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We study a one-dimensional ring chain of length L with N particles interacting via Morse
potentials and influenced by dissipative forces (passive and active friction). We show that by
negative friction the system can be driven far from the thermodynamic equilibrium states.
For over-critical pumping with free energy several types of coherent motions including uniform
rotations, optical oscillations and waves emerge in the ring. We also show the existence of
a critical particle density nc = N/Lc, below that the particles spontaneously organize into
clusters which can actively rotate. Additionally, the influence of white noise on the clustering
is discussed.
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1. Introduction

After pioneering work by Toda [1983] who analyt-
ically proved the existence of solitons in a special
Hamiltonian lattice system, the excitations in a dis-
sipative Toda chain were studied mainly for the case
of passive friction or embedding into a heat bath
[Bolterauer & Opper, 1981; Toda & Saitoh, 1983;
Ebeling & Jenssen, 1991; Jenssen & Ebeling, 2000].
Recently a concept of dissipative solitons propagat-
ing in systems with energy supply has attracted
great interest [Chu & Velarde, 1991; Christov &
Velarde, 1995]. In our previous work we have stud-
ied dissipative lattices with Toda interactions and
have shown [Makarov et al., 2000; Ebeling et al.,
2000] that dissipative solitons can emerge in
these systems due to appropriate energy-dissipation

balance. The Toda potential is given by

UTi =
a

b
(e−bri − 1) + ari (1)

and it is closely related to the exponential potential

UEi =
a

b
e−bri . (2)

One of the reasons for the special interest in Toda
systems is the existence of exact solutions in the
Hamiltonian case and for the statistical thermody-
namics [Toda, 1983; Toda & Saitoh, 1983]. On this
basis it has been shown e.g. in [Bolterauer & Op-
per, 1981; Jenssen & Ebeling, 2000] that phonon
excitations dominate the spectrum at low tempera-
tures and strongly localized soliton excitations are
the most relevant at high temperatures. Here we
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shall concentrate on a Morse lattice with dissipa-
tive, velocity-dependent friction interacting with a
heat bath modeled by white noise. We differ be-
tween passive friction where the friction coefficient
γ(v) is strictly positive and active friction when
γ(v) also contains a negative part corresponding to
pumping of free energy into the system [Rayleigh,
1945; Schweitzer et al., 1998; Ebeling et al., 1999;
Erdmann et al., 2000].

The Morse potential (Fig. 1) is a combination
of two exponential interactions with different signs
[Ebeling et al., 1989] and is defined by

UMi =
a

2b
[e−2bri − 2e−bri ]

=
a

2b
(e−bri − 1)2 − a

2b
. (3)

For all potentials (1)–(3) the parameters b and
a control the stiffness of the spring connecting two
interacting particles and the amplitude of the cor-
responding force. The coordinates

ri = xi+1 − xi − σ (4)

represent the distance between two neighboring par-
ticles located at positions xi+1 and xi reduced by
the equilibrium length of the springs, σ. In this no-
tation Morse and Toda potentials have their min-
imum at ri = 0. For small deviations from the
minimum we obtain the frequency of harmonic os-
cillations, ω0, which is the same for UTi and UMi

ω2
0 =

ab

m
(5)
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Fig. 1. Shapes of Morse, UM , Toda, UT , and exponen-
tial, UE , potentials (a = 1, b = 1 and σ = 1; units are
[a] = mω2

0/b, [σ] = b−1).

where m is the mass of the particles. Morse and
Toda potentials possess an attracting part, whereas
the force derived from the exponential potential (2)
is purely repulsive. Nevertheless, exponential and
Toda potentials lead to equivalent dynamical sys-
tems since in both cases the effective potential de-
scribing the motion of the ith particle

U eff
i (xi, xi−1, xi+1) = Ui−1(ri−1) + Ui(ri) (6)

has equivalent cosh-shape. In contrast, for Morse
interaction the shape of the effective potentials de-
pends on the distances between the particles

di+1,i−1 = xi+1 − xi−1 = ri + ri−1 + 2σ

i.e. on the local particle density. Namely, the shape
can change from mono-stable to bistable (Fig. 2).
As we shall see further this leads to basically new ef-
fects e.g. the formation of clusters of particles. If the
springs’ stiffness, b, is very small the effective poten-
tials Ui

eff for a Toda ring is almost harmonic and for
large b it becomes similar to hard-core potentials.
The main difference between Toda and Morse inter-
actions is their behavior for long distances between
the particles. Only for Morse interaction the forces
tend to zero for ri → ∞. As can be seen in Fig. 1
the Morse potential is qualitatively similar to the
LJ-potential that is used to describe real molecular
interactions. Compared to the Toda potential the
Morse potential is more realistic, but there are not
many exact analytical results for a Morse chain.

Results of recent investigations concerning
active Toda rings can be found in [Makarov et al.,
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Fig. 2. Shapes of effective Morse potential Ueff
i for different

distances between particles (a = 1, b = 1 and σ = 1). The
effective potential is bistable for di+1,i−1 > 2(σ + b−1 ln 2)
and mono-stable otherwise.
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2000; Ebeling et al., 2000; Makarov et al., 2001].
There it has been shown theoretically, numerically
and experimentally that for different types of active
friction stable running solitons and soliton-like ex-
citations can be generated in a Toda ring. Makarov
et al. [2001] tested their theoretical predictions ex-
perimentally using an analog electrical circuit and
found a good agreement between theory and ex-
periment. As indicated above a Toda ring effec-
tively obeys the same dynamical equations like a
ring with purely repulsive exponential interactions
and for high particle densities the dynamics of a
Morse ring is also very similar. The essential dif-
ference in dynamics of Morse and Toda lattices
appears at low particle densities.

The paper is organized as follows. In Sec. 2
we discuss dissipative forces acting on the particles
and introduce the equations of motions. Section 3
is devoted to the investigation of the dynamics of
a deterministic Morse ring with passive forces and
to comparing the results to the Toda case. We
shall show that clustering processes in a Morse ring
strongly depend on the relation of the average dis-
tance between the masses, l = L/N , and the equi-
librium length of the Morse springs, σ. Clustering
may be observed if l � σ, i.e. for the low enough
mean particle density, n = N/L. In the oppo-
site case of high densities the particles mainly feel
the exponential repulsion and therefore behave very
similar to the Toda case. In Sec. 4 we investigate
the active Morse ring and discuss the appearance of
oscillatory and wavy motions that can be observed
inside clusters. In Sec. 5 we study the influence of
noise on the clustering processes and give a simple
phase transition like diagram. Finally, in Sec. 6 we
summarize our results.

