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Abstract

In the present paper we propose a novel method for the identification and modeling of neural networks using extracellular spike recordings.
We create a deterministic model of the effective network, whose dynamic behavior fits experimental data. The network obtained by our method
includes explicit mathematical models of each of the spiking neurons and a description of the effective connectivity between them. Such a
model allows us to study the properties of the neuron ensemble independently from the original data. It also permits to infer properties of the
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nsemble that cannot be directly obtained from the observed spike trains. The performance of the method is tested with spike train
enerated by a number of different neural networks.
2004 Elsevier B.V. All rights reserved.
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. Introduction

The qualitative and quantitative analysis of the spiking
ctivity of individual neurons is a very valuable tool for the
tudy of the dynamics and architecture of the neural networks
n the central nervous system (Kandel et al., 2000; Moore et
l., 1966; Perkel et al., 1967a). Nonetheless, such activity is
ot due to the sole intrinsic properties of the individual neural
ells but it is mostly consequence of the direct influence of
ther neurons, from a few to hundreds of thousands, which

n general leads to dynamical behaviors far beyond a simple
ombination of those of the isolated neurons. Although any
ehavior of a neural network depends on the interactions of
high number of neural cells, on their morphology and their
ntire interconnection pattern, usually we cannot record the
ctivity of each one of these cells but rather we are restricted

o a very limited sample of the neurons of the network whose
roperties we aim to capture. Moreover, deducing the effec-

∗ Corresponding author. Tel.: +34 91 394 6900; fax: +34 91 394 6885.
E-mail address:vmakarov@opt.ucm.es (V.A. Makarov).

tive connectivity between neurons whose experimental s
trains are observed is of crucial importance in neuroscie
first for the correct interpretation of the electrophysiolog
activity of the involved neurons and neural networks, a
second and probably more important, for correctly rela
the electrophysiological activity to the functional tasks
complished by the network, being as simple as a resp
to a sensory stimulus or complex as interpreting a litera
text. The above mentioned notion “effective connectivity
defined as the simplest neuron-like circuit that would re
duce the same temporal relationships between neuron
cell assembly as those observed experimentally (Aertsen and
Preissl, 1991). In other words, by “effective” we mean a
observable direct or indirect interaction between neurons
alters their firing activity. Summarizing, when dealing w
multiunit extracellular recordings we have the following
jectives: (i) inferring the effective connectivity and neu
properties of sub-networks (limiting to neurons experim
tally available) and (ii) extrapolating the functionality of t
“whole” from the properties of the collected and classi
sub-networks.
165-0270/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
oi:10.1016/j.jneumeth.2004.11.013
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To address these problems a common experimental ap-
proach is to use extracellular multiunit recordings. In this
case spike trains (the time instants of spike occurrences, point
events), in general, do not allow any direct insights about
the subthreshold and/or intrinsic membrane dynamics of the
neurons. Nevertheless, spike trains can be used to identify the
functional characteristics and architecture of the neural net-
work they originated from (e.g.Perkel et al., 1967b; Segundo,
2003). Though possible, identifying the effective neural cir-
cuits from the spike trains represents a very complex task
even for a network of few neurons. The available mathemat-
ical methods result undersized with respect to the research
exigencies, and the large majority of neurophysiologists re-
strict their study to the description of the neural activity by
means of cross-correlograms (Perkel et al., 1967b), a tool
widely understood but which provides very limited knowl-
edge about the functional properties of the neural networks.
For instance, in the case of neural ensembles of three or more
neurons the cross-correlation may be easily fooled by the
presence of indirect connections (via other neuron(s)), or also
due to a common input.

Recently, more sophisticated statistical methods have been
introduced for the identification of effective connectivity
in relatively large neural networks. Nevertheless, to extract
the interactions among neurophysiological data from two or
more neural elements, or brain sites, all these methods always
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common situation which may just represent an objective of
the research. An additional very important remark is that all
these methods assume a stochastic nature of the spike trains
generated by neurons. Consequently, no considerations are
made about the dynamics of the involved neurons or about
the nature of the intrinsic processes that are responsible for
such behavior, with the consequent enormous difficulties in
subsequent steps of the study: assigning of functional and/or
neurochemical properties of the neurons, determination of
anatomical correlates, etc. Furthermore, all these methods
deal only with the connectivity patterns, i.e. only presence
and sometime type and direction of the couplings between
neurons can be estimated. No knowledge about absolute val-
ues of couplings or other parameters of the network can be
drawn.

