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Abstract The spontaneous activity of working neurons
yields synaptic currents that mix up in the volume
conductor. This activity is picked up by intracerebral
recording electrodes as local field potentials (LFPs), but
their separation into original informative sources is an
unresolved problem. Assuming that synaptic currents have
stationary placing we implemented independent component
model for blind source separation of LFPs in the hippo-
campal CA1 region. After suppressing contaminating
sources from adjacent regions we obtained three main local
LFP generators. The specificity of the information
contained in isolated generators is much higher than in
raw potentials as revealed by stronger phase-spike correla-
tion with local putative interneurons. The spatial distribu-
tion of the population synaptic input corresponding to each
isolated generator was disclosed by current-source density
analysis of spatial weights. The found generators match
with axonal terminal fields from subtypes of local inter-
neurons and associational fibers from nearby subfields. The
found distributions of synaptic currents were employed in a
computational model to reconstruct spontaneous LFPs. The

phase-spike correlations of simulated units and LFPs show
laminar dependency that reflects the nature and magnitude
of the synaptic currents in the targeted pyramidal cells. We
propose that each isolated generator captures the synaptic
activity driven by a different neuron subpopulation. This
offers experimentally justified model of local circuits
creating extracellular potential, which involves distinct
neuron subtypes.
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1 Introduction

Neural information processing resides in the coordinated
activity of multiple neuron subpopulations forming a
complex system of local circuits and global networks. The
activity of working neurons can be globally picked up by
the electroencephalogram (EEG), a macroscopic variable
mainly raised by the extracellular spatiotemporal summa-
tion of synaptic currents and recorded from the scalp by
volume conduction. The mixing of electrical sources from
different spatial origin is a major handicap for the study of
brain signals at this level. So far the separation of the
electrical activity of converging neuron populations into
original informative sources is an unresolved problem
(Mitzdorf 1985; Nunez and Srinivasan 2006). In its most
general formulation it can be considered in the framework
of the blind source separation paradigm.

Independent component analysis (ICA), as a class of
methods for blind separation of data into underlying
informational components, has matured in the last decade
(for review see Choi et al. 2005). ICA has been used in
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surface electroencephalography to identify and separate
coherent activity in groups of adjacent electrodes (see, e.g.,
Bell and Sejnowski 1995; Makeig et al. 2004; Jung et al.
2005; Castellanos and Makarov 2006). However, the
heterogeneous electrical properties of the conducting
medium, spatial cancellation and frequency scaling of
currents in the volume conductor (López-Aguado et al.
2001; Bédard et al. 2004; Makarova et al. 2008) limit its
utility to the gross localization of large electrical sources of
unknown cellular origin. These restrictive factors are less
relevant in intracerebral local field potential (LFP) studies
(Tanskanen et al. 2005). Though, even LFPs are contributed
by the multiple neurons involved in local and extrinsic
circuits whose termination fields are near the recording
electrode and may overlap extensively. None of the
standard analysis techniques, e.g., spectral decomposition
or current source density (CSD) analysis of raw LFPs can
satisfactorily separate and localize different cellular gen-
erators of LFPs.

More recent approaches based on coherence analysis
(Kocsis et al. 1999; Montgomery et al. 2009), principal
component analysis or laminar population analysis
(Einevoll et al. 2007) have been proven to be useful for
separating important features of mixed deep electrical
sources. In theory, if we assume that brain electrical sources
are spatially stationary (i.e., immobile), then their best
extraction from LFPs should be obtained within the ICA
framework. Apart from propagating spikes whose contri-
bution to LFPs is negligible (Mitzdorf 1985), such
assumption seems to be reasonable inasmuch as synaptic
afferents to target cells remain in place and the postsynaptic
transmembrane currents elicited by them are for the most
part circumscribed to the site where synapses make contacts
at target dendrites (e.g., Herreras 1990; Leung et al. 1995).
Besides, under experimental conditions with irregular LFP
activity one can expect that the neuronal sources are largely
independent in time. Accepting critically these theoretical
observations we test here the applicability of ICA of LFPs
recorded by multisite linear silicon electrodes that boost
spatial resolution and eliminate problems inherent to distant
recordings.

As a testbed we chose the monolayered CA1 region of
the rat hippocampus that offers a number of advantages for
verification of the applicability of the mixing model and the
cellular identification of separated electrical sources. Most
neurons in CA1 correspond to a single class of pyramidal
cells oriented with their main axis in parallel, constituting a
palisade of electric dipoles. The LFPs in this region are thus
caused by synaptic activity in only one cell type.
Conveniently, the different afferent neuron subpopulations
as well as local interneurons have their axons terminating in
discrete dendritic domains well known by histological
studies (Lorente de Nó 1934; Somogyi and Klausberger

2005). Thus the ensemble activity of each afferent neuron
subtype is expected to contribute to the LFP in spatially
fixed bands corresponding to their synaptic territory onto
pyramidal cell dendrites.

Before applying ICA to the spatial maps of LFPs
recorded in the CA1 we employed algorithms to remove
volume propagated activity from adjacent regions (cortex
and CA3/dentate). Then we separated the dominant sources
and assessed their specificity by correlation with local firing
units. The identified dominant LFP sources were found
similar among different experiments and animals. Their
characteristic spatial distributions along the main CA1 axis
were then used in a multicellular CA1 model to reconstruct
LFP activity. The model results enabled direct comparison
of contributing units to mixed LFPs and revealed complex
phase-spike relations that reflect the spatial distribution and
nature of synaptic inputs.