2. Dissipative Forces and Motion
Equations

Let us consider a one-dimensional model of active
Brownian particles consisting of N point masses m
located at the coordinates xi (i = 1, . . . , N) on a
ring of length L. The mean distance between par-
ticles, l, and the particle density, n, are

l = n−1 =
L

N
. (7)

The particles are connected to their next neighbors

at both sides by pair interaction forces

Fi = F (xi−1, xi, xi+1) = −∂U
eff
i

∂xi
. (8)

The periodic boundary conditions assume

xi+N = xi + L . (9)

We shall discuss the dynamics of a homogeneous
finite size Morse ring with particles influenced by
a velocity dependent friction forces Γ(vi) and later
we shall also include the effects of a coupling of
the system to a heat bath modeled by additive
Gaussian white noise. With regard to all influences
the dynamics of our Brownian particles is deter-
mined by the following Langevin equations

dxi
dt

= vi , m
dvi
dt
−Fi = Γ(vi)+m

√
2Dζi(t) . (10)

The white noise on the r.h.s. of (10) is characterized
by

〈ζi(t)〉 = 0 〈ζi(t)ζj(t′)〉 = δijδ(t − t′) .

The constant D controls the intensity of the
stochastic forces representing the interactions be-
tween Brownian particles and surrounding heat
beat (e.g. smaller molecules). The deterministic dis-
sipative force in (10) is given by Γ(vi) = −γ(v2

i )vi.
As a simple model we consider the active friction
function earlier proposed in [Schweitzer et al., 1998;
Ebeling et al., 1999]

γ(v2) = γ0 −
d2q

c+ d2v2
= γ0 −

q
c

d2
+ v2

. (11)

In this model active particles are characterized
by internal energy depots and internal dissipation
[Schweitzer et al., 1998; Ebeling et al., 1999]. The
parameter γ0 is the usual viscous friction parameter,
while q describes the flux of energy from an external
reservoir or field into the particles. The parameter c
is connected to internal dissipation and d2 controls
the conversion of the energy received from the field
into kinetic energy (according to the r.h.s. of (11)
their ratio c/d2 is important). In case of no feed-
ing with energy (q = 0) or no energy conversion
(d2 = 0) the friction is purely passive. It is useful
to rewrite the friction term (11) in the form

γ(v2) = γ0d2
v2 − µ
c+ d2v2

(12)
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with
µ =

q

γ0
− c

d2
. (13)

Here µ plays the role of a bifurcation parame-
ter. Since γ(v2) = 0 for v = ±√µ, a single
pumped particle aims to reach one of these veloci-
ties in the stationary state (corresponding to clock-
wise/counterclockwise rotations on the ring). This
corresponds to so-called active motions. Parameter
values µ < 0 lead to a damped system. For nega-
tive µ the only stationary stable velocity is v = 0,
i.e. all motions decay to the rest after a relaxation
time. For µ > 0 the friction term γ(v2) converges
to γ0 at large velocities while for small velocities
v2 < µ the friction function is negative. This region
corresponds to a pumping with free energy at the
cost of the external reservoir and the dynamics de-
velops active forms of motions. Thus a system with
a single particle undergoes a pitchfork-bifurcation
[Wiggins, 1996] at µ = 0. We shall see below that
near (v, µ) = (0, 0) the active friction introduced
in (11) is similar to the well-known Rayleigh model
[Rayleigh, 1945]

γ(v2) = γ0(v2 − µ) . (14)

For v2 � µ both models behave differently. In this
limit the Rayleigh-model diverges, while the depot
model converges to the passive (viscous) friction.

Notes on units. Before we continue with the dis-
cussion of the equations of motions it is useful to
reduce the number of parameters in our model by
choosing appropriate units of reference. Since the
ring is homogeneous we define m as unit mass, b−1

as unit length and ω−1
0 as unit time. Then we may

simply set m = 1, b = 1 and ω0 = 1 whenever
they appear in the equations of motions. This pro-
cedure automatically implies that all parameters
are given in these units as well (e.g. [γ0] = mω0,
[Ui] = mb−2ω2

0, etc.) and with respect to (5) we
also have a = 1. Besides, we fix c/d2 = 1 through-
out the whole paper i.e. the energy conversion rate
of particles is equal to the internal dissipation rate.
This choice of parameters has no qualitative conse-
quences on the dynamics, but the variation of the
parameter µ is now exclusively connected to varia-
tions of the ratio q/γ0. With these conventions we
can rewrite Morse (3) and Toda potential (1)

UMi =
1

2
(e−ri − 1)2 − 1

2

UTi = e−ri − 1 + ri ,

(15)

the friction coefficient (12)

γ(v2) = γ0
v2 − µ
1 + v2

(16)

and the Langevin equations (10)

dxi
dt

= vi ,
dvi
dt
− Fi = −γ(v2

i )vi +
√

2Dζi(t) . (17)

where vi is the velocity of the ith particle that is now
equivalent to its momentum in the chosen units.

3. Deterministic Morse Ring
with Passive Damping Forces

Let us start with noise free (deterministic) system
by setting D = 0 in (17). Besides we assume that
the friction is purely passive i.e. µ < 0 (γ(v2) > 0).
In the units chosen above, the Hamiltonian of the
conservative ring is

H =
N∑
i=1

[
v2
i

2
+ Ui

]
. (18)

where potential energy Ui is defined by (15). For
the dissipative system with µ < 0 its full energy
decays in time

dH

dt
= −

∑
γ(v2

i )v2
i ≤ 0 . (19)

Thus a minimum of the potential energy is finally
approached. Further, besides linear coordinates, xi,
we shall use N − 1 relative coordinates, ri, (4) and
the coordinate of the “center of mass”, s,

s =
1

N

N∑
i=1

xi . (20)

The Nth relative coordinate follows automatically
from the others because of the constant ring length
L. The relative coordinates, ri, obey the condition

1

N

N∑
i=1

ri = l − σ (21)

where (l − σ) is the mean elongation of the springs
due to the possible mismatch between the ring
length, L = Nl, and the sum of the equilibrium
lengths of springs given by Nσ. Obviously the full
potential energy U =

∑
i Ui of the ring does not de-

pend on s but only on the relative coordinates ri. In
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the case of constant dissipative force (γ(v2) = γ0)
the equations of motion for a Toda ring are

r̈i + γ0ṙi = 2e−ri − e−ri+1 − e−ri−1 ≡ fT (rj)

s̈+ γ0ṡ = 0 .
(22)

For γ0 = 0 the system (22) is of Hamiltonian
type and as we know from Toda’s theory [Toda,
1983; Landa, 1996] it possesses analytical solutions
e.g. soliton solutions. For passive dissipative forces
γ(v2) > 0 the attractors of the system are given by
the minima of the potential energy U since the full
energy decays in time (19). For a Morse ring we
find the similarly looking dynamical equations

r̈i + γ0ṙi = (2e−2ri − e−2ri+1 − e−2ri−1)

− (2e−ri − e−ri+1 − e−ri−1)

= fT (2rj)− fT (rj) ≡ fM (rj)

s̈+ γ0ṡ = 0 .

(23)

In the high particle density limit (l � σ) the
relative coordinates satisfy the condition ri � 0.
Hence, we get asymptotically fM(rj) → fT (2rj)
and find in the Morse chain Toda-like solutions with
stiffness 2b for high particle densities.