In contrast to a purely statistic approach, a deterministic
one can be considered. The main advantage of determinis-
tic methods is the use of mathematical models for inferring
single neuron or neural network properties (indirect method)
especially useful where direct observation of the neural dy-
namics (experimental procedures) is very difficult or even im-
possible. In general, in the literature, the indirect inference of
network properties from models is approached in a very ab-
stract manner, considering relatively simple, usually vaguely
biophysically meaningful, neuron models (like phase oscil-
lators (e.g.Ermentrout, 1982), Fitzhugh-Nagumo (FitzHugh,
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ecur to the evaluation of some kind of covariance or cor
ion between the multiple signals. In fact, even the met
hat go beyond simple correlation (e.g., regression ana
rincipal components analysis and multidimensional sca
onceptually embody the notion of co-variation in acti
Horwitz, 2003). In this framework a method based on lin
artialization (conditional probability) in frequency dom
as been proposed in (Brillinger et al., 1976; Dahlhaus et a
997; Rosenberg et al., 1989). Although this approach allow
istinguishing direct from indirect (trough other neuro
onnections, it does not differentiate between excitatory
nhibitory synapses, a problem solved byEichler et al. (2003
y adopting a similar approach based on partialization in
omain. Another approach, called partial directed coher
e.g.Sameshima and Baccala, 1999), uses Granger causal
Granger, 1969) to expose the direction of information flo
urther two more methods: direct causality (Kaminski et al.
001), and direct directed transfer function (Korzeniewska e
l., 2003) have been introduced. These methods allow id

ying the presence of feedback between two or more neu
ut coupling polarities are not directly accessible. Altho
hese methods have been successfully applied on sim
etworks of randomly spiking coupled neurons, their ap
ation to real data is basically limited because: (i) they do
llow resolving mutual couplings between neurons and/o
ot distinguish the type of such couplings; (ii) as a rule t
pplication assumes the use of relatively large spike t
ith constant statistical properties, a condition difficul
e satisfied in the experiments; (iii) they usually fail wh
pplied to excessively rhythmic neural assemblies, a r
961), Plant (Plant, 1981), Hindmarsh-Rose (Hindmarsh an
ose, 1984), etc.) connected in networks which are eit

arge and extremely regular (chains, rings, lattices, glob
andom couplings) or composed of only few (two) neur
lternatively, the Hodgkin–Huxley formalism (Hodgkin and
uxley, 1952) for modeling the dynamics of an individu
euron can be adopted. However, the need of a priori inv
ations of the channel dynamics of each particular neuro

he synaptic transduction properties, together with the c
utational complexity of its integration, restrict as well its

o the cases of very regular networks or of only a few neur
hilst these approaches allowed studying many pheno

xperimentally observed in the central nervous system
artial synchronization, phase or frequency locking, diffe

ypes of waves, clustering, etc.), they lack direct biophy
nterpretation and, the study of the dynamics of interm
te size networks, having biophysically supported effe
onnectivity patterns, is still a challenging problem. In
irection, a method for extracting a dynamical system
f the interspike intervals (ISIs) has been proposed (Racicot
nd Longtin, 1997; Sauer, 1994). This method allows con
luding, for instance, about the possible chaotic natu
he spike timings of a neuron (e.g.Pavlov et al., 2001). Re-
ently another approach taking into account the determ
ic dynamics of a single neuron activity has been introdu
Paninski, 2004; Paninski et al., 2003; Pillow and Simonc
003). This approach provides a biophysically more real
lternative to the models based on Poisson (stochastic)
eneration. It was shown that the leaky integrate and fire
riven by a noisy stimulus demonstrates an adaptive beh
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similar to the effects observed in vivo and in vitro; spiking
dynamics may account for changes observed in the recep-
tive fields measured at different contrasts. However, these
methods assume neurons to be isolated; hence, they do not
provide insights about the neural network structure and its
relationships with the observed dynamics.