2 Methods

2.1 Experimental preparation

Female Sprague–Dawley rats (200–220 g) were anesthe-
tized with urethane (1.2 g/kg i.p.) and fastened to a
stereotaxic device. The body temperature was maintained
at 37°C. The surgical and stereotaxic procedures were
described elsewhere (Canals et al. 2005; Makarova et al.
2008). Concentric stimulating electrodes were positioned in
the ipsilateral CA3 and in the perforant pathway for
orthodromic activation of the CA1 pyramidal and dentate
granule cell populations, respectively. Stimuli (0.07–0.1 ms
square pulses, 0.1–0.5 mA) were applied to elicit the
characteristic evoked potentials, which were used to guide
the placement of recording probes [Fig. 1(a)]. Linear
multisite probes (Neuronexus, A1x16-5 mm50–177 and
A1x32-6 mm50–413) were lowered into the hippocampus
(AP: 4.5–5.5, L: 2–3 mm from midline and bregma) and
connected to a multiple high-impedance headstage. The
signals were amplified and acquired using MultiChannel
System recording hardware and software (50 kHz sampling
rate). The recorded signals were downsampled to 1 kHz
(referenced as LFPs) for ICA and to 25 kHz for sorting of
unit activity. All experiments conformed to EC guidelines
for animal care and the experimental protocols were
approved by the Local Committee at the Cajal Institute.

2.2 Spike analysis

Spikes of individual neurons were isolated throughout the
CA1 layers using wavelet enhanced principal component
analysis method (Pavlov et al. 2007). To estimate the
correlation of unit firings with the phase of LFP generators
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and raw LFPs we used the phase provided by the Hilbert
transform and made a histogram of the phase values
corresponding to spike occurrences. We used the Rayleigh
test (p<0.05) for non-uniformity of circular data (Fisher
1996) to examine the significance of the unit to source
couplings. The strength of the correlation was obtained by
the mean resultant vector length over circular data (0≤r≤1).
The correlation strength of units with LFP vs. units with
isolated generators was compared by plotting the maximum
value of r amongst all LFP channels (rLFP) against the
maximum r value over isolated generators (rG). Significant
deviations of the ratio rLFP/rG from 1 were used to find
whether units are better correlated to isolated sources or to
the raw LFP. The statistic signtest in MATLAB was used
for population analysis.

2.3 General LFP model

In what follows we shall indistinguishably call sources of the
LFP as generators. We can assume that during ongoing
irregular activity in CA1 the generator activations, i.e., their
dynamics in time, are mostly independent. Moreover, the
current flow in extracellular space obeys quasistatic condi-
tions (Nicholson and Freeman 1975). This together with the
above mentioned stratified geometry enable a reasonably
accurate modeling of the LFP along the main CA1 axis.

Under the assumption of spatial stationarity let

ik z; tð Þ ¼ IkðzÞskðtÞ
be the ensemble CSD of k-th generator driven by the
corresponding interneurons or extrinsic fibers, where Ik(z)
and sk(t) are the spatial CSD loading over CA1 pyramidal

cells (z-axis) and time course of the generator activation,
respectively. To approach the neurophysiologic terminology,
the spatial loadings, Ik(z), are also called here spatial weights.
Then the LFP u(z, t) is given by the Poisson’s equation

sΔu z; tð Þ ¼
X

ik z; tð Þ
where we assume the constant conductivity σ=350 Ω−1cm−1

(López-Aguado et al. 2001). Thus the LFP can also be
written as a sum of products of voltage loadings Vk(z) and the
generator activations sk(t)

u z; tð Þ ¼
X

VkðzÞskðtÞ; ΔVkðzÞ ¼ IkðzÞ=s ð1Þ

Experimentally we sampled u(z, t) along the main CA1
axis at 16 points ujðtÞ

� �16

j¼1
, where t=0, 1, 2, ... is the discrete

time. Then the spatial derivatives along the vertical z-axis can
be approximated by the corresponding finite differences, and
the LFP model reduces to:

ujðtÞ ¼
X

VjkskðtÞ
which is ready for ICA.

2.4 LFP preprocessing

Although ICA theoretically allows finding the unknown
mixing matrix of the voltage loadings V = {Vjk} directly
from the spatially sampled potentials {uj(t)}, such approach
may not be optimal. Our experience and analysis of
recordings made with 32-sites electrodes covering both
CA1 and CA3 regions suggest that some strong extrinsic
for CA1 generators can induce a notable electric potential
within this region by volume conduction.
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Fig. 1 Spatiotemporal diversity of LFP oscillations within the CA1
region. (a) Sketch of a linear probe completely covering the CA1
along the pyramidal neuron axis (left) and the guiding Schaffer-
evoked potentials (right). (b) Raw LFP fragment during irregular
activity. (c) Same LFP but filtered at the gamma band (30–100 Hz).

Note multiple spatial distributions of epochs of gamma activity. (d)
Two selected bouts of gamma activity covering the apical (blue oval)
and the basal dendrites (red oval). Spatial profiles of the mean
amplitude corresponding to the selected bouts are shown in the right
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This may bias the ICA algorithm to detection of the
strong but extrinsic generators, whereas weaker generators
exclusively belonging to CA1 may be missed. Thus a
preliminary data preprocessing suppressing the extrinsic
generators may significantly improve the ICA performance
in detecting intrinsic CA1 generators.