In order to study the steady states of the effec-
tively damped systems with µ < 0 we begin with
an investigation of the full potential energy in Toda
and Morse rings. In case of a Toda ring the full
potential energy UT =

∑
i U

T
i has a single (global)

minimum at ri = l−σ corresponding to an equidis-
tant distribution of all particles on the ring. This
property is valid for any parameter values. Thus
independent of the initial conditions and param-
eter values the equidistant stationary distribution
is realized in the damped Toda ring. For l < σ
(l > σ) all springs in the stationary state are com-
pressed (decompressed) with regard to their equilib-
rium length, σ. Now let us look at the ring with the
Morse potential given by (15). Similar to the Toda
potential the Morse potential is repulsive for ri < 0
and attractive for ri > 0 but in contrast to UTi
the Morse potential converges to zero for ri → ∞.
The main consequence is that the effective poten-
tials become bistable (Fig. 2) if the mean distance
between the particles, l, is large enough. Hence the
equilibrium states now depend on the mean particle
density n = l−1 and the equilibrium spring length
σ. To describe the physics of the Morse ring that
is in parts known from equilibrium statistical me-
chanics of the one-dimensional gas [Kac et al., 1963;

Feynman, 1972; Percus, 1987] we study the minima
of the full potential energy given by

UM (r1, . . . , rN ) =
1

2

N∑
i=1

[(e−ri − 1)2 − 1] . (24)

Introducing Xi = e−ri , Λ = e−N(l−σ) and using (21)
we can rewrite (24)

UM (r1, . . . , rN )

=UM (X1, . . . , XN−1)

=
1

2

( Λ

ΠN−1
j=1 Xj

−1

)2

−N+
N−1∑
i=1

(Xi − 1)2

. (25)

Studying the minima of the potential energy UM

we find that the equidistant distribution ri = l − σ
or Xi = Λ1/N corresponds to a minimum only as
long as the particle density is higher than a critical
value i.e.

n = l−1 > nc =
1

ln 2 + σ
. (26)

This property of the Morse ring can be obtained
from an analysis of the Hessian matrix H[UM ]. In
the density region n � nc Morse and Toda rings
show qualitatively the same mono-stable behavior.
For low particle density, n < nc, the equidistant
distribution, ri = l−σ, corresponds to a local max-
imum of UM , hence is unstable. In this situation we
always have N equivalent global minima each cor-
responding to the configuration where all particles
form one big cluster of size N , i.e. each particle is
located in a minimum of the bistable effective po-
tentials caused by its neighbors. If we imagine that
there are N possibilities to fill the first place in the
cluster it becomes clear that we have N such min-
ima. The important question is: At which densities
nc = nc(N) do these new minima appear for the
first time? To answer this question let us consider
several simple cases.

For N = 2 the potential energy (25) depends
on one independent coordinate, X1, only and has
minima at

X1 =


√

Λ Λε

(
1

4
, ∞

)
1

2
± 1

2

√
1− 4Λ Λε

(
0,

1

4

) (27)

The first solution (one minimum) corresponds to
the equidistant distribution already described above
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Fig. 3. Potential energy of the Morse ring with three particles and σ = 1 leading to nc = 0.591 and nc = 0.611. The x-axis
corresponds to the distance between particles 1 and 2 and the y-axis to the distance between particles 2 and 3. (a) Mono-stable
region n = 0.612 > nc. (b) Transition region nc > n = 0.607 > nc. (c) Pure clustering region nc > n = 0.579. The units are
[U ] = mb−2ω2

0 , [x] = [y] = b−1 and [n] = b.
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and the second one (two minima) to clusters. Thus
we have one bifurcation at Λ = 1/4 and hence two
critical values of the particle density are the same,
nc = nc. Considering this bifurcation at the criti-
cal density nc (26) we introduce in addition to µ a
second bifurcation parameter

α = l − (σ + ln 2) . (28)

Hence, the parameter α accounts for the deviation
of the mean particle distance, l, from its critical
value. Values α < 0 (α > 0) correspond to mono-
stable (bistable) potential energy UM .

For the more complicated case of three parti-
cles, N = 3, the potential energy depends on two
variables X1 and X2. Here we find that UM has
minima at

(X1, X2) =



(Λ
1
3 , Λ

1
3 ) Λε

(
1

8
, ∞

)
(Z0, Z0) Λε

(
0,

4

27

)
(1− Z0, Z0) Λε

(
0,

4

27

)
(Z0, 1− Z0) Λε

(
0,

4

27

)
(29)

where Z0 > 0 is the solution of f(Z) ≡ Z3 − Z2 +
Λ = 0. The first solution again corresponds to equal
distances between the particles and the Λ-interval
follows from (26). The other three solutions rep-
resent the three stationary cluster configurations.
Here the condition for Λ may be obtained in the
following way: f(Z) has the only local minimum
f(2/3) = Λ − (4/27) and the only local maximum
f(0) = Λ. Thus f(Z) = 0 has a positive solution
only if Λ < 4/27 (note that Λ > 0, Xi > 0 due to
their definition). From the critical value Λ = 4/27
we obtain

nc(3) =
3

ln
27

4
+ 3σ

> nc ⇔ l < σ + ln

(
27

4

) 1
3

.

(30)

This means that there is a transition interval
(nc, nc) where both cluster and equidistant stable
configurations coexist. Figure 3 shows three plots of
UM for the different density regions. The procedure
applied for N = 3 can be similarly used for N > 3.
The calculations are more difficult but the results
are qualitatively the same. The transition interval

(1, 1, 1) (1, 1, 0)
(1, 0, 1)
(0, 1, 1)

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

  Fig. 4. Sketch diagrams of stable and unstable configura-
tions in the Morse ring with three particles (α > 0 and µ < 0).
The equidistant configuration (1, 1, 1) corresponds to a local
maximum of the potential energy and becomes a minimum
for n > nc (α < 0). The second ring corresponds to the sad-
dle points of the potential energy (see also Fig. 3). The third
ring represents the minima (clusters) existing for n < nc.

(nc, nc) becomes larger with increasing N but is
obviously bounded by the condition nc < σ−1.

In addition to the extrema for n < nc there
appear many saddle points in the global potential
energy landscape. These metastable points corre-
spond to symmetric combinations of smaller clus-
ters. In order to count the number of all equilibria
(minima, maxima and saddles) for a ring with N
particles and n < nc we introduce binary vectors
of length N excluding (0, 0, . . . , 0). That means
we assign 1 to particle i if it is the first particle
in a cluster and 0 otherwise. For example, the
vector (1, 0, . . . , 0) corresponds to the global min-
imum with the first particle at the beginning of
the N -cluster and (1, 1, . . . , 1) to the local maxi-
mum corresponding to equal distances between all
particles. Then the total number of equilibria is
WN = 2N − 1 and the number of saddle-points is
W sp
N = 2N − 2 −N . Figure 4 shows the configura-

tions corresponding to the maximum, minima and
saddles in case N = 3 and n < nc. In the case of
effectively passive friction µ < 0 the ring will relax
into one of the minima of the potential energy.