Within the deterministic approach, here we propose a
novel mathematical method for the identification of connec-
tivity and modeling of neural networks using extracellular
spike recordings. The aim is to obtain an inferable determin-
istic model of the neural ensemble, including interneuron
connections. Such a model allows studying the properties of
the network independently from the original data and also
permits to infer dynamical properties that cannot be directly
obtained from the observed spike trains. The mathematical
algorithm has been implemented and a PC package is freely
available (Makarov, 2004).

2. Materials and methods

2.1. Network identification and modeling

The method we propose is capable to analyze a set of ex-
perimentally recorded spike trains providing a mathematical
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to investigate the network dynamics and functionality. Let us
now give an outline of the method, whilst the mathematical
details are reported inAppendix A.

Having spike series ofN neurons we assume a network
composed ofN interconnected dynamical systems, each of
which describes the spiking behavior of one recorded neuron,
i.e. we consider one dynamical system for each neuron. The
behavior of each of theN dynamical systems is described
by a set of differential equations that depend on a number
of parameters unknown“ a priori”. The connections between
neurons are represented by aN× NmatrixWwhose elements
wkn are the weights of the synapses between then-th and
thek-th neurons, e.g.w12 represents the synaptic weight of
the coupling directed from the presynaptic neuron 2 to the
postsynaptic neuron 1. Schematically, it results in a graph
whoseN vertices represent the neurons, whose spike trains
are experimentally observed, and the links between vertices
correspond to effective synapses between the corresponding
neurons, as illustrated inFig. 1A. Then, the parameter values
of the network model (the parameters of each one of the
dynamical systems and among them the strengths and types
of the synapses in the network) are determined from the spike
trains by means of a minimization procedure.

Recently, Jolivet et al. (2004)shown that detailed
conductance-based models (Hodgkin–Huxley type) can be
well fitted by single-variable integrate-and-fire models. Ac-
c s-
t d-fire
m

C
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c l po-
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F thvertices single
n amics d-.
E he link between
n determ synapse,
w spike potential an
i neuro
odel of interconnected spiking neurons that generates
equences like the experimental ones. Moreover, our m
rovides the effective architecture of the neural network
luding type, direction, and strength of the synapses. O
btained, the deterministic model of the neural network
elp us in interpreting both the dynamic behavior of the si
eurons and their interactions, characteristics that, in ge
annot be directly obtained from the merely spike trains
his reason our procedure is divided in two steps: (i) dete
ation of a mathematical model of the neural network an
eurons that form it and (ii) the use of the mathematical m

ig. 1. Graphical representation of the network model. (A) Graph wiN
euron whose spike train is available experimentally. The intrinsic dyn
ach neuron can receive synaptic input from (N− 1) other neurons, and t
eurons. The connectivity matrix{wkn} defines the synaptic weights to be
hile zero corresponds to the absence of the synapse. (B) The input

ncrease (decrease) for inhibitory (excitatory) synapses the ISIs of the
ordingly, for each of theN interconnected dynamical sy
ems we use the single-compartment leaky integrate-an
odel (e.g.Stein, 1967):

dV

dt
= −GL(V − VL) + I0 + Isyn(t), (1)

hereV is the neural membrane potential,C the membran
apacity,GL andVL are the conductance and the reversa
ential of the leakage current,Isyn(t) is the synaptic curren
nduced by the spikes from the other neurons of the netw

(the case of three vertices is shown). Each vertex corresponds to a
of a neuron is modeled by the single-compartment leaky integrate-anfire model
s between vertices correspond to the (effective) synaptic connections

ined. Positive (negative) weight corresponds to excitatory (inhibitory)
trains (the case of one train is shown) modify the neuron membraned
n, with respect to its intrinsic firing.
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Fig. 2. Qualitative illustration of the working principle of the identification algorithm. A neuron, “k”, receives two synaptic inputs of different polarity, i.e.
excitatory and inhibitory (two upper spike trains). Input spikes provoke postsynaptic current,Isyn; the current associated with a single spike is modeled by an
exponential function with amplitude and polarity defined by the corresponding entry of the connectivity matrix,W (in this case we have two componentsw1