The boundary conditions and current conservation law
yield

X
k

ik 0; tð Þ ¼
X
k

ik L; tð Þ ¼
Z L

0

X
k

ik z; tð Þ dz ¼ 0 ð2Þ

where L≈750 µm is the length of pyramidal neurons.
Equations (2) can be satisfied if, and only if, V ¶¶kð0Þ ¼
V ¶¶kðLÞ ¼ 0, and V ¶kð0Þ ¼ V ¶kðLÞ. However, as mentioned
above the volume propagation of the potential, e.g., from
the adjacent CA3 region, can violate (2) within CA1. To
eliminate the effect of the extrinsic sources and identify
generators exclusively belonging to CA1, we first estimate
activations of the extrinsic sources a(t) and their loadings U
(z) (sFig. 1 in Supplemental materials). This can be done by
finite difference approximation of the corresponding deri-
vatives: a1ðtÞ ¼ u¶¶zz 0; tð Þ, a2ðtÞ ¼ u¶¶zz L; tð Þ, and a3ðtÞ ¼
u¶z 0; tð Þ � u¶z L; tð Þ. Then the spatial loadings of the extrin-
sic sources are given by:

UðzÞ ¼ C�1 uðz; tÞ; aðtÞh it

where C is the covariance matrix of a(t). Finally we obtain
clean LFPs by subtracting the activity of extrinsic sources

u z; tð Þ ¼ u z; tð Þ � UðzÞaðtÞ ð3Þ

which then can be used for ICA.

2.5 ICA of LFPs

ICA assumes a statistical model in which the observed
variables are a linear mixture of a priori unknown, mutually
independent components that have non-Gaussian distribu-
tions. The above discussed LFP model (1) satisfies these
assumptions. Thus we can apply ICA over previously
cleaned LFPs (3), obtaining matrix of voltage loadings V
and activations of the generators s(t).

There are several ICA algorithms, which differ by
estimation principles and objective functions. Two most
popular are fastica, implementing the fast fixed-point
algorithm (Gävert et al. 2005), and runica, implementing
the infomax principle that is a part of EEGLAB (Delorme
and Makeig 2004). The two algorithms are equivalent, at
least in theory (for discussion see, e.g., Hyvarinen and Oja
2000). Our tests with experimental recordings also have
shown that the spatial loadings and generator activations

provided by both algorithms (in the case of runica
extended-ICA option should be used) are similar (sFig. 2
in Supplemental materials). However, this similarity is
restricted to the strongest generators only, and the algo-
rithms may have different performance when dealing with
weaker generators. In this paper we used the runica
algorithm, which has widely been shown to be adequate
for EEG applications.

One of the ICA ambiguities is the lack of proper
ordering of the components. Unlike PCA there is no simple
way to decide on which components are the most stable.
Besides, real data sets may have different transient
generators, whose “weights” in a long recording may be
vanishing. ICA works best when given as large as possible
amount of basically similar and mostly clean data. As a
general rule, finding N stable generators requires cN(N-1)/2
data samples, where c is a multiplier and N(N-1)/2 is the
number of weights to be estimated after data whitening. We
noticed that the constraints (2) reduce the effective data
dimension by three, i.e., for 16-channel data we have up to
78 weights. Then in 1 s time interval (about 4 theta cycles)
we have about 13 pts/weight. Increasing further the time
interval theoretically should facilitate ICA. However, using
ICA for identification and suppression of artifacts (i.e.,
strong and stable generators) in EEG Castellanos and
Makarov (2006) suggested the use of successive but
relatively short time intervals.

To test the stability of LFP generators and identify the
most stable we made use of ICA in two steps. First, we
identify “global” generators by ICA of a sufficiently long
recording (tens of seconds). Second, we divide the same
recording into short-term contiguous epochs (each 1 s
long) and apply ICA separately over these segments. We
expect that stable strong LFP generators should be
presented in all epochs and could be easily isolated by
ICA in most of the time windows, whereas noisy,
unstable, temporal, or weak generators will fluctuate
and hence their spatial loadings will differ from epoch to
epoch. Then by calculating similarity (see next subsec-
tion) between the “global” and “local” generators we can
select those of them that are most stable over time.
Indeed, this procedure showed that in a typical recording
we can identify three to five stable LFP generators (sFig.
3 in Supplemental materials). Moreover, we found that
stable generators always have smooth enough spatial
voltage loadings Vk(z), which is an important property,
since the CSD loadings (1) can be computed as second
order spatial derivatives of Vk(z). The spatial profiles of
Ik(z) provide information on the localization of synaptic
terminals causing the transmembrane active currents. Thus
Ik(z) cannot oscillate randomly but must be smooth
enough functions, i.e., the emergent smoothness of Vk(z)
indirectly supports the choice of stable LFP generators.
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2.6 Distance measure and templates for Independent
Components

To define similarity between the spatial weight curves
either obtained in different experiments or corresponding to
different epochs, we introduce an appropriate distance
measure. Once the distance between spatial loadings has
been defined, we can cluster loading curves and decide on
how many significantly different LFP generators can be
identified from the data. Then the isolated clusters of
loadings are used for obtaining (mean) templates of spatial
weights and for estimating their variance.

To introduce the interloading distance we consider
voltage loadings

VkðxÞ : Ω ! R

as elements of a Hilbert space H(Ω), where Ω ⊂ R3 is an
open set (e.g., CA1 region). It is noteworthy that due to the
intrinsic ambiguity of ICA, Vk(x) is defined up to a factor, i.
e., if Vk(x) is a loading then αVk(z) (∀α∈R, α≠0) is an
equivalent loading. Indeed, any scalar multiplayer α in the
loading Vk(x) can always be canceled by dividing the
corresponding activation by the same multiplayer: sk(t)/α.
Such transformation does not alter the model (1), and
consequently the generator loadings and activations can
only be given in arbitrary units. This ambiguity is
fortunately insignificant for our study, since we always
can unequivocally calculate the potential and CSD induced
by the k-th generator at a given electrode.