4. Deterministic Morse Ring
with Active Friction

Deterministic dissipative Toda chains with energy
supply have been studied in several recent pa-
pers e.g. with the aim to model stationary solitons
[Ebeling et al., 2000; Makarov et al., 2000; Makarov
et al., 2001]. Makarov et al. [2001] gave an extensive
discussion of an active Toda chain with Rayleigh-
type friction and Ebeling et al. [2000] investigated
the behavior of a Toda chain in the limit of large
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parameter values b using the friction function in-
troduced in (13). Before discussing an active Morse
ring characterized by µ > 0 we shall summarize the
results already known for active Toda chains. For a
Toda ring with N particles driven by depot energy
there exist N + 1 qualitatively different attractors
which could be identified as two stationary uniform
rotations (ṡ, ri) = (±√µ, l − σ) and N − 1 oscilla-
tory modes (corresponding to one-soliton-solutions,
two-soliton-solutions, etc. and finally stationary, op-
tical oscillations if N = even). Each attractor has
a symmetric partner (e.g. left-handed and right-
handed rotations). Compared with a Toda system
we find nearly the same behavior for a Morse ring
with high densities n > nc. Qualitatively new re-
sults can be expected in the Morse ring chain if
n < nc, i.e. at low particle densities. Thus in con-
trast to previous investigations of a Toda ring which
concentrated on the existence of stable waves we
will now also look for active motions of or within
clusters. In order to understand the new effects we
begin our studies of an active Morse ring with the
first nontrivial case N = 2 which is already very
suitable to point out the parallels and differences in
the dynamics of active Toda and Morse rings.

4.1. Morse ring with two particles

For a ring with N = 2 effective and full potential
energies are equivalent. In this case we are able to
carry out a complete analysis of the phase space of
the system. We shall study on bifurcations in the
parameter space (µ, α). For simplification we also
set the viscous friction parameter γ0 = 1 whenever
dealing with an active ring. Then a variation of the
bifurcation parameter µ is equivalent to a change
of the energy uptake rate q. For convenience we
introduce the following coordinates

y = x2 − x1 − L/2 py = v2 − v1

z = x1 + x2 pz = v1 + v2 .
(31)

The coordinate y plays the role of a relative coordi-
nate and z may be interpreted as “center of mass”
coordinate. Then we can rewrite the equations of
motions for active Morse ring with two particles in
the form

ẏ = py

ż = pz

ṗy = 4A sinh(y)− 4A2 sinh(2y) + Γy(py, pz)

ṗz = Γz(py, pz)

(32)

where

Γy(py, pz) = Γ

(
pz + py

2

)
− Γ

(
pz − py

2

)
Γz(py, pz) = Γ

(
pz + py

2

)
+ Γ

(
pz − py

2

) (33)

and

A =
1

2
e−α . (34)

In this notation the critical value α = 0 corresponds
to A = 1/2 and α > 0 (α < 0) to A < 1/2
(A > 1/2). The dynamical system (32) is invari-
ant under the transformation (y, z, py, pz, t) →
(−y, −z, −py, −pz, t). Time reversal is excluded
because of the dissipative terms. The z coordinate
has no influence on the dynamical flow so the sys-
tem (32) can be effectively reduced to the system
for (y, py, pz). We immediately see, that all fixed
points are situated in the (py = 0)-plane of the re-
duced 3d-phase space. We now discuss the steady
states for different signs of the bifurcation parame-
ters µ and α. In order to give a complete discussion
for a Morse ring with two particles at this point
we shall include some short remarks concerning the
damping case µ < 0 in spite of the fact that it is
already covered by the discussion in Sec. 3.

4.1.1. Steady states and their
bifurcations

In the parameter region µ < 0, α < 0 the reduced
system (32) has only one attractor (due to (19) and
mono-stability of the effective potential), which is
given by the globally stable steady state in the ori-
gin S0 = (0, 0, 0) with eigenvalues

λ1 = µ , λ2,3 =
1

2
(µ±

√
µ2 + 16A − 32A2) .

Now let us consider bifurcations of this steady state
(that exists for all parameter values) when param-
eters µ and α are changed. When α passes through
zero to the domain µ < 0, α > 0 the system (32)
undergoes a pitchfork bifurcation. Two new stable
steady states S1,2 = (y1,2, 0, 0) appear, while S0

becomes a saddle. This corresponds to the bistable
interaction potential with minima at

y1,2 = ± cosh−1
(

1

2A

)
. (35)
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The new stable steady states S1,2 have the following
eigenvalues

λ1 = µ , λ2,3 =
1

2
(µ±

√
µ2 − 8 + 32A2) ,

and correspond to cluster configurations of the par-
ticles in the ring. Now let us come back to the
steady state S0 and parameter domain µ < 0, α <
0. Increasing µ, again at µ = 0 we get a pitchfork bi-
furcation. In the domain µ > 0, α < 0 correspond-
ing to over-critical pumping and mono-stability of
the effective Morse potential a new pair of sym-
metric stable steady states S3,4 = (0, 0, ±2

√
µ)

appears. Their eigenvalues are

λ1 = − 2µ

1 + µ
,

λ2,3 = −µ±
√
µ2 + (4A− 8A2)(1 + µ)2

1 + µ
.

These steady states correspond to constant rota-
tions of the particles with equal distances, L/2,
between them. Besides the pitchfork bifurcation,
on the line µ = 0 a Hopf bifurcation occurs. The
steady state in the origin, S0, becomes unstable and
a limit cycle is born. As we shall see further this
limit cycle is stable. It corresponds to so-called
“optical” oscillations, when particles oscillate in
anti-phase. Similar bifurcations occur with the
steady states S1,2 (α > 0), when µ passes zero. New
stable steady states S5−8 = (y1,2, 0, ±2

√
µ) appear

in the region µ > 0, α > 0. Their eigenvalues are

λ1 = − 2µ

1 + µ
,

λ2,3 = −µ±
√
µ2 + 2(4A2 − 1)(1 + µ)2

1 + µ
.

Additionally, two limit cycles are born at µ = 0 via
Hopf bifurcations. The steady states S0−4 are all
unstable in this domain which corresponds to an ac-
tive Morse ring with bistable potential. The steady
states S5−8 correspond to left/right-rotations of
two-particle-clusters and limit cycles describe op-
tical oscillations of particles grouped in a cluster.

Thus we have found two bifurcation lines for
steady states: (i) α = 0 with pitchfork bifurcation
and (ii) µ = 0 with pitchfork and Hopf bifurcations.

4.1.2. Periodic orbits

As we have seen above, depending on α one or two
limit cycles appear via Hopf bifurcation when µ

passes zero to positive values. These limit cycles
lie within the invariant manifold (pz = 0) of the
dynamical system (32). Let us start with an in-
vestigation of the dynamics for small positive µ.
In the mono-stable region α < 0 ⇔ A > 1/2 we
can write A = (1/2) + δ. Changing coordinates
y = βu, py =

√
βv, pz =

√
βw and τ = t/

√
β with

β = 4δ(1+ 2δ) and expanding sinh and Γy/z in (32)
for small amplitudes (requires µ� 1) we obtain

u̇ = v

v̇ = −u+ ε

{
v[16(1 + 2δ)µ − v2 − 3w2]

− 3 + 8δ

6δ
√
δ + 2δ2

u3

}
ẇ = εw[16(1 + 2δ)µ − 3w2 − v2]

(36)

where ε = (1/32)(δ + 2δ2)−(3/2) is a small parame-
ter and u̇ = du/dτ . The approximation of the sys-
tem (32) by the perturbed harmonic system (36)
is valid as long as δ � 0.2 and µ � 32

√
δ be-

cause under these conditions the perturbation be-
comes sufficiently small. We can see that in the
case of w = 0 (or v = 0) the dissipative terms in
(36) are of Rayleigh-type. Using cylindrical coor-
dinates (a, θ, w) with (u, v) = (a cos θ, −a sin θ)
and θ = φ + τ (where a = a(τ) and φ = φ(τ) are
slow functions of τ) we can apply the method of
averaging [Guckenheimer & Holmes, 1983] and get

ȧ = −εa
8
{3a2 + 4[3w2 − 16(1 + 2δ)µ]}

ẇ = −εw
2
{3a2 + 2[w2 − 16(1 + 2δ)µ]}

φ̇ = ε
a2(3 + 8δ)

16δ
√
δ + 2δ2

.

