotate within the limits [0,π]. Otherwise it
can be relaxed.
Extension due to collision with forearm, E2. If the object is
reachable by the forearm, then we have:

E2(Ex) =
{

F2(φ, Ex) : φ ∈ [−φmax, 0]
}

× J, (7)

where

F2 (φ, Ex) =
Ex

λEx(φ)
− ρ

[

1

λEx(φ)
− 1

]

M

(

cosφ
sinφ

)

(8)

and λEx(φ) = (ρ2 + ‖Ex‖2 − 2ρ‖Ex‖ cosφ)
1
2 . The lower bound for

φ in (7) is given by

φmax(Ex) = arccos

(

ρ2 + ‖Ex‖2 − 1

2ρ‖Ex‖

)

. (9)

Extension due to collision with foil, E3. Assuming that the foil
is in contact with the object at a distance d = ‖Ex− Exh‖ < h from
the wrist, we get:

E3(Ex) =
{

F3(d,α, Ex) : d ∈ [dmin, h],α ∈ J
}

, (10)

where

F3
(

d,α, Ex
)

= Exe +
sign(α)

βEx‖Ex− Exe‖

(

I2 + dRα

)

(Ex− Exe),

βEx = (1+ d2 + 2d cosα)
1
2 , (11)

and Rα is the standard clockwise rotational matrix. In
Equation (11)

Exe =
1

2‖Ex‖
M

(

‖Ex‖2 + ρ2 − λ2Ex

−
[

(2‖Ex‖ρ)2 − (‖Ex‖2 + ρ2 − λ2Ex)
2
]
1
2

)

. (12)

The lower bound for d in (10) is given by dmin =

max{0,
[

(‖Ex‖ − ρ)2 − sin2 α
]
1
2 − cosα}.

2.3. Neural Network Generating
Generalized Cognitive Maps in
Hand-Space
To generate a GCM, we simultaneously (i) predict the objects’

movements and (ii) simulate all possible subject’s actions
matched with the objects’ movements. Both calculations must

be done by the subject faster than the time scale of the dynamic

situation (for more detail see Calvo et al., 2016). To account for
this internal processing, besides the “real” time t in the workspace
W , we introduce the “mental” time τ used for calculations in the
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FIGURE 2 | Experimental design. (A) Robotic fencer. A humanoid robot Torso (in white) is attached to a wheeled platform Pioneer 3DX (in red). (B) Avatar in

virtual reality.

hand-space H. For convenience, we also introduce the discrete
time n ∈ N0 related to the continuous time by τ = δn, where δ is
the time step.

There are several ways to solve problem (i) (see, e.g., Hong and
Slotine, 1997; Riley and Atkeson, 2002; Villacorta-Atienza et al.,
2010; Villacorta-Atienza and Makarov, 2013). For simplicity, we
assume that the trajectories of all objects (except the subject, L)
are given. Using these trajectories, we can evaluate images of
the objects (e.g., the opponent’s foil) in the hand-space (section
2.2.2). Then, we simulate all possible movements of the subject
by means of a wave process initiated at the initial configuration
(Exh(0),α(0)) ∈ H.

In earlier works, we considered 2D internal representations
of workspaces and postulated a constant velocity c for the wave
of excitation spreading in the hand-space (Villacorta-Atienza
et al., 2010, 2017; Calvo et al., 2017). The propagating wavefront
simulates all possible movements of the hand (see below). In the
3D hand-space, the wrist joint can rotate with an angular velocity
ω = dα/dt ∈ R independent of the hand velocity ‖Ev‖ in the
(x1, x2)-plane. Then, we impose the following constraint on the
compound subject velocity inH:

c2 = (1− γ0)‖Ev(τ )‖
2 + γ0ω

2(τ ), (13)

where γ0 ∈ [0, 1] is the velocity bias. The value γ0 = 0
corresponds to a rigid wrist joint. The other limit γ0 = 1
describes the situation where the wrist flexion is the only available
movement, i.e., the subject’s upper limb is fixed. We note that
formulation (13) is equivalent to fixing the kinetic energy of L.