In the simplest case we equip H(Ω) with an inner
product defined for an arbitrary pair of elements Vk and Vm

as:

Vk ;Vmh i ¼
Z

VkðxÞVmðxÞdx; 8Vk ;Vm 2 H Ωð Þ

This definition captures the main properties of the
voltage loadings and enables definition of the pair-wise
inter-loading distance d: Ω × Ω → [0, 1]:

d Vk ;Vmð Þ ¼ 1� Vk ;Vmh ij j
Vkk k Vmk k ð4Þ

where the norm is defined as usual Vkk k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vk ;Vkh ip

. The
distance (4) is similar to the cosine metrics and it is
bounded 0≤d≤1. Moreover, d=1 for two orthogonal
(completely different) loadings Vk(x)⊥Vm(x), whereas d=0
for equivalent (identical) loadings Vm(x) = αVk(x). Besides,
the introduced distance measure is independent of the
arbitrary scaling factors ∀α, β ∈ R:

d aVk ; bVmð Þ ¼ d Vk ;Vmð Þ
Thus the distance measure (4) does not suffer from the

ICA ambiguity.

Although the definition (4) is valid, it does not take into
account the CSD origin of the LFPs and of the voltage
loadings. For classification of the LFP generators (inde-
pendent components) we should also consider their spatial
derivatives. Thus we arrive to H2(Ω) = W2,2(Ω) space with
the inner product:

Vk ;Vmh i ¼
Z
Ω
VkVm þ krVkrVm þ k2ΔVkΔVm dx;

8Vk ;Vm 2 H2 Ωð Þ

ð5Þ

where κ is a dimensional constant, which we set to κ=
0.05 mm2. For Vk, Vm ∈ H2(Ω) the distance definition (4) is
maintained, but the inner product is taken in the H2 sense.
In the following we shall use the distance given by Eqs. (4)
and (5).

2.7 Multicellular CA1 model of LFPs

The dorsal CA1 region was simulated as an aggregate of
pyramidal model units preserving an experimentally ob-
served cell density of 64 neurons oriented in parallel in a
50×50 μm antero-lateral lattice (Boss et al. 1987) forming
a cylinder of 0.5 mm in diameter (877 units, Fig. 5(a)). This
aggregate size ensures near maximum contribution of
extracellular synaptic currents by volume conduction to a
recording track in the center of the cylinder aggregate in
parallel to the somatodendritic axis (Varona et al. 2000).
Dorso-ventral extension was set to 0.75 mm (from the
alveus to the distal apical tuft). Units were spatially
distributed so that their somata form a 50 μm thick stratum
with 4 layers of even density. The LFP was calculated at
each of 16 “recording” points 50 μm apart simulating a
vertical track

ΦðtÞ ¼ 1

4ps

Xcells
i¼1

Xcomps

j¼1

Imi jðtÞ
ri j

ð6Þ

where Imi j is the total transmembrane current at the j-th
compartment of neuron i, and ri j is the distance from the
recording point to that compartment. Thus, compartments
are treated as point current sources in a conducting
homogeneous medium (σ=350 [Ωcm]−1).

A simplified single-neuron model was built using 75
lumped equivalent cylinders 10 μm long representing the
apical and basal dendritic portions (50 and 25 compart-
ments, respectively) and an interposed spherical soma.
Standard electrotonic parameters were employed (Varona et
al. 2000) with some modifications. In order to approach
realistic values of the total membrane capacitance, the
diameter of cylinders was variably increased (unit surface
was 22828 µm2). Since this introduced an undesirable
variable axial resistance that influences strongly the spread
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of internal currents (hence transmembrane current distribu-
tion), we introduced a variable factor to modify axial
resistance between consecutive compartments. The input
resistance measured at the soma was 66 MΩ, and τ was
23 ms, values closed to those reported for whole cell
recordings (e.g., Spruston and Johnston 1992). In this
simplified model we have not implemented active (V-
dependent) channels to facilitate the observation of inter-
actions between different synaptic inputs.

Up to three synaptic inputs were implemented using the
spatial distributions of the current sources recovered by the
second spatial derivative of the dominant generators
obtained in the experimental analysis. For example, a
sandwich-like spatial distribution of a CSD loading Ik(z),
e.g., positive in the middle and negative on sides, suggests
an active current source in the middle enclosed between
passive return currents. Then we expect inhibitory synaptic
terminals localized at this location (sFig. 4 in Supplemental
materials). Spatially extended synaptic inputs can lead to
central cancelation effect (Makarova et al. 2009), i.e., there
appears an effective depression in the middle of the spatial
distribution of Ik(z). The location and spatial distribution
served to associate each of these generators to known
excitatory and inhibitory synaptic inputs according to
distributions of axonal terminal fields of extrinsic cells
and local interneurons (Lorente de Nó 1934, Buzsaki
1984). Excitatory synaptic input of the non-NMDA type
was simulated as a dual exponential function conductance
with a reversal potential of 0 mV, τ1=10.8 ms, and τ2=
2.7 ms (for details see Ibarz et al. 2006). Inhibitory synaptic
conductances of the GABAA and GABAB types followed
an alpha function with τ of 7 ms and 35 ms, and reversal
potential of −75 mV and −90 mV, respectively.