(37)

Now we can follow the proof given in [Makarov
et al., 2001]. In the averaged system (37) the first
two equations do not depend on φ so we can con-
sider them separately from the third one. Addi-
tionally the system (37) is symmetric with regard
to the transformation a→ −a and (or) w→ −w so
we can restrict our investigations to the first quad-
rant of the (a, w)-plane. There we find four steady
states P1−4 =P 1−4

√
µ(δ + 2δ2) with

P 1 = (a1, w1) = (0, 0) P 2 =

(√
128

15
,

4√
5

)

P 3 =

(
8√
3
, 0

)
P 4 = (0, 4) .

(38)
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P1 is unstable, P2 is a saddle and P3/4 are stable.

The fixed point P4 corresponds to φ̇ = 0 and de-
scribes the rotation of the particles already found.
The third steady state, P3, corresponds to a stable
limit cycle in the integral surface w = 0 ⇔ pz = 0.
Moreover it was shown in [Makarov et al., 2001]
that systems like (36) do not have any other at-
tractors. In the mentioned work the existence of
a globally attracting domain bounded by two ellip-
tical curves in the (a, w)-plane has been proven.
Then it has been shown that this domain does
not contain other attractors rather than P2 and
P3/4 by using Bendixon’s criterion [Guckenheimer
& Holmes, 1983]. Inverting the transformations we
obtain the (dimensionless) oscillation amplitudes
and frequency

ym = 2

√
µ

3(δ + 2δ2)
pm = 4

√
µ

3
ω = 2

√
δ + 2δ2 .

(39)

Figure 5(a) shows the numerically found limit cy-
cle. Its amplitude is in a good agreement with the
analytical estimate (39).

The approximation of the oscillation amplitude
pm can also be calculated using the balance equa-
tion of mechanical energy (19). For stationary mo-
tions we demand

0 =
d

dt
〈H〉 = 〈Ḣ〉 . (40)

Hence for a limit cycle of period 2π on the plane
pz = 0 we get from (40)

0 =
1

2π

∫ 2π

0
dθΓ

(
py(θ)

2

)
py(θ) , (41)

where θ is the angle coordinate. As shown above for
small amplitudes of py (corresponding to small µ)
we can replace the original Γ by the Rayleigh model.
Using a harmonic oscillation ansatz for py we get
the same oscillation amplitude pm like in (39). The
frequency ω given in (39) is the frequency of the
linearization. Then automatically the y-amplitude
is given by

ym =
pm
ω
. (42)

More generally Eq. (42) can be obtained by de-
manding that for periodic solutions the Virial The-
orem holds. Neglecting center of mass motions we
get from the theorem

2〈Ky〉 =

〈
y
∂

∂y
U

〉
. (43)

Here Ky = p2
y/2 stands for the kinetic energy of the

relative motion and U = U(y) is explicitly given in
(44). Both (40) and (43) together provide an al-
gorithm to estimate the amplitudes of oscillations
if the transformation (32) into the standard form
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Fig. 5. Periodic orbit in the (pz = 0)-plane for the two particles Morse ring. (a) Mono-stable case, α < 0. Initial conditions
and parameter values are (y(0), py(0), pz(0)) = (0, 0.7, 0.3) and α = −1 (this corresponds to δ = 0.86). The amplitudes of
the limit cycle are ym = 0.076 and pm = 0.23. Analytical estimate by (39) gives ym = 0.075 and pm = 0.23. (b) Bistable
case, α > 0. Initial conditions and parameter values are (y(0), py(0), pz(0)) = (0, 0.7, 0.3), and α = 1 (this corresponds to
δ = 0.32). The second periodic orbit arises from reflection at the py-axis through y = 0. The amplitudes of the limit cycle are
ym = 1.82 and pm = 0.23. Analytical estimate by (48) gives (y − y1)m = 0.175 with y1 = 1.66 and pm = 0.23.
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(36) is not possible, but the structure of possible
solutions is known.

Let us now consider α > 0 when the interac-
tion potential is also bistable. Similar to the pre-
vious situation we use A = (1/2) − δ with δ > 0.
Moreover we have δ < 1/2 due to A = 0.5e−α > 0.
The conservative contribution to the dynamics of
the relative coordinate y in (32) is connected to the
effective interaction potential

U(y) = 2A2[cosh(2y)− 1]− 4A[cosh(y)− 1] . (44)

The height of the potential wall between the minima
y1,2 existing for α > 0 is ∆U = U(0) − U(y1/2) =

4δ2. Up to fourth order terms U(y) can be approx-
imated by the bistable potential

U(y) =
â

2
y2 +

b̂

4
y4 + const. , (45)

known from the Duffing oscillator. The parameters
are â = 4A(2A − 1) and b̂ = (2/3)A(8A − 1). We
begin our analysis with the case µ � ∆U . That
means that the energy provided by the reservoir is
not large enough to overcome the potential barrier.
Thus we shall study the dynamics near the poten-
tial minima. Because of the U ’s symmetry it is suf-
ficient to investigate the dynamics near one of the
steady states S1 with y = y1. Here the classical av-
eraging method like in (36) still works. Introducing
new coordinates y = βu+ y1, py =

√
βv, pz =

√
βw

and τ = t/
√
β with β = 8δ(1 − δ) and expanding

we obtain from (32)

u̇=v

v̇=−u+ε

{
− 6
√

2u2−
√

2−2δ(3+16δ−16δ2)

24(δ−1)2
√
δ3

u3

−v[v2+3w2−32(1−δ)δµ]

}
ẇ=−εw[3v2+w2−32(1−δ)δµ]}

(46)
with ε = 1/64

√
2δ3(1− δ)3. Averaging gives

ȧ = −εa
8
{3a2 + 4[3w2 − 32(1− δ)δµ]}

ẇ = −εw
2
{3a2 + 2[w2 − 32(1− δ)δµ]}

φ̇ = ε
a2
√

2− 2δ(3 + 16δ − 16δ2)

64(δ − 1)2
√
δ3

.