To describe the wave dynamics, we design a neural network
on the cylindrical lattice:

3 =
{

λ = (i, j, k) ∈ Z
3
: i2 + j2 ≤ r2, 1 ≤ k ≤ K

}

, (14)

where r ∈ N defines the spatial resolution in the plane (x1, x2),
and K ∈ N defines the resolution for the wrist flexion angle α.
Thus, 3 is the discrete version of the hand-spaceH. On the lattice

3, we define the neural network:

duλ

dτ
= qλ

(

f (uλ)+ d0
(

(1− γ )1x + γ1α

)

uλ

)

, λ ∈ 3,

qλ(τ ) =

{

0 if λ ∈ �(n) ∪ L, with (n− 1)h < τ ≤ nh
1 otherwise,

�(n)← �(n− 1) ∪ {λ ∈ Ŵ(n) : uλ(nh) ∈ [0.4, 0.7]},
n = 1, 2, . . . ,

(15)

where uλ is the state variable describing the neuronal dynamics,
f (u) = u(u − 0.1)(1 − u) is the nonlinear function providing
the excitable dynamics of individual neurons, 1x, 1α are the
discrete Laplacians in the corresponding variables, Ŵ(n) is the set
of neurons occupied by the extended objects at time instant n,
and L is a small spheroid centered at λ0 (the discrete version of
(Exh(0),α(0)) ∈ H).

The dynamics of the neural network (15) admits propagation
of spherical waves starting from the spheroid L (Calvo et al.,
2018b). The initial spheroid sets the eccentricity of the wavefront

defined by the bias parameter γ = γ0
(ρ+1)2K2

r2|J|2
. Then, the wave

propagates outwards, excites cells not occupied by obstacles, and
creates effective objects when colliding with extended objects
in the hand-space. The dynamically growing set �(n) describes
effective objects at step n.

The dynamical system (15) is considered with Neumann
boundary conditions on the cylinder border and extended
objects. At τ = 0 (and hence n = 0), the neurons are set to
uλ(0) = 0, ∀λ ∈ 3 \ L, uλ(0) = 1 ∀λ ∈ L, and �(0) = ∅. The
diffusion coefficient d0 is adjusted to account for the compound
subject velocity c (Calvo et al., 2018b).

2.4. Robot and Avatar Design
For testing and validating the theoretical results, we built a
humanoid robot consisting of a robot Poppy Torso (upper part)
attached to a wheeled platform Pioneer 3DX (Figure 2A). The
wheeled platform provides the robot with the possibility to freely
move in space, while the Torso enables manipulation of a foil.

To build the upper part of the robot, we used the open-source
project Poppy Torso (Lapeyre et al., 2014; Duminy et al., 2016).
The robot is based on Dynamixel smart servomotors and 3D
printed plastic elements. The geometric dimension of the upper
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FIGURE 3 | Emergence of cognitive map driving subject’s actions. (A) Sketch of a combat situation. The subject’s upper limb (in black) and the foil (in blue) are

shown. The pink vertical bar represents the opponent with a foil (in green). (B) Generation of the GCM in the discretized hand-space 3. Three successive snapshots

(τ1, τ2, and τ3) and the final GCM (right subplot) are shown. (C) Two typical trajectories (yellow curves) of the subject movement in the discrete hand-space. Arrows

starting at blue point and ending at the pink/green area correspond to an attack/defense movement (sets A and D). (D) Implementation of the trajectories shown in

(C) in the workspace. Left: Execution of the defensive trajectory. Right: Execution of the attack trajectory (the color darkness corresponds to the time course).

arms 15.5 cm (from the shoulder to the elbow), the forearms are
15 cm long (from the elbow to the foil hilt), and a toy foil is of
45 cm. To move the robot’s body, we used a wheeled platform
Pioneer 3DX (Adept Mobilerobotics, linear sizes l × w × h: 45.5
× 38.1 × 23.7 cm). An onboard computer (NUC, Intel) drives
the robot through appropriate interfaces (USB and USB-COM).