Synaptic bombardment was simulated by random inputs
of presynaptic spikes for each generator. Phase-spike
correlations of model LFPs can thus be constructed that
enables global qualitative comparison with real LFPs and
exploration of factors contributing to layer dependent
variations in phase-spike correlations.

3 Results

3.1 Spatiotemporal diversity of LFP

Besides the well-known theta rhythm, irregular activity is
the principal manifestation of raw LFPs in the hippocampus
[Fig. 1(b)]. Its composite nature can be easily appreciated in
filtered LFP fragments. Figure 1(c) illustrates LFPs filtered
in the gamma band (30–100 Hz). Although the strongest
activity in this frequency range was observed in the CA3/
dentate region (Bragin et al. 1995), the CA1 also shows an
extraordinary diversity of gamma bouts extending through

different groups of electrodes. In a top-to-bottom inspection
by the naked eye, dozens of spatiotemporal configurations
can be appreciated with a highly variable overlap. Some
gamma epochs involve all electrodes and display increas-
ing, decreasing or near constant amplitude in space. The
others have a certain number of gamma waves in a set of
electrodes that merge with longer or shorter epochs in the
adjacent electrodes. A closer look would augment the
diversity by discovering phase variations of the gamma
cycles along the CA1 z-axis. Figure 1(d) shows two
selected bouts of gamma activity and the corresponding
spatial distributions of their mean amplitudes obtained by
averaging over the epoch time window. The epochs exhibit
transient activity involving distinct spatial domains along
the z-axis of CA1 pyramidal cell. Similar displays of LFPs
filtered within other frequency bands also present more or
less evident heterogeneous spatiotemporal configurations of
activity. This suggests the presence of multiple subcellular
generators of LFPs with a significant spatiotemporal over-
lapping in the same neuron conductor. To isolate the
converging sources of activity in the next section we shall
apply ICA to the spatial maps of the LFPs covering the
CA1 dorsoventral axis.

3.2 Isolation of mixed LFP generators

First, we eliminated volume propagated contributions from
nearby regions (cortex and CA3/dentate) as described in
Methods. Thus we ensure that generators obtained from the
analysis of LFPs recorded within the CA1 are indeed
produced within this subfield. In order to test ICA stability
we employed two different time strategies combining long
and short LFP epochs (see Section 2 and sFig. 3 in
Supplemental meterials), and compared results among
different animals. Figure 2 shows the voltage loadings
V1,2,3(z) (spatial weight curves) of three most powerful LFP
generators G1–G3 (explained variance 81%) found in one
recording lasting 100 s (an epoch with irregular activity has
been selected). The decomposition of a typical LFP
fragment into activity of these three generators, s1,2,3(t), is
shown at the bottom of Fig. 2. Inspection of the mean
absolute residual w(t) validates the separation. In the soma
region (electrode 6) the voltage loadings corresponding to
generators G2 and G3 invert their polarity, while G1 is the
main contributor. As expected, the epochs overlap in time
and space in a complicated manner, though ICA identified
three main independent LFP generators. These three
generators were stable over time, and their spatial distribu-
tions were maintained in different epochs recorded within
several hours in the same animal, and regardless of whether
theta or irregular activity was the dominant LFP pattern.
Other stable generators that contribute a small variance to
LFPs can also be obtained; however, their analysis requires
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prior treatment of signals and fine tuning of the ICA
algorithm.

To confirm the universality of the found dominant
generators we repeated the above described procedure using
LFPs recorded in five animals. Visual inspection of the
obtained voltage loadings revealed an important feature: the
presence of a stable set of the LFP generators in any examined
location of the dorsal CA1 region with highly repeatable
shapes of the spatial distribution curves across different
animals. To quantify inter-experimental similarity we intro-
duced an appropriate distance measure between generator
loadings (see Section 2), and evaluated pair-wise dissimilarity
between spatial loadings of all major generators found in five
experiments. Figure 3(a) shows hierarchical clustering with
the average-linkage algorithm (maximizing the cophenetic
correlation coefficient). The three generators G1–G3 are
found in all five experiments, thus confirming universality of
the LFP generation mechanisms in CA1. Some dispersion in
the shape of loading curves was grouped by the cluster
analysis. This most likely reflects the variable mutual
interference of concurrent inputs.

The stable shape of the spatial distribution curves
ensures their origin in fixed domains of inward and outward

transmembrane currents (current sinks and sources) specific
for each input. This can be assessed by CSD analysis that
eliminates volume propagation in the CA1 area and
provides the spatial distribution of current density along
the dendritic field of pyramidal cells. We adopted the
conventional unidimensional approach (Nicholson and
Freeman 1975; Herreras 1990) used for raw LFPs. The
CSD of the isolated generators can be obtained by the
second spatial derivative of the respective curves of voltage
loadings (1). The CSD spatial profiles for G1–G3 averaged
over five animals are shown in Fig. 3(b). Inspection of the
CSD profiles provides information (see below) on the
distribution of synaptic inputs for the generators. To gain
temporal dynamics, i.e. the population activity induced by
synaptic inputs, one can multiply the obtained spatial
distribution by the corresponding activation sk(t) also
provided by ICA.

3.3 Relation of isolated generators to unit activity

The time evolution of the activations sk(t) of the isolated
generators can be used to study functional couplings and
other dynamical aspects, such as, e.g., state-dependent
modulation. Particularly, quantification of the activity of
the LFP generators enables the study of temporal correla-
tions with the simultaneously recorded unit activity.
Neuronal spikes were obtained throughout the CA1 layers
by high-pass filtering the same recordings and subsequent
sorting using the wavelet enhanced PCA algorithm (Pavlov
et al. 2007). In the CA1 field, all cells recorded outside the
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pyramidal layer are considered putative interneurons
(Ranck 1973; Herreras et al. 1988). Figure 4(a) illustrates
30 s segment of spontaneous irregular LFP at electrode 13,
the digitalized firing events of a putative interneuron
simultaneously recorded in the stratum radiatum [cell n in
Fig. 1(a)], and the time varying activations of the generators
G1–G3 contributing to the whole LFP.