andw2 for the two synapses). The time decays of the synaptic current, or duration of the synaptic transmission, are defined by two parameterλ1 andλ2. The
gray bars show time intervals when the membrane potential,V, is altered by the synaptic current and deviates (continuous line) from the intrinsic membrane
dynamics (dashed line). When the membrane potential reaches the threshold,Vth, the modeled neuron fires a spike andVmem is reset to the initial state,VL.
Accordingly, the parameter setp={i0, τ, λ1, λ2, w1, w2} defines uniquely the dynamics of the modeled neuron for a given input spike trains. Hence, the
parameter values can be adjusted to minimize the sum of the squared differences (�Ti ) between the experimentally observed firing of the neuron (“experimental
output”) and the firing predicted by the model (“model output”). The resulting parameter setp* gives the best (predictive) estimate of the intrinsic parameters
and of the entries in the connectivity matrix corresponding to the modeled neuron.

and the constant currentI 0 allows neurons to fire periodi-
cally when uncoupled. Whenever the membrane potentialV
reaches a threshold,Vth (about−50 mV) a spike is fired and
V is instantaneously reset to the initial state,VL. Hence, for
I 0 > GL(Vth − VL) the single neuron model (1) produces tonic
spikes. Whilst, for non-spiking neurons, the resting mem-
brane potential (usually about−60 mV) isV0 = VL + I 0/GL.

Our procedure to adjust the parameters of the model uses
the ISIs of the recorded spike trains. It relies on the general
assumption that when a neuron receives an excitatory input
it fires in advance with respect to its intrinsic firing inter-
val and, consequently, it increases its firing rate. Inversely,
it delays firing for inhibitory input with a consequent de-
crease in its firing rate (Fig. 1B). This is a general property
of Type I membranes that have non-negative phase resetting
curves (Ermentrout, 1996), which is indeed compatible with
the leaky integrate-and-fire neuron model (van Vreeswijk et
al., 1995). Type II neurons can have regions with negative
phase resetting curves, for instance when undergoing a su-
percritical Hopf bifurcation (many membrane can be brought
into this regime at high enough temperatures, but it is nor-
mally unusual) (Ermentrout, 1996).

The dynamic behavior of each neuron is determined by
the parameters of each incoming synapse, by the incoming
spiking activity and by the parameter values that determine its
intrinsic behavior (leaky time and intrinsic spiking). Starting
f them
b -
p the
p

Fig. 2 sketches the method working principle. We as-
sume that thek-th neuron has two afferent synapses of dif-
ferent types, i.e. one excitatory and one inhibitory. For each
one of the two synapses, an input spike induces an expo-
nential current and the sum of them gives the postsynaptic
current Isyn. The amplitude and the sign of the two com-
ponents of the postsynaptic current are defined by the cor-
responding weights of the connectivity matrix,W; in this
case with only two synapses let us call them shortlyw1
and w2. Between each two spikes of thek-th neuron, in
absence of external input, the membrane potential evolves
according to its intrinsic dynamics (dashed line inFig. 2,
see alsoAppendix A). When external spikes income, the
membrane potential deviates from its natural trajectory as
highlighted inFig. 2 and, every time it reaches the thresh-
old Vth, the neuron fires a spike andV is reset to the ini-
tial stateVL. Given the input spike trains, the parameters
of the equations of the model uniquely define the dynam-
ics within two successive spikes of the neuron. At this
point, keeping in mind that with this method we are in-
terested in capturing the underlined dynamics of the net-
work, we adjust the parameter values in order to minimize
the sum of the squared differences between the experimen-
tal spike trains and the trains predicted by the model, i.e.
the sum of the squared�Ti highlighted in Fig. 2. The
set of the parameters corresponding to the global mini-
m t es-
t d of
t eural
n

rom arbitrarily assigned parameter values, we adjust
y means of a mean square method (Motulsky and Christo
oulos, 2003) taking into account the differences between
redicted and measured spike trains.
um of the squared sum (cost function) gives the bes
imate of the components of the connectivity matrix an
he other parameters of the neurons in the modeled n
etworks.
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2.2. Use of the identified neural network model

Once a model of the whole neural network has been set-
tled, i.e. all the parameters values of the equations (including
the interconnections) have been determined, it can be mathe-
matically investigated, independently from the original data,
in order to assess the relationships between dynamical be-
havior and effective network architecture. The model of the
network is functionally equivalent to the real one although the
architectural differences between the real and modeled net-
works may be important. For example, the sequence of two
or more interconnected neurons could be modeled by only
one or a modeled neuron may send to postsynaptic neurons
both excitatory and inhibitory connections.