To control the robot, we developed software called Avatar,
which runs in a standalone PC. The Avatar serves as a
bidirectional interface between the robot’s body and its artificial
“brain.” Thus, it provides the embodiment of the cognitive skills
developed in simulations. The Avatar can work in two modes:
(1) Driving the robot, and (2) Emulating the robot in virtual
reality (Figure 2B).

In the first mode, the Avatar controls the servomotors of
the robot. Thus, we can change the configuration of the robot’s
upper limbs and move it in space. At the initialization, the
Avatar takes settings (main parameters such as e.g., the length
of segments) from a text file, which allows flexible changes
without reprogramming. The Avatar can also read in real-time
the telemetric information of all servomotors. The software uses
a client-server architecture based on TCP/IP for interacting with
user programs simulating cognitive behaviors (artificial brain).
The application programming interface allows controlling the
robot movements at low and high levels. The low level allows
selecting a motor and performing the desired rotation. At the
high level, the user can send a trajectory for moving, e.g., the

robot’s arm Exh(t) = (xh1(t), xh2(t))
T . Then, the Avatar solves the

inverse kinematics problem.

ϕ = arctan2(xh2, xh1)− φmax(Exh),

θ = π − arccos

(

‖Exh‖
2 − ρ2 − 1

2ρ

)

, θ ∈ [0,π], (16)

and applies the corresponding rotations to the servomotors in an
automatic mode.

In the emulation mode, the Avatar builds a 3D model of
the robot in a virtual environment (Figure 2B). Then, all the
requested movements can be implemented by the virtual robot
in the same way as would be done with the real robot. The
Choregraphe program by the Aldebaran implements a similar
functionality for the NAO robot (Pot et al., 2009; Shamsuddin
et al., 2011). However, NAO is not suited for tasks considered
in this work, in part, due to a significant deviation from
anthropomorphic measures.

3. RESULTS

3.1. Emergence of Generalized Cognitive
Maps and Single Motor Actions
Let us first consider how a GCM can be constructed for a novel
dynamic situation. Figure 3A illustrates a simple combat scene
similar to that shown in Figure 1A. The upper limb and the foil
of the cognitive fencer (on the left) are aligned within the main
plane. Its opponent (on the right) moves its foil with a constant
angular velocity by a circular displacement of the hand, from
right to left. The goal of the subject is to either defend (i.e., to stop
the opponent’s foil) or attack (i.e., to hit the opponent’s body by
the foil tip). Such decision-making goes through the construction
of a generalized cognitive map.
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FIGURE 4 | Building optimal strategies in dynamic situations. (A) A fencer learns to actuate in different dynamic situations while training. (B) Sketches of generalized

cognitive maps of the learned situations. Blue dot represents the subject’s upper limb and the foil. Yellow paths to pink and green regions correspond to attack and

defense actions, respectively. (C) Sketch of two-step strategies. The subject invokes a first order map M1 from the starting position and gets several options for the

first movement. Then, each movement leads to a second order map M2 with new possible movements. The strategy is built by selecting one of the pathways in the

directed graph. (D) Each action has a fitness (imminence, lethality, and versatility) denoted by the height of colored squares. This allows selecting the most suitable

strategies (blue arrows).

Figure 3B shows three successive snapshots at time instants
τ1 < τ2 < τ3 illustrating the process of building the GCM in the
discrete hand-space 3 (see section 2.3). The traveling wavefront
(light-blue) explores the environment containing the extended
opponent’s body (snapshot τ1). Note that the opponent’s body
does not move and the corresponding extended object has a fixed
shape in all snapshots. In contrast, the opponent’s foil crosses
plane P in a certain time interval and hence its representation
in 3 changes in time (it is present in snapshot τ2 only).