Stable sources of LFP activity disentangled by ICA must
keep fixed spatial domains, as derived from its mathemat-
ical essence, which in the CA1 region should correspond to
specific portions (along z-axis) of the dendritic tree of a
pyramidal neuron activated by different subtypes of local
interneurons and extrinsic cells. If that is so, and the used
technique indeed separates LFPs into activities provoked by
different neural subpopulations, one may predict that the
correlation of firing of local cells with some of the isolated
generators should be significantly stronger than with raw
LFP signals that are jointly contributed by all of them. We
test this prediction by comparing the correlation index r for
putative interneurons with LFP signals vs. activations of
isolated generators.

Figure 4(b) shows a representative example of the cross-
correlation histograms of firing events of the putative
interneuron n [Fig. 1(a)] with the phase of raw LFP
(electrode 13) and with the phase of G3. The neuron has
no statistically significant phase correlation with the raw
LFP, but selective strong correlation (r=0.18, ϕ≈π/2) with
G3 (Raleigh test, p=0.004). This suggests that the neuron
belongs to the population causing the activity of G3. We
found 70 out of 126 units significantly correlated with at
least one generator [Fig. 4(c), circles], whilst 39 showed no
correlation [Fig. 4(c), crosses]. A total of 17 units had too
low firing rate and could not be used for the study. Most
correlated units fell above the midline (signtest, p=10−7),
indicating stronger correlation with at least one isolated
generator than to any raw LFP channel. Correspondingly,
non-correlated units fell around the midline (signtest, p=
10−5), hence they show no preference to LFPs nor to
generators, as also expected. Thus the use of ICA-isolated
generators provides direct matching of particular LFP
events to their neuronal sources, and indeed overcomes
uncertainty of the LFP mixture. We estimate that about 65%
of putative interneurons in CA1 belong to populations
related to the most powerful LFP generators G1–G3.

3.4 Simulated LFP and exploration of phase-spike
correlations

Knowing the spatial distribution of the population trans-
membrane currents for the three main generators allowed
the simulation of CA1-like LFPs in an aggregate model
of the CA1 [Fig. 5(a), see Section 2]. The spatial weights of
the inhibitory (G1 and G3) and excitatory (G2) inputs are
depicted in Fig. 5(a). Note that the spatial distributions of
synaptic weights differ from the spatial distributions of the
isolated generators [Fig. 3(b)], as the former are restricted
to the domain of active currents, while the latter also
include passive currents (see also sFig. 4 in Supplemental
materials). In the example illustrated in Fig. 5 we employed
random synaptic bombardment for all three generators with
average frequencies of 10 Hz for G1 and G3, and 50 Hz for
G2. This combination was chosen to obtain an average
excitatory and inhibitory baseline conductance of 30 and
70 nS, respectively, which are within experimental ranges
found in cortical cells (Rudolph et al. 2005). Figure 5(b)
shows an example of simulated LFP traces of about 500 µV
(peak to peak) amplitude. Oscillations in a wide frequency
band can be appreciated in the simulated segment, which
closely resemble irregular LFPs observed experimentally
[Figs. 1(b) and 2(a)].

Once the simulated LFPs have been obtained we can
study the spike-phase correlations that reflect the temporal
relation between presynaptic spikes and the postsynaptic
currents producing the LFPs, regardless of the time
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structure of the inputs. Figure 5(c) shows these correlations
of LFPs and the presynaptic spikes at different locations
along the z-axis of the pyramidal cell. As expected, the
correlation strength varies in a layer-specific manner.
Indeed, each spike train shows significant correlations with
LFPs, but only at specific recording locations. For instance,
G1 (blue histograms) has strong correlation with e6
(location corresponding to active currents) and e16 (loca-
tion corresponding to passive currents), where LFPs caused
by this neuron are large [whether positive or negative; see
Figs. 2(b) and 3(b)], but not at the distant site (e1), nor at
the loci of phase reversal (e10) where the generator strength
is small.

Since stratified synaptic currents produce both positive
and negative LFPs in different domains of the postsynaptic
cell according to the distribution of active and passive
(return) transmembrane currents, we may expect this to be
reflected in the phase-spike histogram. Indeed, inhibitory
inputs (G1 and G3) showed a preferred negative phase
correlation with LFPs recorded in loci of active domains
(e.g., e6 in the soma layer for G1 and e10–e16 in the apical
dendrites for G3) and a positive phase in domains were
passive currents return to the extracellular space (e16 in the
distal apical dendrites for G1 and e1–e6 in somato-basal
domains for G3). The opposite occurs for excitatory inputs

(G2) that produce LFPs of opposite polarity with respect to
the active input site.