A functionally meaningful neural network model fitting
the observed data opens a broad variety of investigative pos-
sibilities. For example, one can study statistical properties
of the model dynamics or bifurcations of the vector field and
even collective chaotic behavior. As guidance, we report here
two examples illustrating the kind of information that may
be retrieved from the model, leaving the further exploitation
of the modeling approach to the researchers.

It should be noted that, since we built a deterministic
model, we can easily reverse the problem. Indeed, as soon
as the parameter values of the model (i.e. connectivity ma-
trix, decay scales, etc.) have been identified, the model equa-
t for
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ing of two neurons can be due to the dynamical behavior of
three very different effective networks: (i) one of the neurons
may not intrinsically fire at all and it produces tonic spikes
due to input from the other neuron; (ii) alternatively, the firing
frequencies of the two neurons are outcome of the collective
dynamics (effective connectivity) and are, in general, differ-
ent from their intrinsic frequencies; (iii) finally, no one of the
two neurons is intrinsically spiking and their regular spiking
is the result of the mutual effective interconnection. From
the correlograms and other statistical methods it is not pos-
sible to distinguish which of these three cases is observed.
On the contrary, this information is inferable from a simple
mathematical analysis of the model: namely, if the identified
parameter values of a neuron are so thatI 0/ GL(Vth − VL) > 1,
then this neuron is intrinsically firing; otherwise the neuron
fires due to the collective network dynamics.

2.3. Testing the method performance: generation of
“experimental” spike trains

To verify our technique we used artificially generated
spike trains, since the only way to judge the results of our
method is to know all the properties of the network, espe-
cially the connectivity pattern. To generate the spike trains
we consider five neural networks combining two essentially
different kinds of neuron models: the probabilistic spike re-
s ic
m sed
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ion can be numerically integrated (simulated), resorting
nstance to one of the ODE integrators of Matlab®, and
he model spike trains can be obtained. Thought, sinc
ommonly available simultaneous recordings are spike t
rom few neurons despite the fact that they are part of la
eural circuits, a natural extension of the model is to
oise sources into Eq.(1) for modeling all unmeasured ph
omena, including entrances from unobserved neuron
oising environment. In the simplest cases, white inde
ent zero mean Gaussian processes (noise) can be use

The simplest use of the model (trough simulations) is
ssessment of timing related properties. Simulations m
sed to generate spike trains; then statistical properties
rosscorrelograms) of the model generated data can be
uted and compared with those of the originally meas
nes. This comparison can highlight, for instance, to w
xtent the observed statistical properties are related t
ffective architecture, especially if the simulations have
een performed slightly modifying the identified parame

On the other hand, there are network properties w
annot be retrieved from the solely spike timings but wh
n the contrary, may be inferred from the model. In the
hen two tonic, approximately synchronous, spiking neu
re observed, usually the spike trains show very high r

arity, their ISIs are practically constant and slightly vary
ith the synaptic input. Consequently, auto-correlation

ograms will demonstrate equidistantly distributed peak
icating the tonic spiking of both neurons and, at the s

ime, the cross-correlation will have at least one peak ind
ng the common behavior. However, the joint regularly s
ponse model (SRM,Gerstner, 1995) and the determinist
odel for regularly spiking (RS) neurons recently propo
y Izhikevich (2003). On one hand we chose the SRM
ause in the absence of couplings, such a neuron fires
egular spike train with Poisson-like distribution of the IS
hus no assigned firing frequency exists. Consequently,
ows assessing the robustness of the method with resp
eterminism of the modeled neuron. On the other side
S model has been chosen because it is a computatio
fficient yet very plausible model of spiking neurons
ermits to simulate a variety of behaviors of biological n
ons, like spiking, bursting, chattering, frequency adapta
tc. (Izhikevich, 2004). Since the RS model is strictly d

erministic, to add variability to the dynamics and emu
he environmental fluctuations and/or the driving activity
ther “unobserved” neurons, we introduce stochastic fo

nto the model equations. None of the two chosen ne
odels belongs to the class of integrate-and-fire ones,
e want to assess the robustness of the proposed tech
ith respect to our most restricting hypothesis, i.e. the u

ntegrate-and-fire model. Equations and descriptions o
wo models are briefly recalled inAppendix B.