Let λ0 ∈ 3 be the point representing the limb configuration
at τ = 0, i.e., the discrete version of C(L) ∈ H (see Equation 3).
We then can express the process of generation of a GCM given
by Equation (15) as the map:

Gλ0 : 3→ N0, s.t. Gλ0 (λ0) = 0, Gλ0 (λ) > 0 for all λ 6= λ0.
(17)

Gλ0 (λ) stores the time taken by the subject to modify the
configuration of its limb from λ0 to λ, following the course of
the wave propagation.

While propagating, the wavefront hits the extended
opponent’s body and foil, which produces static effective
objects �(1) ⊆ · · · ⊆ �(nmax) = � that can be reached by the
subject’s foil. The process (see Equation 15) creates the GCM
when the wave propagation ends:

M = {(λ,Gλ0 (λ))}λ∈3 ⊂ Z
4. (18)

Note that for each λ ∈ �, Gλ0 (λ) ∈ N represents the time instant
when the subject’s foil either stops the opponent’s foil or hits the
opponent’s body at location λ. We thus can divide this set into
sets for a defense D and for an attack A (dark green and dark
pink sets in Figure 3B, respectively):

A ∪D = �. (19)

Figure 3C shows two representative examples of the subject
movements in the hand-space. One of them (yellow arrow ending
in the green area) corresponds to a defense action λ ∈ D, i.e., the

subject stops the opponent’s foil, whereas the other (yellow arrow
ending in the pink area) describes an attack λ ∈ A, i.e., the foil
tip hits the opponent’s body.

We can now unfold the trajectories from the hand-space to the
workspace (i.e., solve the inverse kinematic problem). Figure 3D
shows two combat actions corresponding to a defense and an
attack. In the first case (Figure 3D, left), the subject lowers his foil
and stops the opponent’s attack. In the second case (Figure 3D,
right), the subject performs a “two-step” action. First, he lifts the
foil and then moves it down, simultaneously rotating his wrist.
Thus, the subject circumvents the opponent’s foil and then hits
the opponent’s body.

3.2. Cognitive Substrate for Building
Strategies in Dynamic Situations
To master different skills of defense and attack, a fencer learns to
actuate in different situations S1, . . . , Sm simulating parts of real
combat (Figure 4A). Such learning shapes generalized cognitive
maps M1, . . . ,Mn describing the internal representation of each
situation (Figure 3). Thus, the time dimension of the perceived
situations is compacted into the fourth dimension ofM while the
combat-relevant spatiotemporal events are mapped into a virtual
collision space (Figure 4B).

3.2.1. From Single Movements to Series of Actions
As we discussed above, the collision space is configurational.
The whole subject’s limb and the foil are represented by a single
point in H and hence in 3 (blue dot in Figures 3C, 4B), while
the opponent’s body and the foil are augmented and mapped
by the wave-process into static effective objects (green and pink
areas in Figures 3C, 4B). Such virtual objects represent collisions
with the subject’s foil. Thus, depending on the fighting skills, the
fencer gets potential options to attack or to defend by following
a trajectory from the blue dot to either red (A) or green area (D)
(yellow arrows in Figures 3C, 4B).

From the mathematical viewpoint, a GCM, M1(λ0), can be
defined by the mapping Gλ0 (see Equation 18). Now, once the
agent is able to move from λ0 to λ1 ∈ �1 in time Gλ0 (λ1), a
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second GCM can be generated by using λ1 as the initial limb
configuration:M2(λ0, λ1) = {(λ,Gλ1 (λ))}λ∈3. Such a process can
be continued, and we get the chain

λ0 7→ M1 ∋ (λ1, n1), λ1 7→ M2 ∋ (λ2, n2) ,

λ2 7→ M3 ∋ (λ3, n3), . . . , λk−1 7→ Mk ∋ (λk, nk), (20)

where nk = Gλk−1 (λk) is the time taken to move the subject’s
limb from λk−1 to λk, and Mk = {(λ,Gλk−1 (λ))}λ∈3 is the k-th
order GCM. Thus, the fencer can design a route consisting of a
chain of (k + 1) points in the hand-space λ0 → λ1 → · · · →
λk. Such a route allows reproducing a series of concatenated
actions according to a certain strategy. Since each GCM enables
several different movements with the foil (e.g., two yellow curves
in each GCM shown in Figure 4B), each movement, λi−1 →
λi, can be followed by a series of next movements. This leads
to the emergence of a strategy graph and a reach variety of
combat repertoires.