As it was made above for experimental data, we assessed
the specificity of the information contained in model LFPs
produced by one generator (i.e., a single generator is active
while the others are suppressed) versus the mixed (raw)
model LFPs by comparing the mean (throughout all layers)
phase-spike correlation in the two cases (Fig. 6). We found
a significantly higher correlation in all three spike trains
when correlated to LFPs caused by their own generators
only (open bars) as compared to the mixed LFPs (filled
bars). Some general conclusions can be drawn from the
inspection of phase-spike correlations throughout layers.
The mean correlation of a given spike train with raw LFPs
is not necessarily related to its relative contribution
(variance) to the LFPs, but to the spatial extension of the
synaptic input along the postsynaptic cell (e.g., compare
correlations for the strongest generator G1 vs. the weakest
G3, filled bars in Fig. 6). The opposite happens for
correlation of spike trains with their own LFP generators,
i.e., the wider is the distribution of the synaptic input the
smaller is the correlation (e.g., G1 vs. G3, open bars in
Fig. 6). These observations highlight the importance of the
intensity and spatial distribution of active synaptic currents
contributing to LFP generation.
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Fig. 5 Simulation of LFPs. (a) A multicellular model of simplified
pyramidal cells was built to simulate LFPs along a vertical track of 16
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diameter) made up of a monolayer of pyramidal cells (right) ordered
as in the CA1. The spatial distributions of three employed synaptic
inputs (two inhibitory and one excitatory) are shown in the left. The
polarity of the synaptic weight indicates inhibitory (−) and excitatory
inputs (+). The inset sketch shows the local circuit included in the
model. (b) A segment of LFPs calculated for the recording track using

a random spike train for each of the three synaptic distributions.
Multiple oscillations and changing polarities can be appreciated, with
the highest variance concentrated in the stratum radiatum (electrodes
8–12). Simulated LFPs in CA1 do not include the volume propagated
potentials from adjacent CA3/dentate regions. (c) Phase-spike corre-
lations of each presynaptic spike train to its associated LFP. The
preferred phase and statistical significance of correlation varied with
the position of recording according to the spatial distribution of the
synaptic input (see main text for explanation)
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4 Discussion

Multiple neuron subpopulations contribute to the generation
of classic LFP oscillations recorded from a single electrode.
We have shown that their ensemble afferent activity can be
separated, and correlated to the firing of specific local non-
principal cells using ICA and data clustering. Isolated
generators indeed hold more specific information than raw
LFPs. Model LFP reconstruction using this approach
enables the use of phase-spike correlations for linking the
global presynaptic activity of a specific neuron subpopula-
tion to the spatiotemporal properties of the generated
postsynaptic currents that give rise to LFPs. Besides,
simulated LFPs obtained from a realistic model resembling
the architectonic and electrophysiological properties of
CA1 can be used to test and validate different signal
processing methods.

4.1 Advantages of ICA for source localization

The use of ICA for blind isolation of sources in mixed
signals has been well established in different fields,
including fMRI, surface EEG of the human scalp (e.g.,
Jung et al. 2005) and also in deep LFP recordings
(Tanskanen et al. 2005), but to our knowledge this is the
first successful attempt to disentangle deep brain recordings
into the separated activity of the different contributing
generators. Although other methods provide valuable
information, only ICA has the capability to resolve the
contributing independent sources offering precise spatio-

temporal information (Mouraux and Iannetti 2008). For
instance, Fourier analysis often employed for separation
and quantification of activity in different frequency bands
cannot unmix contributions from two different afferent
presynaptic populations with overlapping terminal fields.
Moreover, specific frequency bands in the LFP do not
define the activity of particular neuron classes nor elemen-
tal synaptic events. Besides, while most population studies
focus on rhythmic or oscillatory LFP events, which
simplifies correlation with certain behaviors, the prevailing
macroscopic activity reflecting network operation and
information processing is irregular. ICA makes no assump-
tion on the frequency content of the signals and performs
properly with complex nonperiodic LFP events. Thus one
of the major advantages of the approach discussed here is
its applicability to irregular LFP signals recorded with or
without sensory stimulations. The validity of ICA is given
by the stationary (in space) nature of the synaptic currents,
thus the number and shape of spatial distributions of found
generators are the same during irregular or rhythmic
oscillations in raw LFPs, as can be expected from the
varying temporal dynamics of local and extrinsic firing
units producing the synaptic currents. The simplified model
we used here to simulate numerically LFPs illustrates this
point and highlights the possibilities of ICA to study
quantitatively the global activity of multiple neuron
subpopulations.

4.2 The nature of isolated generators

The electrical sources found by ICA are immobile on the
experimental time and space scales (e.g., spikes slowly
propagating over long distances should be treated differ-
ently). The only cytoarchitectonic element that can produce
LFP activity with stable spatial domains in this stratified
cerebral region is the axonal terminal fields of particular
afferent neural populations. The problem of interpreting the
nature of the separated generators is simplified by the use of
linear probes in the monolayered CA1 that yield subcellular
precision of the spatial distribution of sources. Such
simplification does not work in the neocortex where the
dendrites of pyramidal cells belonging to different layers
share spatial domains. Nevertheless, our methodology can
be applied to cortical recordings, although some adjust-
ments of the algorithm taking into account the multilayered
specificity of the cortical structures should be implemented.

Pyramidal cells constitute the largest neuron population
in the CA1 field (∼95%). Their parallel arrangement and
bipolar anatomy produce open fields; hence they provide
most of the postsynaptic current rising LFPs in this region.
Local interneurons are few and mostly multipolar (Somogyi
and Klausberger 2005), hence their synaptic activation
produces closed fields and hence contributes negligibly to
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the LFP. However, their local axons contact with pyramidal
cells in discrete somatodendritic bands and constitute a
major component of the net synaptic current (e.g., Rudolph
et al. 2005). We thus propose that the three isolated
generators G1–G3 correspond to population readout of the
synaptic input from functional classes of local interneurons
or extrinsic projection cells with partially overlapped
synaptic territories onto pyramidal cells.