Experiments 1–3 consider combinations of two RSM n
ons: (1) unidirectional excitatory connection; (2) unidir
ional inhibitory connection; (3) mutual inhibitory–excitato
oop. Despite that in theory there are (23 + 1) cases, thes
hree experiments practically cover all the possible t
euron connections, since the other six are particular
f these combinations. In experiment 4 we consider the

ual inhibitory–excitatory loop of two RS neurons; and
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experiment 5 we analyze the spikes generated from a classi-
cal three-neuron network formed by two interconnected RS
and one SRM neuron. Experiment 6 assesses robustness of
the method in respect to the amount of data (length of the
available spike train recordings) and complexity of the un-
derlying network (cases of three- and five-neuron networks
are considered).

3. Results

First, the performance of the method is assessed on three
neural networks of two probabilistic (SRM) neurons with
low firing rates and one network of two tonic (RS) neurons;
we generate experimental traces lasting 40 s for the SRM net-
works and 20 s for the RS network, thus having about 50–150
spikes for each experiment. Second, we use a mixed SRM-RS
three-neuron network with experimental spike trains lasting
20 s. In each experiment we apply our method to identify

the connectivity pattern and intrinsic parameter values of the
model of the neural network. Afterwards, we simulate the
model at the identified parameters values. We compare the
connectivity patterns (presence and type of the synapses), and
we also crosscheck statistical properties, e.g. ISI and cross-
correlation histograms, of modeled and “experimental” spike
trains.

Finally (experiment 6), the robustness of the method is
tested on two complex networks of three and five intercon-
nected neurons. For each network we perform 100 Monte
Carlo experiments varying the data segment length (duration
of recording), and then we calculate the number of success-
ful structural inferences as the number of correctly detected
synapses divided by the number of possible couplings.

3.1. Experiment 1

Fig. 3shows the results for the case of the unidirectional
excitatory coupling. Here and further on, we use “V” and “T”-

F
s
w
t

ig. 3. Identification and modeling of a two-neuron network with unidirectiona
hows the experimental spike trains and their ISI and cross-correlation histog
hich captures correctly the experimental connectivity pattern (only presenc

heir ISI and cross-correlation histograms, which are in a good accordance w
l excitatory coupling between two SRM neurons. The upper part (“experiment”)
rams. The lower part (“model”) illustrates: the identified connectivity matrix,Wmd,
e, polarity and relative weights are comparable); and the modeled spike trains with
ith their experimental counterparts.
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like links ends to mark excitatory and inhibitory synapses
respectively. The first neuron is autonomous; hence it fires
irregularly with a very broad spectrum of ISIs. The firing of
the second neuron, even though irregular, does depend on the
spiking of the first neuron. The upper part ofFig. 3, marked
as “experiment”, illustrates the experimental spike trains and
the corresponding ISI and cross-correlation histograms. The
cross-correlation histogram exhibits a high peak centered at
a positive closed to zero value of time shift, suggesting the
presence of coupling. The firing rate of both neurons is within
the range of 0.5–50 Hz but, due to excitatory input, neuron
2 fires more frequently since the mean frequencies are 2 and
4 Hz for neurons 1 and 2, respectively. Neuron 2 may also
produce bursts as a response to input spikes that strongly
depolarize it. The blind use of the identification method de-
tects correctly the presence (and strength) of the excitatory
coupling (w21 = +31.3). It also estimates a negligible value
(about 1% of the excitatory link) for the feedback coupling
(w12 =−0.3). Indeed, further investigations show that this
vanishing coupling is irrelevant for the dynamics of the net-
work.