3.2.2. Semantic Description of Strategies Over

Cognitive Substrate
Let us now consider the process of building strategies in detail.
Figure 4C shows the sketch of planning a two-step action. When
the opponent initiates the first movement from a specific starting
position, the subject predicts the evolution of the situation
(yellow square) and invokes the first GCM (Figure 4C, gray
square M1). Green and pink Tetris-like pieces in map M1

illustrate the sets D1 and A1, respectively. We remind that
moving to one of the pieces in D1 or A1 in the hand-space
corresponds to a defense or attack action in the workspace.

Each specific square in the first order map (Figure 4C)m1 : =
(λ1, n1) ∈ M1 can be considered as a motor-motif, i.e., an
essential motor actions of the subject (Colome and Torras, 2014;
Makarov et al., 2016; Calvo et al., 2018a). We now can take one
motor-motif m1 and use it as a new situation for generating the
second motor-motif through a second order GCMs (Figure 4C,
black arrows pointing to gray squares marked as M2). Each
of these GCMs provides several options for the second motif
(Figure 4C, Tetris-like pieces in mapsM2). Such an iteration can
be repeated and thus we get a sequence of motor-motifs:

m1→ m2 → · · · → mk. (21)

Sequences of the form (21) define diverse semantic contents of
the possible chained actions of the subject. For example, the
simplest defense-attack chain is given by (λ1, n1) → (λ2, n2),
where λ1 ∈ D1 and λ2 ∈ A2. Note that there are many such
chains even for a single given situation (Figure 4C). Now the
subject can learn different semantic chains and perform series
of motor-motifs.

3.2.3. Strategy Fitness
Each piece in a Tetris-like map (Figure 4C) represents an action
with some particular features such as imminence, lethality, and
versatility. We then can assign the corresponding fitness values
to all pieces in the maps (Figure 4D). Now taking a particular
chain of motor-motifsm1 → . . .→ mk, the subject can evaluate

its compound fitness and thus select the most suitable strategy
according to his motivation by maximizing, e.g., the safety (thick
blue arrow in Figure 4D).

Let us now introduce definitions for a two-step strategy d1 =
(λ1, n1)→ a2 = (λ2, n2), with λ1 ∈ D1 and λ2 ∈ A2(λ1).

• Imminence: It is the relative time taken by a chain
of motor-motifs:

Fimm(λ1) : = 1−
minλ2∈�2{Gλ1 (λ2)}

maxλ′1∈�1
{min{Gλ′1

(λ2)}}
. (22)

• Lethality: It is the mean injury to the opponent’s body made by
a chain of motor-motifs:

Flet(λ1) : =

∑

λ2∈A2(λ1)
L(λ2)

|A2(λ1)|
, (23)

where L : 3 → [0, 1] is the operator defining the opponent’s
resistance to injury. Here, we use a piecewise linear function
increasing from 0 (null lethality) in the opponent’s feet to 1
(highest lethality) in the opponent’s neck, and decreasing again
to 0.4 in the opponent’s head.
• Versatility: It is the relative size (i.e., the relative cardinality) of

the set of available attacks:

Fver(λ1) : =
|A2(λ1)|

maxλ′1∈�1
{|A2(λ

′
1)|}

. (24)

We note that all strategy features are defined over the point λ1 in
the first ordermapM1. Finally, the compound fitness of a strategy
is given by:

F(λ1) = αimmFimm(λ1)+ αletFlet(λ1)+ αverFver(λ1), (25)

where the factors α define the bias between the strategy features.
Such a bias depends on the subject’s motivation. For example,
if the combat comes to its end, the weights of imminence and
lethality can be raised, whereas at the combat beginning one can
maximize imminence and versatility.

