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A one-dimensional chain consisting of many locally coupled oscillatory units is considered whenb,oth diffusive (linear) and nonlinear interactions exisi. The dynamics of units may also bealtered by a weak white Gaussian noise. Two different collective evolutionary paths havebeen identified in the chain: (i) the onset of temporal phase clusters and their subsequentbreakdown or reconstruction through phase resetting, and (ii) the formation of a phase waveduring a process of selforganization. Such a wave may originate from an initially disorderedpattern after appropriate reorganization of phases ur,j urnf,litudes occurring on a time lapsethat can be very long.

1. Introduction

Synchronization of oscillations and, consequently,
uniform rhythmic activity in coupled systems is
a phenomenon widespread in nature and various
branches of engineering [Haken, l9g3a, 1gg3b, 19g6;
Murray, 1993]. The simplest coupling leading to
synchronous oscillations is ,,diffusion,' or a resistive
type of coupling. Here we study a model_problem
that combines the processes of synchron ization and
its destruction in an ensemble of diffusively coupled,
identical oscillatory units.

As the unit or element of the lattice we choose
a simple albeit nonlinear oscillator whose dynamics
in polar coordinates is described by the sysrem

i :  rF(r)

tP  :  a ,  
(1 )

where r, w and rp denote amplitude, frequency and
phase of the oscillations, and F is a suitable nonlin_
earity regulating the excitability of the unit. Thus
the system (1) represents an isochronous oscillator.
For il lustration we take F : -2ar4 tar2 _1. When

a ( 8, in the phase plane of the system (1) there
exists only a stable equilibrium point (focus) which
corresponds to the rest state of the unit. For a ) g
we have two attractors. They are a stable focus at
the origin and a stable limit cycle. The iatter corre_
sponds to the oscillatory activity of the unit. Hence,
by changing a we can switch from a monostable to
a bistable regime,

To describe the cooperative behavior of an
ensemble of such units we consider a 1D lattice
consisting of n units (1) diffusively coupled with
nearest-neighbor interaction. We assume periodic
boundary conditions

2i : zi[F(zi) + tu + d(o(xj) + o(1i_1))] +
* d(zi-r - 2zi * zi+) + e€ie) (2)

j : 7 , 2 , . . . , f l ,  z j + n : z j ,

where zi : risigi, d and 6 account for the diffusive
(linear) and nonlinear coupling between units, re.
spectively. We have also introduced a functional,
iD(X), characterizing nonlinear phase coupling as
we shall see below. In particular e(X) would be
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responsible for desynchronization of oscillations in
the vicinity of a given unit. Thus we choose the
variable X depending on phase differences between
neighboring units,

xj  :9j+L - 9j . (3)

Hence Afui) and O(Xy-1) define levels of synchro-
nization of the unit j relative to its right and left
neighbors, respectively. Low values of1 correspond
to a high level of synchronization (X : 0 corre-
sponds to strict in-phase oscillations) and high val-
ues of X correspond to a low synchronization level.
Such cooperative effect is best described by a sig-
moidal function. Since phase differences can be
either positive or negative, this function must be
symmetric around X:0. An example of such func-
tion is shown in Fig. 1. For values of'X around
the origin it is almost equal to zero while with in-
creasing l1l the function Q approaches a saturation
value. As a concrete application, let us take for
illustration and for all our numerical calculations
the Boltzmann function

@(x) : - - l . = - -  1 ,
L * e - a x  I + e . M l - i  

( 4 )

where o and f are positive constants. This function
has the shape shown in Fig. 1. and it is reminis-
cent of the Michaelis-Menten/Hinshelwood-Lang-
muir/Holling law found in biochemistry/chemical
kinetics/or biology. F\rrther we shall consider the
system (2) working in an noisy environment that we
model bV €i(t). We choose it as a white Gaussian
noise whose strength is controlled by the parameter
. ,  lEq.(2)1,

(€1'(t;; : s' ({i(tXt(t')) : 6ir6(t - t ') . (5)