It should be noted that the “experimental” and identified
coupling matrices can be compared only qualitatively as the
absolute values of their entries are incommensurables. In fact,
they refer to two completely different mathematical models.
Moreover, even in the case where the same model has been
used for both “experiment” and identification, the matrices
are not “linearly” comparable since their elements are nonlin-
early obtained upon the spike timings, e.g. for strong enough
coupling strength the spiking rate may saturate or even de-
crease.

We performed a simulation using the model of the net-
work we obtained and to which we have added a white noise.
The lower part ofFig. 3, marked as “model”, reports the
spike trains and the corresponding ISI and cross-correlation
histograms of the model. The comparison of the upper and
lower part of the figure highlights a good statistical agreement
of the model with the experimental data. Indeed, as for the
experimental data, neuron 1 fires with a strong variability of
ISIs whilst, since the firing of the first neuron evokes spikes
in second one, the ISI histogram of neuron 2 decays rapidly.
Furthermore, the cross-correlation histogram exhibits a high
Fig. 4. Same as inFig. 3for the c
ase of inhibitory coupling.
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peak for small positive values of the time shift very similar
to the one of the experimental data.

3.2. Experiment 2

Similarly to the first case,Fig. 4shows the results for the
case of inhibitory synapse. The inhibitory synapse induces
two observable effects on the statistics: first of all the elon-
gation of the ISI histogram of neuron 2, i.e. its mean firing
frequency decreases to 1.6 Hz, and second, the emergence of
a valley in the positive part of the cross-correlation histogram.
Alike to the case of the excitatory synapse, the identification
method provides the correct connectivity pattern, and the sta-
tistical properties of the model results very similar to those
from the experiment, supporting further the potential of the
method.

3.3. Experiment 3

Fig. 5shows the results for the more complex case of two
neurons forming an excitatory–inhibitory loop. In this case

the spike trains from the two neurons are not trivially interre-
lated. The presence of the excitatory synapse is pointed out by
the experimental cross-correlation histogram, which shows a
peak similar to that inFig. 3 for the case of unidirectional
coupling. However, the presence of an inhibitory synapse is
not obvious as there is no pronounced difference between
the histograms ofFigs. 3 and 5. On the contrary, alike to the
previous cases, the identification method provides the cor-
rect connectivity pattern, and the simulation of the network
results in a satisfactory statistical accordance of experimental
and model produced data.

3.4. Experiment 4

The last two-neuron network is composed by two tonic
spiking neurons connected into an excitatory–inhibitory loop
as shown inFig. 6. The experimental spike trains and the
results of their statistical analysis are shown in the upper
part (“experiment”) ofFig. 6. The autocorrelations clearly
demonstrates equidistantly distributed peaks representative
of the tonic spiking of both neurons, whilst the peaks in the
Fig. 5. Same as inFig. 3for the case of e
xcitatory–inhibitory coupling loop.



V.A. Makarov et al. / Journal of Neuroscience Methods 144 (2005) 265–279 273

Fig. 6. Same asFig. 3for the case of a two-neuron network of mutually interconnected tonic spiking neurons (RS model).

cross-correlation highlight the presence of synaptic coupling.
However, as in the previous experiment, the analysis of the
histogram does not allow outlining the connectivity pattern
neither allows drawing any conclusion about the intrinsic
spiking nature of the two neurons. On the contrary, our iden-
tification method provides the correct connectivity pattern.
Also the simulation of the modeled network provides results
in a satisfactory statistical accordance with the experimental
ones. As it can be seen, there is a good qualitative agree-
ment between experimental and model cross-correlation his-
tograms, though the former one has less pronounced peaks
and the depression between peaks is not as strong as in the
model histogram. This is due to the nature of the RS model we
use for generating experimental spike trains which does not
belong to the class of renewal models, i.e. its spiking shows
adaptation phenomenon (Izhikevich, 2004). Consequently,
the ISI following a short ISI tends to elongate, which in turn
results in the fuzzy peaks of the experimental crosscorrelo-
gram. Finally, the simulation of the two isolated (modeled)

neurons allows spotting exactly the intrinsic nature of both
neurons as being regularly spiking, highlighting in this way
the modeling ability of our identification technique.