(47)

From the stability analysis of the averaged system
(47) we find for the original system (32) the stable

limit cycle with

(y − y1)m =

√
2µ

3(δ − δ2)
pm = 4

√
µ

3

ω = 2
√

2(δ − δ2)

(48)

Comparing with (39) for the mono-stable case we
have the same amplitude of momentum pm but a
different y-amplitude and frequency. This harmonic
approximation requires µ� 2

√
(2− 2δ)δ. Because

of the y1,2-symmetry we now have two limit cy-
cles (one of them is plotted in [Fig. 5(b)]) in the
(pz = 0)-plane instead of the single limit cycle when
α < 0 [Fig. 5(a)]. All these limit cycles correspond
to asymptotically stable anti-phase (optical) oscilla-
tions of the two particles on the ring. In the mono-
stable case [Fig. 5(a)] the particles oscillate around
the equilibrium distance L/2 (〈y〉 = 0), while in
the bistable case [Fig. 5(b)] they oscillate within a
cluster staying close to each other (〈y〉 = 1.66).

A further change in the attractor structure of
the system (32) occurs, when the energy uptake
rate q (respectively µ) is large enough to overcome
the potential barrier ∆U , in other words when the
pumping pushes the system over the separatrix ex-
isting only for positive α. In our computer exper-
iments we realized this situation by changing ∆U
and keeping µ constant. In this case the two limit
cycles melt and the result is a single limit cycle
which lies again in the invariant manifold (Fig. 6).

For an estimation of the new attractor the har-
monic ansatz is not sufficient and we apply the solu-
tions known from the conservative Duffing oscillator
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Fig. 6. Bistable Morse ring N = 2. Numerically calculated
periodic orbit in the (pz = 0)-plane with initial condition
(0, 0.4, 0).
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(45) to the averaging concept generated by (40) and
(43). This automatically implies that we restrict
ourselves to low oscillation amplitudes i.e. small
parameters µ and δ, because otherwise the devia-
tion from the original system (32) will be too large.
Actually we discuss at this point a Duffing system
with Rayleigh pumping. Under these assumptions
the equation for the homoclinic orbit connecting
(y, py) = (0, 0) to itself reads

py = ±

√
ây2 +

b̂

2
y4 . (49)

For energy values E > â2/4b̂ all solutions of the
conservative Duffing problem are given by

y(t) = Y cn(θ, k) θ = Ωt . (50)

The oscillation frequency Ω is connected with the
amplitude Y and the elliptic modulo kε(0, 1) by

Ω =

√
â+ b̂Y 2 k =

√
b̂

2

Y

Ω
. (51)

The period of oscillations is Θ = 4K(k) where K(k)
is the complete elliptic integral of the first kind. A
more detailed discussion of the Duffing system can
be found in [Landa, 1996]. From (50) we get

p(t) = Y Ω sn(θ, k)dn(θ, k)

= P sn(θ, k)dn(θ, k) ≡ Pg(θ, k) . (52)

Using (40) and the Rayleigh-approximation we can
calculate P (for P 6= 0) numerically for each value

k from the equation

P (k)2 = 4µ

∫ 4K(k)

0
dθg2(θ, k)∫ 4K(k)

0
dθg4(θ, k)

. (53)

For each pair (P (k), k) we then calculate Y and Ω
and test the criterion (43) by plotting the function

Φ(k) = 〈ây2〉+ 〈b̂y4〉 − 〈p2
y〉 . (54)

with average values taken over period Θ. The
value k∗ satisfying Φ(k∗) = 0 can be used to esti-
mate the attractor amplitudes and frequencies. In
the parameter region allowed by the approxima-
tion conditions the value k∗ is unique. Figures 6
and 7(b) show the numerically calculated trajec-
tory and its analytical estimation. The deviation of
∆Y = Y (k∗) − Ynum is slightly positive due to the
neglected higher orders in the expansion of U .

We note that the method of the averaged el-
liptic functions is also very successful in the mono-
stable region α < 0. Here it is especially useful in
the case of µ ≥ δ when the harmonic approximation
is no longer satisfactory. In the bistable transition
region α > 0 and µ < 4δ2 the method can also be
applied using

y(t) = Y dn(Ω1t, k) Ω1 =

√
b

2
Y k =

Ω1

Ω
(55)

but the local expansion of the potential is no longer
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Fig. 7. Bistable Morse ring N = 2. (a) Plot of the test-function Φ. (b) Analytical approximation of the attractor by means
of elliptical functions using k∗ = 0.805. The parameters α, µ are the same like those in Fig. 6.
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of Duffing type since the influence of cubic terms
cannot be neglected. This fact leads to bigger devi-
ations between approximation and numerically in-
tegrated limit cycles than in the other cases.

Due to the complicated structure of the phase
space a statement concerning nonexistence of other
attractors for (32) is difficult to prove. At this point
we restrict ourselves to the results of extensive nu-
merical experiments, which do not show any stable
stationary motions other than the attractors de-
scribed above. Finally, Fig. 8 summarizes the re-
sults of this section. The parameter space (α, µ)
is divided by the bifurcation lines into five domains
with qualitatively different dynamics in the phase
space (y, py, pz). Region II corresponds to the glob-
ally stable steady state, S0, or to the rest state
of the ring with equidistant particle distribution.
When we pass from domain II into I, two bifurca-

tions occur at µ = 0: (i) the steady state splits via
a pitchfork bifurcation into three states. Two of
them at (0, 0, ±√µ) are stable, (ii) steady state in
the origin loses stability and a limit cycle is born via
a Hopf bifurcation. Thus in the domain I depend-
ing on initial conditions three types of different mo-
tions can be realized: clockwise/counterclockwise
rotations of the whole ring with equidistantly po-
sitioned particles or optical oscillations with mean
particle distance L/2. Now if we cross the border
between domains II and V the steady state in the
origin, S0, splits into three new steady states. Two
of them at (± cosh−1[eα], 0, 0) are stable. They
correspond to two cluster states, i.e. particles at-
tract each other and spontaneously form a group.
Then passing from domain V to IV a pitchfork and
a Hopf bifurcations occur. In the domain IV we
have six attractors. Two of them correspond to
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optical oscillations of the particles inside a cluster
(|〈y〉| > 0), while the others describe stationary
clockwise/counterclockwise rotations of the parti-
cles grouped into cluster. Further, passing from do-
main IV to III an Andronov-homoclinic bifurcation
occurs. Approaching the bifurcation the oscillation
period diverges and an attracting homoclinic loop
in pz = 0 is formed. In domain III we have five at-
tractors. Four of them (steady states) correspond
to stationary rotations like in domain IV, but the
limit cycle describe high amplitude oscillations of
particles. Passing to domain I we observe pitchfork
bifurcations of steady states and motions already
described above.

4.2. Active Morse ring with N > 2

Having explicitly discussed the case of the smallest
ring with N = 2 so far we will now extend our con-
siderations to larger particle ensembles concentrat-
ing on qualitative effects. In Sec. 3 we have shown
that there is a close relationship between Toda and
Morse rings in the case of high densities. There-
fore both interactions lead to the same types of at-
tractors (uniform rotations with equal distances be-
tween the particles and (N − 1) oscillatory modes)
in this parameter region. These effects have been
widely discussed in [Makarov et al., 2001].