Thus model (2) is a spatially distributed oscillatory
system with local couplings perturbed by noise. In
the absence of noise and depending on the proper-
ties of the unit we have two possibilities. One is
the case of a network of limit cycle oscillators when
its dynamics can be reduced to that of a system
of phase oscillators [Winfree, 1967; Ermentrout &
Rinzel, 1981; Kuramoto, 1984]. Lattice systems of
phase oscillators have been studied in a number of
papers [Ermentrout, 1985; Daido, 1988; Strogatz &.
Mirollo, 1988; Sakaguchi et a/., 1988; Niebur ed al.,
1991]. The other case is that of a chain consisting
of multistable units when the amplitude dynamics
drastically affects and regulates the phase dynamics
and vice versa [Defontaines et a1.,7990; Nekorkin &

- n n

Fig. 1. Qualitative shape of the nonlinea^r phase coupling
functinal O.

Makarov, 1995; Nekorkin et aI., L996, 1997, 1998,
1999; Sepulchre & MacKay, 1997] or each unit is
a chaotic oscillator [H"ugy et al., 1994; Dolnik &
Epstein 1996; Huerta et aL, 1998]. Multistable
systems with rather strong noise intensity can ex-
hibit stochastic resonance [Wiesenfeld & Jaramillo,
1998]. This phenomenon may be observed in an
array of coupled multistable units pindner et al.,
1995; Gang et al., 1996] where the signal-to-noise
ratio can be significantly enhanced. Here we shall.
not investigate such cases and we shall consider only
low noise intensity (unable to overcome the poten-
tial barrier).

The paper is organized as follows. In Sec. 2 we
first study the noise-free, deterministic case, and
successively consider in detail the various possibili-
ties by varying d and d. Then based on the results
obtained in Sec. 3 we study the influence of the noise
on the known possible regimes. Qualitative results
have been cross-checked by direct numerical inte-
gration of (2). In Sec. 4 we summarize the results
obtained.

2. The Deterministic Case

In this section we investigate the dynarnics of the
system (2) in ihe absence of noise. By putting e : 0
we get from (2)

i i  :  r i [F(r i ,  a) + d(O(xi)  + O(xi_r)) ]

* d,(ri_r cos(rp3 - pi_t)
- 2ri * r5a,1cos(9i+t - pi)), (6)

d ,
,irj : u + 

;(ri+t 
sin(?ia1 - 9i)

" ,
_ r j_tsin(vr. _ 91i) .



2.L. Dynamics
uhen there

systern (6)
diffusion, d: O

Let us first study the case d : 0. Accordingly, we
have an array of phase coupled units (via O(1)). As
it consists of isochronous oscillators with a common
frequency the phase differences betw-een units do
not change in time and only depend on initial condi-
tions. Hence the phase-difference variables, Xi, arc
constants and we can substitute the influence of the
nonlinear phase coupling functional, iD, in the sys-
tem (6) by some constants Li : 6lA(X?)+O(X?_r)].
Then the system (6) reduces to

r i : r i ( F ( r i , a ) * L i )

' i j : ' '  
( 7 )

Thus we have n independent units phase.shifted by
constant values 47. Figures 2(a) and 2(b) show do-
mains of parameter values (o, A), and correspond-
ing phase portraits of the system (7). Figure 2(c)
shows a bifurcation diagram.

For a fixed parameter value, a ( 8, depending
on A, system (7) can exhibit three different dynami-
cal regimes. For A < I-a/8 there is only one stable
focus. For 1-a/8 < A < 1 there is a stable focus as
well as a stable limit cycle separated by an unstable
limit cycle. For A > 1 there is an unstable focus
and a stable limit cycle (Fig. 2).

Since 43 € [0, 2d], for a ( 8 and 6 > 712,
depending on initial phase distribution the values
of A7 along the chain can be found in all param-
eter domains shown in Fig. 2(a). Hence for ran-
dom initial conditions along the rather long chain
we get units which are in different regimes (mo-
tionless, bistable or oscillatory). F\rrther we shall
demand that d > Ll2. For a ) 8 we have only
bistable and oscillatory regimes.