A large proportion of local putative interneurons show
stronger correlation with some of the isolated generators
than with raw LFPs. Indeed, the firing rate of many CA1
interneuron classes (but not all) is very high as compared to
the almost silent behavior of pyramidal cells (Ranck 1973;
Herreras et al. 1987), which is consistent with the powerful
inhibitory control in this region (Buzsaki 1984). The
emerging view is that each generator is causally related to
the activity of specific groups of interneurons. We estimate
that about 65% of interneurons in CA1 belong to
populations involved in the activity of G1–G3. Whether
these units are pre or postsynaptic or both requires detailed
analysis of spike-phase correlations. The spatial distribution
of the underlying currents is an important feature that can
be matched to axonal terminal fields of known afferent
subpopulations. Based on this information and correlation
analysis with firing units located in different strata we
identified G1 and G3 with inhibitory currents from
perisomatic and apical targeting local interneurons, while
G2 is consistent with the spatial distribution of currents
generated at the termination zone of the Schaffer/commis-
sural inputs and hence may be fitted by excitatory input
from CA3 pyramidal cells or inhibitory inputs from
Schaffer collateral-associated interneurons (Somogyi and
Klausberger 2005). Additional work is required to explain
the adscription of the considerable fraction (about 35%) of
uncorrelated local units. One possibility is that the lack of
specific correlation to either raw LFP or some of the
isolated generators is explained by the fact that they belong
to a neuron class involved in multiple local circuits or
operating at very long timescales. Alternatively, their
axonal field is small and/or their firing rate too low to
contribute notably to the net variance of LFP, remaining
then below statistical significant contribution. Indeed, we
found additional generators contributing a small variance
after filtering the raw signals within narrow bands and
playing with short time windows, which rises chances of
transient generators to be detected by ICA.

A confounding factor in LFP-unitary combined studies is
that hippocampal interneurons respond to practically any
extrinsic input as well as to firing of pyramidal cells (Ranck
1973; Buzsaki 1984), hence correlated firings are expected
even when each local neuron subtype takes part in different
local circuits and produces synaptic currents in different
parts of the pyramidal somatodendritic axis (Somogyi and

Klausberger 2005). However, the model study already
proved notable utility of ICA in this respect. The laminar
analysis of phase-spike correlations revealed a spatial
distribution of preferred phase, polarity and dispersion in
agreement with the distribution of the active synaptic
currents underlying each LFP generator. Certainly, the
model LFPs were produced by the activity of single spike
trains taking the role of entire afferent subpopulations.
Therefore, at this stage we cannot ascertain whether such
degree of accuracy can be obtained in phase-spike
correlations for individual neurons. In any case, the
combination of ICA of LFPs and laminar analysis of
spike-phase correlation of local (and extrinsic) units reveals
as a powerful tool to discriminate unit contribution to
specific LFP events even when different unit subtypes fire
in correlation.

4.3 Simulated LFPs

The present numerical simulation of LFPs follows the
standard design of our former aggregate models (Varona et
al. 2000; Ibarz et al. 2006) with some modifications. Here
we fed the model with important experimental information:
the spatial distribution of currents for the three generators
that produce the bulk of the LFP variance. Oscillations of
different frequency can be appreciated in the simulated
segment that closely resemble real LFPs. Stronger realism
requires the model upgrading in several aspects, such as the
use of branched neurons and the inclusion of active
membrane channels. In particular, the large surface of
dendritic trees and axial resistance are important factors
defining the spatial distribution of evoked field potentials
(Varona et al. 2000; Pettersen and Einevoll 2008). In the
present model we sought to simplify the interpretation of
isolated generators by avoiding confounding elements, but
introduced a set of factors to minimize error arisen from the
inaccuracy of the morphoelectrotonic structure of the
simplified model units.

Though being simplified the model captures many realistic
mechanisms involved into generation of LFPs such as spatial
extension, current mixing, mutual cancelation or amplification
of synaptic currents provoked by different inputs, etc. Thus
the model is far more complex than the majority of the
mathematical models used in the literature to validate
performance of signal analysis methods including ICA. This
makes it a good testbed for checking, testing, comparing, and
analyzing different algorithms for LFP analysis.

A more defying problem is the contribution of intrinsic
currents to LFPs (e.g., Murakami et al. 2003; Glasgow and
Chapman 2008). If such contribution were strong enough to
initiate active propagation of currents within dendrites, the
assumption of stationary currents required for ICA appli-
cation would be challenged and we would have to admit a
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certain error in the curves of spatial weights obtained for
isolated LFP generators. Preliminary results obtained with
morphologically realistic units including active membrane
currents indicate however that this factor does not introduce
a noticeable error in the localization of the synaptic bands
for each generator. Most likely, slow dendritic currents,
which cannot be separated from the synaptic ones, are
integral part of each isolated generator. In parallel studies
(Makarova et al. 2008) we found that a major factor
defining the amplitude and spatial distribution of aggregate
postsynaptic currents is central spatial cancellation within
postsynaptic membranes of individual membranes. For
widely distributed currents this phenomenon becomes
especially significant even overcoming the influence of
the above mentioned electrotonic parameters (Makarova et
al. 2010), such as those produced by axonal fields of
inhibitory interneurons in the stratum radiatum (Somogyi
and Klausberger 2005). Such effect may explain the
bimodal (depressed at the middle) spatial distribution of
generator G3 found here.

In short, the methodology for separation of mixed
sources in the EEG/LFP presented here opens new avenues
to disclose the functional neural circuitry from ordinary
LFP recordings and inferring on its dynamic properties.
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