Hence we may now exclusively concentrate on
the multistable case n < nc corresponding to multi-
stable potential energy UM . But even for low den-

sities n < nc an active Morse ring behaves qualita-
tively very similar to an active Toda ring as long as
the pumping is very strong, i.e. µ� ∆UM = a/2b.
If this condition is satisfied the effects caused by
the barriers in the effective potentials may be ne-
glected and we may replace the effective interaction
potentials in Fig. 2 by box-shaped cosh-potentials
and obtain for such an approximation similar at-
tractors like in a Toda ring. The N − 1 wave-like
attractors again correspond to single and combina-
tions of soliton-like waves and we also find uniform
rotations. The only difference is that the rotations
are not necessarily characterized by ri = l− σ any-
more. The domain of qualitatively new effects is
restricted to the parameter region of slightly over-
critical pumping 0 < µ � ∆UM . Here we may
generally say that all observed stationary motions
are either uniform rotations with ṡ = ±√µ or low
amplitude stationary oscillations with ṡ = 0. If
visiting a rotation attractor the system occupies a
minimum of the potential energy, i.e. all motions
of the relative coordinates ri between the particles
vanish. This statement is always true and can be
easily proven by an ordinary stability analysis. In
addition to the rotation attractors we find for N >
2 again further attractors corresponding to small
(optical) oscillations around one of the minima of
the potential energy. All oscillation attractors have
in common that the “center of mass” coordinate
comes to rest. For both rotation and oscillation at-
tractors it only depends on the initial conditions for

0

200

400

600

800

1000

-5 0 5 10 15 20 25 30 35 40 45

t [
ω

0-1
]

xi [1/b]

(a)

960

965

970

975

980

985

990

995

1000

-5 0 5 10 15 20 25 30 35 40 45

t [
ω

0-1
]

xi [1/b]

(b)

Fig. 9. Morse ring with N = 20 particles and subcritical particle density, n < nc (α, µ) = (0.307, 0.10). (a) Time evolution
of the particle positions; (b) Enlarged part of (a) showing stationary optical oscillations inside a single big cluster.
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which the minimum potential energy is visited. We
remember that in the transition region nε(nc, nc)
the minima of the potential energy correspond ei-
ther to ri = l − σ or single N -cluster configura-
tions while for n < nc the cluster configurations
remain as the only minima of UM . In Fig. 9 we plot
the stationary oscillations for a ring with N = 20
particles, low density n < nc and weak pumping
0 < µ � ∆UM . We emphasize that the last state-
ments concerning a ring with many particles have to
be understood as experimental results gained from
extensive computer simulations with a big number
of randomly chosen initial conditions.

5. Cluster Dynamics in a Dissipative,
Noisy Morse Chain

In the previous sections we studied the determinis-
tic 1d-Morse ring with regard to its attractor struc-
ture. We have seen that depending on the particle
density, n, and the energy pumping constant, µ,
there exists a large number of different stationary
motions. Now we extend our investigations to the
nondeterministic case by coupling the particles to a
heat bath (e.g. liquid of smaller molecules). The in-
teraction between the particles and the fluctuating
bath is modeled by additive Gaussian white noise.
Hence the full Langevin equations for our system
now read as

dxi
dt

= vi ,
dvi
dt
− Fi = Γ(vi) +

√
2Dζi(t) . (56)

The case of purely passive friction (Γ(vi) = −γ0vi)
corresponds to a thermodynamical equilibrium sys-
tem. In this specific situation D, γ0 and the phys-
ical temperature T of the heat bath are connected
by the fluctuation-dissipation-theorem

D = γ0T . (57)

Here we use an unit temperature [T ] = k−1
B with kB

denoting the Boltzmann constant. The equilibrium
theory of such systems corresponds to the statistical
mechanics of a thermal 1d-gas and can by analyzed
by well-known methods [Kac et al., 1963; Feynman,
1972; Percus, 1987]. The equilibrium distribution
function is known

fN(r1, . . . , rN , v1, . . . , vN ) ∝ exp

[
−H
T

]
. (58)

For the nonequilibrium system characterized by a
velocity-dependent friction function γ(v2) the quan-

tity T = D/γ0 does not necessarily mean the phys-
ical temperature. For the time being we will con-
sider T as an effective temperature converging to
the physical temperature in the equilibrium limit
γ(v2)→ γ0. Our aim is to study the density/noise-
dependence of the cluster distributions for the 1d-
Morse system described by (56) and to generate
some sort of simple phase diagram. Therefore we
integrate the stochastic equations (56) numerically
using Euler algorithm and generate the mean sta-
tionary cluster distributions for different parame-
ter constellations. In all computer experiments the
noise sources ζi(t) are realized by random numbers
taken from a standard normal distribution. Accord-
ing to our results from the previous sections clus-
tering processes may only be observed in the case
of low enough particle densities n < nc. More pre-
cisely, we shall limit our investigations on a ring
with n < nc i.e. we also neglect the transition region
[nc, nc] in our computer experiments at this point.
Additionally, we fix the parameter value γ0 = 1
thus a variation of µ is immediately connected to
a variation of the energy uptake rate q. Since µ is
the essential parameter for the deterministic pump-
ing the fixing of γ0 does not qualitatively affect the
results. First we concentrate on the case of purely
passive friction, which means µ = −1 or q = 0. For
the noise-free (deterministic) limit case, D = 0, we
know from Sec. 3 that all motions come to rest after
a finite relaxation time and all particles are situated
in a single cluster of size N corresponding to a min-
imum of the potential energy of the ring. If we
denote K as cluster size variable that can take val-
ues kε{1, . . . , N} the stationary cluster probability
PD[K = k] in this situation is

P0[K < N ] = 0 and P0[K = N ] = 1 . (59)

In other words PD[K = k] is the probability of find-
ing a cluster of size k on the ring at time t → ∞.
If we increase the noise intensity, D > 0, probabil-
ity flows from the value k = N to values k < N .
We calculate PD>0[K = k] numerically from the
relative frequency of finding a cluster of size k dur-
ing several measurements over time intervals ∆t =
t2 − t1 with t2 > t1 � 0. Figures 10(a) and 10(b)
show the numerically determined probabilities av-
eraged over the time interval t ∈ [800, 1000] for dif-
ferent values of D in a ring with five particles. To
distinguish cluster states we demand that the dis-
tance between two particles has to be smaller than
1.7. Figure 10(a) corresponds to the equilibrium sit-
uation (q = 0, µ = −1) and Fig. 10(b) to the case
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Fig. 10. Probability of cluster configurations in a multistable Morse ring (N = 5) in the presence of Gaussian white noise
(σ = 1, γ0 = 1, ∆UM = 0.5 and α = 0.807 corresponding to mean particle density n = 0.4 < nc = 0.59). (a) Purely passive
friction (q = 0). The clusters disappear as soon as the thermal energy (effective temperature) becomes higher than the depth
∆UM of the Morse potential. (b) For the nonequilibrium system the distribution functions are qualitatively similar but the
critical effective temperature Tc = Dc/γ0 is much lower than ∆UM .