2,2. Dynamics of the systern (6)
rahen d : 0

Now let us put d : 0 in the system (6) while d,+ 0.
Besides, by changing variables Qj : ,t * 9i we
can exclude from (6) a rotation with constant an-
gular frequency u. Then the system is gradient
[Defontaines et aL, 1990]. The stable regimes cor-
respond to local minima of the potential function
in the form of either (i) in-phase oscillations [Neko-
rkin & Makarov, 19951 or (ii) phase waves [Nekorkin
et  a \ . ,1996] :

(i) In-phase oscillations. In this case a trajectory
of the system (6) tends to a state wiLh Qi*t : 6t
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Fig. 2. (a) Parameter sp.rce of the system (7) exhibiting
three possible dynamical regimesl (b) Phase planes illustrat-
ing these regimes; (c) Bifurcation diagram for fixed parameter
value o* < 8 (r is amplitude of oscillations). The solid lines
correspond to stable solutions (fixed point, limit cycle) and
the dotted line corresponds to an unstable limit cycle.

and, consequently, gj+t : gj. For the parame-
ter region o ) 8 and d small enough, there is spa-
tial amplitude disorder [Nekorkin et al., 1997]. In
this case there are 2" different possible stable am-
plitude distributions determined by suitable initial
conditions. Each amplitude pattern can be coded
by a sequence of "0" and "1". Symbols u0' and ul"

correspond to small and high amplitudes of oscilla-
tions, respectively. For n -+ oo such sequences ian
be periodic, with arbitrary period, or chaotic. For
a ( 8 the motionless state, rj :0, is the only global
attractor.

(ii) Phase uaues. They are characterized by a con-
stant phase shift between neighboring oscillators,

of the
is no

(")

(b)
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and hence 
%rk

Pj+r -  ej  : ;  (8)

with /c :  *1, *2,. . . ,  tnf2. Thb value lnlk l  can
be treated as a wavelength and, accordingly, K :

2nkln is a wave vector on the lD a:<is. Two types of
phase waves can propagate in the system (6). The
first one is a uniform wave. For this wave the oscil-
lation amplitudes along the chain are one and the
same constant. The second type is a nonuniform
or patterned wave. For such waves the oscillation
amplitude is a two-periodic function of the spatial
coordinate j [Nekorkin et aI., L996)

Thus depending on initial conditions and pa-
rameter values in the system (6) either a state of
spatial disorder or phase waves appear. In the first
case the spatial dynamics of the amplitude can be
very complex and transitions from some ordered
state to a disordered pattern can be observed. To
characterize complexity in the spatial behavior of
the system, we introduce a quantity which reflects
the "Ievel of disorder". F\rrther this quantity can
help us follow the time evolution of spatial pat-
terns. There are several quantities characterizing
chaotic time series, but usually the calculation of
such quantities as entropy, Lyapunov exponents,
Fourier power spectra and so on demands long time-
consuming evolutions. Here we introduce a sim-
pler quantity, called the disorder parameter, that
we think best suits to characterize rather short pat-
terns. To do this let us consider some spatial pat-
tern which can be described by variables ui with
j : L, 2r. . . , n, where n is not high. We assume
that the disorder parameter has to be minimal (in
f.rct zeto) for patterns having purely periodic struc-
ture along the spatial coordinate and maximal for
patterns without periodicity. For convenience, we
continue considering periodic boundary conditions,
%j+n : ui. Then our disorder parameter is:

).
o(t) :@TN

o ' t  { i  f u i  -  u i - x l ,  k  :  L ,  2 , . . . , '  -  r }
( i :r )

(e)
where (J : umax- umin is a normalization constant
and u-ur.,-in are the corresponding maximum and
minimum possible values of ui(t). The quantity o
accounts for the shortest distance between the orig-
inal pattern and patterns obtained by rotation of

the original one for k nodes. Hence for periodic
patterns o : 0, because after rotating such pat-
tern one period it will be identical to itself, and
the distance will be equal to zero. With increas-
ing pattern complexity o grov/s and approaches its
saturation value. It is equal to 1 and corresponds
to a long, completely random pattern with z3
erratically jumping between z-o and z-i' because
for such pattern probability to find different (by Lr)
values in the nodes of original and shifted patterns
is maximal and equal to L/2.