3.3. Two-Step Parry-Riposte Strategies
Let us now illustrate how a complex combat strategy known
as parry-riposte can be built by using the approach shown in
Figure 4. In this case, the subject uses the strength of his foil
to block the opponent’s attack (parry), and then he begins a
counter-attack (riposte) with the aim of winning the combat.

3.3.1. Optimization Over Two-Symbol Semantic

Chains
We consider the initial situation shown in Figure 3A. The
opponent takes a step forward and makes an offensive circular
movement by his foil. As a response, the subject invokes the
cognitive map corresponding to this situation (Figure 3C). In
this case, however, we are interested in the defense movements
only and hence select one of the points from the set D1

(Figure 5A, green surface in the first map highlighted in red).
This defines the parry step d1 = (λ1, n1) ∈ M1, with λ1 ∈ D1,
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FIGURE 5 | Semantic of parry-riposte strategies. (A) Strategies in the hand-space following Figure 4C (initial situation as in Figure 3). In the parry step, the subject

uses a defensive movement d1 reaching some point λ1 in the set D1 (green region). In the riposte step, the subject invokes one of the secondary maps and initiates an

attack (pink points in A2). (B) Implementation in the workspace of a strategy from the map highlighted in yellow in (A). First, the subject’s foil deflects the opponent’s

foil (parry). Then, the attack action is executed (riposte). (C) Fitness of semantic strategies presented over the set D1. The color represents features of the defensive

actions leading to: short/long attack trajectories (imminence), more/less dangerous attacks (lethality), and different/similar offensive actions (versatility). (D) Semantic

meaning of different motor-motifs represented over the set D1. Color represents different combinations of the attributes (I, imminence; L, lethality; V, versatility).

similar to the defense movement shown in Figure 3D. However,
now we consider different options for blocking the opponent’s
foil, i.e., trajectories ending at different green points of the
map d′1 ∈ M1.

Each of the defense movements d′1 gives rise to a new situation
after the parry step (see Equation 21) and a secondary cognitive
map (Figure 5A, see also Figure 4C). Then, the subject can select
an attack movement, i.e., draw a path in the hand-space 3 to
a pink point λ2 ∈ A2 in one of the maps M2. Such a path
defines a riposte step a2 = (λ2, n2), which ends with hitting
the opponent’s body by the subject’s foil. Figure 5B illustrates the
sequence of the subject’s and opponent’s actions in the workspace
W . First, the opponent takes a step forward and attacks. The
subject deflects the opponent’s attack, and the opponent takes a
step back while the subject makes an offensive action and hits
the opponent.

As above-discussed, the subject has a variety of two-symbol
chains {d1 → a2 : λ1 ∈ D1, λ2 ∈ A2(λ1)}. We now can
evaluate the fitness of each semantic chain for a given defensive
movement d1 = (λ1, n1). Figure 5C shows the imminence,
lethality, and versatility of different strategies. It is worth noting
that the strategy features achieve their maxima at different parts
of the setD1. Thus, as it frequently occurs in real combat, there is
no global optimum, and the fencer should resort to a complex
optimization, depending on his motivation. For illustration
purpose, in Figure 5B, we have chosen the strategy maximizing
the imminence and versatility with low lethality (Figure 5A,
highlighted in yellow).

3.3.2. Linking Motor-Motifs to Semantic Meaning
Themeasures of the strategy fitness now can be used to define the
semantic description of the strategies. We continue working with
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FIGURE 6 | Experimental validation of a parry-riposte strategy. (A) Implementation of the strategy in virtual environment. (B) Same as in (A) but executed by the robot.

two-step actions as above and use the definition of motor-motifs.
Then, each motor-motif is a single strategy, which generates
certain fitness measures (Figure 5C).