of over-critical pumping (q = 1.1, µ = 0.1). Both
diagrams show qualitatively the same behavior. For
small D (or T , respectively) the particles are most
likely gathered together in one big cluster. Increas-
ing the strength of noise the big clusters split into
smaller ones and the shape of the probability dis-
tribution changes. We can say the system visits the
metastable states explained in Sec. 3 corresponding
to a mixture of smaller clusters (monomers, dimers,
etc). For a certain critical value of noise intensity,
Dc, the distribution function has a single maximum
at K = 1. This means that there are no clusters
anymore. In the equilibrium situation [Fig. 10(a)]
the corresponding critical temperature Tc = Dc/γ0

has to be of the same order like the depth of the
Morse potential ∆UM = UMi (0) and we obtain from
(3) and (15)

Tc ≈ ∆UM =
a

2b
=

1

2
. (60)

The numerically found value Tc ≈ 0.4 confirms this
assumption. In the case of over-critical pumping
µ > 0 the clusters completely disappear at low tem-
perature values Tc ≈ 0.04. In both equilibrium and
nonequilibrium situations this change in the sta-
tionary cluster distributions might be interpreted as
a “smooth phase transition” of van-der-Waals type.
The additional energy input for q > γ0 from the
reservoir helps the particles to overcome the bind-
ing energy faster than in the case of q = 0 and
the big clusters decay already for lower effective

temperatures T into smaller ones. This explains the
decrease of the critical temperature Tc. It is clear
that in principle clustering processes may not be
observed if µ� a/b because then the deterministic
energy supply from the external reservoir already
prevents the formation of clusters. Figure 11 shows
the traces of the particles for a Morse ring with
N = 20 particles in the presence of noise. Clusters
are dynamically split and recreated. We may say
that for high particle densities n > nc the model
behaves similar to an 1d-solid body because then it
is similar to a Toda chain. In the transition region
nc > n > nc the system can dynamically switch be-
tween clustering and nonclustering states. But this
is only observable for low enough effective temper-
atures, T , and weak pumping. If we decrease the
density such that n < nc the particles can assemble
in clusters as long as T < Tc. This bears some anal-
ogy to the formation of liquid-like states. At high
temperatures, T > Tc, and low particle densities,
n < nc, the stochastic forces dominate the dynam-
ics, the clusters are completely destroyed and we
can imagine the model to represent a 1d-gas. On
this basis we develop a simple diagram qualitatively
illustrating the clustering effects with respect to the
particle density, n, and the effective temperature
T (Fig. 12). A more quantitative analysis of the
clustering phenomena is a nontrivial problem due
to the combination of the nonlinear deterministic
energy input and the stochastic (thermal) effects



Coherent Motions and Clusters in a Dissipative Morse Ring Chain 2375

0

1000

2000

3000

4000

5000

-20 -10 0 10 20 30 40 50 60

t [
ω

0-1
]

xi [1/b]

(a)

4000

4200

4400

4600

4800

5000

-20 -10 0 10 20 30 40 50 60

t [
ω

0-1
]

xi [1/b]

(b)

Fig. 11. Multistable Morse ring with N = 20 particles in the presence of white noise (D = 0.1). The diagrams show the paths
xi(t) for each Brownian particle in the case of purely passive friction (µ = −1). The other parameters are n = 0.4 < nc = 0.59,
γ0 = 1 and σ = 1. One can see decay and formation of clusters. The pictures for the nonequilibrium system µ > 0 look
qualitatively similar as long as (µ/2) + T � ∆UM .
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Fig. 12. Schematic phase transition-like diagram. The
dashed–dotted line indicates the transition temperature for
the equilibrium system corresponding to µ = −1. For increas-
ing µ the (T, n)-region featuring clusters becomes smaller,
i.e. Tc � ∆UM = a/(2b). If µ/2 � ∆UM we have Tc = 0,
i.e. clusters do not exist anymore.

in this model and we leave this question for the
future.

6. Conclusions

As an 1d-model of dissipative nonlinear rings we
have studied a homogeneous Morse ring consisting
of N active Brownian particles. In contrast to Toda
rings which have been investigated in earlier works
we have shown that the dynamics of the Morse
ring strongly depends on the mean particle density
n = N/L. For a Morse ring there exists a critical

density nc such that for low densities n < nc the po-
tential energy has N equivalent minima correspond-
ing to the case when all particles attend to a single
cluster. Additionally there exists a second critical
value of particle density nc ≥ nc such that there is
only one single minimum of the potential energy if
n > nc which corresponds to an equidistant distri-
bution of the particles on the ring. In the transition
region nc > n > nc both clustering and noncluster-
ing effects may be observed. For very high densities
n� nc a conservative Morse ring with stiffness pa-
rameter b asymptotically behaves like a Toda ring
with stiffness parameter 2b. This also remains true
if we add deterministic and stochastic dissipative
terms to the motion equations. Thus in the limit of
high densities all previously known results from dis-
sipative Toda systems [Bolterauer & Opper, 1981;
Makarov et al., 2001; Ebeling et al., 2000] may be
applied as well to a Morse ring. Using a friction
function derived from a depot model [Schweitzer
et al., 1998; Ebeling et al., 1999] we have shown
that over-critical deterministic pumping in a Morse
ring leads to different types of stationary motions
corresponding to certain attractors (steady states
and periodic orbits) in the phase space. For high
particle densities n > nc we find for a Morse ring
with N particles N+1 attractors which can be iden-
tified as the stable uniform rotations (with equal
distances 1/n between the particles and mean ve-
locities ±√µ), soliton-like waves, etc. are already
observed in a Toda ring. New effects occur if the
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particle density is lower than the second critical
value, n < nc. Now the rotation attractors can
also correspond to rotating clusters of size N . For
n < nc all stationary rotations are cluster rotations.
With regard to more complicated attractors we have
to distinguish between situations where the energy
provided by the nonlinear friction is higher or lower
than the binding energy approximately given by the
depth of the Morse potential ∆UM . In the first
case of strong pumping µ � ∆UM the attractor
structure is again similar to that of a Toda ring.
This is because the pumping pushes the system to
a mean energy level where the exponentially repul-
sive forces dominate. Hence we find again N − 1
oscillatory modes familiar from the studies of Toda
models. For the remaining situation of over-critical
but weak pumping 0 < µ� ∆UM the only attrac-
tors found in addition to the cluster rotations are
given by small oscillations of the particles around
the minima of the full potential energy UM . On
the oscillation attractors the “center of mass” coor-
dinate comes to rest. In case of even particle num-
bers we have optical anti-phase oscillations, oth-
erwise the phase relations are more complicated.
Most of the main characteristics of the Morse ring
are already observable for the first nontrivial case
with two particles that we have been able to treat
analytically.

Because of the 1d-effects observed in this model
an extension to higher dimensions seems to be in-
teresting. This could happen with regard to com-
plex motions of active clusters e.g. rotations of two-
or three-dimensional clusters. On the other hand
one could also think of an extension of the one-
dimensional model, e.g. with respect to additional
external force fields it could be used as a physical
approach to investigate traffic (e.g. jams) or trans-
port phenomena. But first of all we intend to con-
tinue investigations of the noisy 1d-model in order
to obtain a deeper understanding of its nonequilib-
rium behavior which has been discussed with regard
to cluster distributions here. In this sense the work
represented in this paper should also be considered
as a basis for subsequent investigations of transi-
tions in a nonequilibrium Morse system.
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