For a particular illustration of the concept just

introduced we have integrated the equations for a
ring chain (6) with 40 units and parameter values
taken from the region of spatial amplitude disorder.
We have chosen a periodic pattern as initial ampli-
tude distribution along the ring fFig. 3(a)]. The
disorder parameter, o, fot such distribution van-
ishes though in practice due to the discreteness of a
pattern it can slightly deviate from zero. The initial
phase distribution have been chos€n random [phase
differences along the ring are shown in Fig. 3(c)1.
Hence, its disorder parameter must be high. As
expected, we finally obtain some rather complex
spatial amplitude pattern which does not change
in time [Fig. S(b)]. Figure 3(d) shows the final dis-
tribution of phase differences. All of them vanish.
Hence, finally, we get oscillations with homogeneous
phase distribution and coinplex amplitude distribu-
tion. Figure 3(e) shows the evolution of the disorder
parameter, o, calculated for the amplitude distri.
bution (solid line) and the distribution of phase
differences (dashed line). The level of amplitude
disorder starts from zero for the initial pattern and
grorys fast up to some fixed value. Hence the am-
plitude distributions soon gets rather complex and
after about t = 50 we have a stationary amplitude
pattern with a higher level of complexity than the
initial one. At the same time the disorder level of
phase differences starts from a high value, which
corresponds to a random initial distribution a"nd
slowly goes down to zero. Hence the phase distri-
bution is not stationary and keeps changing slowly
while the amplitude distribution is practically un-
altered. In the experiment, we observed formation
and evolution q1 temporal phase clusters a.s ear-
lier described [Nekorkin & Makarov, 1995]. Phase
differences between clusters decrease in time and,
finally beyond t x 2 -105 we have the zero level of
disorder in phase-difference distribution [Fig. f(d)]
corresponding to the in-phase oscillations of
all units.
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Fig' 3' Formation of spatial amplitude disorder (a) Initial amplitude distribution; (b) Final steady amplitude distribution;(c) Initial distribution o1 nr"1" air"*""*; 1ai Fini steady disiribution of phase differences; (e) Time evolution of disordcrparameter, a, for evolution of amplitude pattern (solid line) and for phasedifference pattera (dotted line) (a : 11, d = 0.1,d : e = 0 ) .
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Thus for a
lows well-defined phase relations between oscilla-
tors in the lattice: (i) for rather weak coupling in
the system there exists amplitude disorder with in-
phase oscillations; and (ii) choosing appropriately
the initial conditions we can excite either uniform
or nonuniform phase waves [Nekorkin et aI.,Igg6l.
For a < 8 all oscillators decay to the state of rest.

2.3. Dgnarnics of the system (6)
in the genenal case

Since for in-phase oscillations Xj : 0 and O(0) :
iD/(O; : 0, the introduction of a new term d[O(1i)+
O(Xi-r)] into the system (6) does not change the
existence conditions and local stability of such so-
lutions. Thus, this term does not affect the disorder
in spatial amplitude. We just get a different tran-
sient process to the behavior described in Sec. 2.2.

Let us now consider phase waves following the
methodology described by earlier authors [Li &
Erneux, 1994; Nekorkin el a1.,19961. Seeking a sta-
tionary solution of the system (6) satisfying (8) we
obtain the amplitude of the uniform waves

+p - -
at[az -8a{l  -2t6ar)

-d(7 - cos K))jlr/z
4a

(10)

Two waves with different amplitudes are possible
for a single wave vector K. Flom (10) we get the
conditions for the existence of a wave with ampli-
tude p+,

d >
8 - o * 1 6 d ( 1  - c o s K )

160(/()
(  11 )

and for wave with amplitude p-

with M :2trm/n, we get n second-order linear sys-
tems for the Fourier modes

(* : cr(p*, K, M)(,n * ic2(p+, K,M)q^ 
(14)

fr^ : ics(p*, K, M)(,n + ca(p+, K, M)i^,

with

C1:  ptFt (p*)  + F(p*)  +2[6A{ '1d)
- d(l - cos K cos M)l

cz : 2p* (6a' 6) - dsin K) sin M

CE : -2dcos K(l - cos M).