Now, each point in the defensive set D1 defines some motor-
motif. If a particular fitness measure exceeds a threshold (set
to 0.3 in simulations), then we link the motor-motif to the
corresponding attribute. In our case, each motor-motif can have
up to three attributes: I for imminence, L for lethality, and V for
versatility. Figure 5D shows combinations of the attributes for
different motor-motifs. Thus, the fencer can now get access to the
semantic meaning of each action. Due to significant dimension
reduction, such a meaning can be easily stored and retrieved
on purpose.

3.4. Validation of Approach in Humanoid
Robot
Let us illustrate the above-described theoretical approach in the
developed humanoid robot (see section 2). We use again the
parry-riposte combat situation shown in Figure 5. However, now
we select another, more aggressive riposte strategy than shown in
Figure 5B. This is achieved by checking the semantic meaning

shown in Figure 5D and then by choosing the corresponding
motor-motifs in Figure 5A.

As has been mentioned, the Avatar software allows emulating
a combat situation in virtual reality. Figure 6A shows a series of
snapshots of the Avatar. The Avatar first deflects the opponent’s
foil, and then conducts an effective attack and hits the opponent.

Finally, we implemented the same dynamics in the humanoid
robot. Figure 6B illustrates the sequence of snapshots. The robot
first makes a defense movement and then attacks the opponent.
To get a simple marker of hitting the opponents by the subject’s
foil, we used balloons. In the last snapshots, one can see how one
balloon explodes, which confirms a point scored by the robot in
this combat situation.

4. CONCLUSIONS

The cognitive-motor skills exhibited by humans in fast dynamic
situations are far beyond the abilities of modern humanoid
robots. Object manipulation is one of the prominent examples
widely observed in different sports. In this work, we have
considered the combat game of fencing, which, besides fast
manipulation, includes precise strategic planning. We have
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provided and experimentally validated a novel approach to
building strategies on an abstract cognitive level. The procedure
uses the theory of generalized cognitive maps generated in
a configuration space, the so-called hand-space. We have
shown how GCMs can be constructed in a discrete 3D lattice
representing three degrees of freedom of an upper limb handling
a foil. A neural network simulates the process of the parallel
exploration of different movements of the fencer. It thus
transforms the dynamic combat situation into a static 4D map
encapsulating all relevant events.

The resulting 4D cognitive map can be readily used for
planning actions. However, what is more important, it enables
a possibility to construct multi-action strategies in an abstract
semantic way. Different GCMs can be chained, aiming at human-
like multilevel decision-making. Starting from an initial position
of combat, the fencer can select one of the motor-motifs (a
point in the corresponding GCM) for the next movement. In
turn, this leads to a new situation, which is also described by a
GCM. Such a secondary GCM provides a variety of subsequent
actions. This way, the fencer generates a chain of symbols,
e.g., (d1, a2, a3, d4, . . .) describing the sequence of defense and
attack movements.

We then have introduced the fitness depicting each strategy
(symbolic chain) in terms of the imminence (velocity of actions),
lethality (effect over the opponent), and versatility (variety of
available movements). Note that the fencer can use the strategy
fitness to optimize his actions depending on the motivation (a
higher level of cognition). For example, at the beginning of
combat, the fencer can use imminence and versatility as main
attributes, whereas, at the end, the lethality may be the goal.
We then confirmed our theoretical modeling by using the robot
Torso, which has 3DoF in its upper limbs. To gain versatility,
we have developed an avatar of the robot, which enables close to
real simulations of different fencing situations. The experimental
results validated the approach.

Concluding, the GCM theory and its generalization
to the semantic abstraction provide a functional bridge
between straightforward cognition, dealing with direct
interaction in the workspace, and abstract cognition,
whose impact over the subject’s behavior is less immediate
but much more profound. The semantic level of strategy
description presented here takes a step forward to the latter
ambitious goal.
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