The eigenvalues corresponding to (14) are

\T,z:Ct -t C++

(15)
One of the eigenvalues vanishes due to the invari
ance of the solution relative to a constant phase
shift or translation symmetry. Hence for the stabil-
ity of phase waves we must require that real parts
of the remaining eigenvalues be negative. Figure 4
shows the domain of existence and (linear) stability
of waves with high amplitude, p : p+ in a ring of 45
units. The waves with lel ) 11 are unstable and the
waves with lkl ( 11 are stable in the full domains
of their existence. The waves with p - p- are un-
stable. Thus for large enough d one of the waves
with amplitude p - p+ and /c : *1, t2,. .. , +11
can propagate around the ring. To get a prescribed
wave we must choose appropriate initial conditions.

3. The Role of Noise

We restrict consideration to the case of weak noise.
Here we follow the structure of the previous section
and, sequentially, consider the various cases inves-
tigated above taking into account the influence of
the noise.

3.1. Nonlinear phase coupl,i,ng
uith noise

We start by neglecting the diffusive coupling be-
tween units, d,:0. Thus we have an array of units
coupled together by the nonlinear phase coupling

" ,  =  
#s inKsinM

8 - o+ 1_64(1__ cosl() 
< d <160(K)

|  +  2d(1-  cos K)
24rK)

(r2)
Let us now investigate the (linear) stability of

the wave solutions (8), (10) in the system (6). Intro-
ducing perturbations to a wave solution with am-
plitude p+ or p- and. wave vector K, ei: rj - pt,
rl : pj - (K j + po), and using their Fouri"i repr"-
sentation 

n
et: Dr(^exP(iMi),

,l j : i fi, exp(iM j), 
(13)

n:1
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FiS. 4. Stability diagra.rn for pha.se waves with amplitude
p+. The area above da.rk dots correspond to existence of
waves with specified wave number (n: 45, d, = 0.02, a:5,
a : 2 r i = L ) .

functional, O, and seek the effect of noise. In polar
coordinates, Eqr. (2) become

ii : ril(F (r1) + 6(a(yi) + o(xr_r)l

+ e(q](t)cosej + rtt4sin<pi) 
(16)
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€ /
,ij : u + 

;(n?(t) 
cos tpi - rt @ sin si),

where nj and rfi account for the corresponding real
and imaginary parts of the noise {i(t).

The noise alters the instantaneous frequen-
cies of oscillations and, consequently, affects their
phases. Note that the action of the noise is stronger
near the origin, when the amplitude of oscillations,
r7, is close to zero because in the system (16) for <p
the noisy term is proportionalto ef ri. Hence a weak
noise can drastically alter the.phase differences be-
tween nearest neighbors while the amplitude of one
of them is small. Phase differences remain almost
unaffected while oscillation amplitudes are high.
Thus now the values A7 : d[O(1j) + O(Xi-r)]
are not constants but bounded functions of time,
0 s a j ( r )  < 2 d .

First we fixa 18 and d'large enough (5 > Ll2).
Besides, as earlier said, we assume that the inten-
sity of the noise is weak enough so that the transi-
tion probability to go over the amplitude potential
barrier in the bistable case is negligible. As all Ai
depend on time, each oscillator in the system (16)
can alter its excitation regimes, by moving along
a vertical line (a - const, 0 < A < 26) on the
plane (o, A) (Fig. 2). The behavior of an oscillator
strongly depends on its amplitude and the phase
difference with its neighbors:

(b)(")

Fig. 5. Qualitative illustration of the evolution of a unit starting from different initial conditions. (a) High value and (b) Low
value ofphase differences (solid circle corresponds to initial position ofthe unit, shaded circle corresponds to its position after
phase resetting).