3.5. Experiment 5

Fig. 7summarizes the results obtained when applying the
identification technique to a mixed RS-SRM three-neuron
network. Considering the experimental data we observe that
neuron 1 has a relatively high firing frequency and strong
variability of ISIs and it fires in bursts when gets the excita-
tory input from the low rate irregularly firing neuron 2. On
the other side, neuron 3 shows regular fast spiking activity.
Note that this case has different feedback loops and indirect
(via third neuron) connections, which makes problematic the
study of the connectivity pattern by means of the conventional
cross-correlation methods. However, in agreements to all the
previous considered experiments, also for this harder case
the application of our deterministic method leads to the iden-
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Fig. 7. Test of the method on a complex three-neuron network. Neurons 1 and 2 are modeled with SRM, while neuron 3 (SR model) fires tonic spikes with a
high firing rate. The network includes different excitatory–inhibitory loops and indirect connections. The connectivity matrixWex is used for the generation of
experimental spike trains. The outcome of the method application is the matrixWmd, which captures correctly the interneuron connectivity. Simulation of the
identified neural network (model) shows a good statistical accordance with the experimental data.

tification of the correct connectivity pattern. Yet again, the
simulation of the identified network provides results in a sat-
isfactory statistical accordance with the experimental ones.
The simulation of each one of the three neurons taken sepa-
rately allows spotting the intrinsic regularly spiking nature of
one of them, further highlighting the power of the proposed
modeling technique.

3.6. Experiment 6

Fig. 8 summarizes the results of the robustness test. The
network architecture, connectivity matrix and experimental
spike trains for the case of the five-neuron network are shown
in Fig. 8A, together with two representative examples of the
connectivity matrix found during the identification using 20
and 60 s lasting spike trains, respectively. The matrix obtained
for longer spike trains is structurally closer to the experimen-

tal one. In the case of three- (five-)neuron networks there exist
6 (20) couplings to be identified by the method.Fig. 8B shows
(100 Monte Carlo simulations) the mean percentage of the
correctly identified synapses as a function of the recording
length. In both cases the method shows a good performance
increasing with the amount of the data available for identi-
fication. In the case of the three-neuron network the method
identifies correctly a 76.9% of the synapses with only spike
trains lasting 10 s. The percentage reaches the 96.5% with
30 s of data and practically does not vary after this time in-
terval (95.9% with 60 s). With the five-neuron network the
performances are of 59.1%, 73.3% and 85.8%, respectively.
Note that before identification each synapse in the connec-
tivity pattern has “a priory” three equiprobable possibilities
(it may be excitatory, inhibitory or null). Hence, a 50% of
successes in the identification would mean a better perfor-
mance than just a random assignation that in this case will
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Fig. 8. Performance test of the network identification. (A) Results of a five-neuron network simulation and examples of connectivity matrices identified when
using recording samples of two different durations: 20 and 60 s. (B) Mean percentage of correctly identified synapses as a function of the recording duration for
the three- and five-neurons networks (in the former case experimental conditions are the same as inFig. 7). Note that when counting successes we distinguish
between inhibitory, null, and excitatory synapses. Thus even 50% of successful inferences correspond to a prediction much better than the one made bya
random generator which would provide a 33% of success.

have 33% of success. As expected, the complexity of the net-
work (number of involved neurons) decreases the method per-
formance. For the same recording length a simpler network
(three neurons) is identified better than the complex one (five
neurons).

4. Discussion and conclusions

In the present paper we have proposed a novel determinis-
tic method, which, for given spike trains ofNneurons, allows
obtaining a mathematical model describing both the architec-
ture and the dynamical behavior of the underlined biological
neural network. We have also shown that the obtained neural
network model produces spike trains with statistical proper-
ties similar to those of the experimental data.

To model the network we use a set of interconnected
integrate-and-fire neurons. All the parameter values neces-
sary to univocally define the neural network, i.e. the matrix
of the network connectivity, the synaptic time scales, and the
intrinsic parameters of the neurons, are calculated from the
recorded spike trains trough an optimization procedure min-
imizing the difference between the predicted and the mea-
sured timings of spike episodes. Given the spike events, the
identification of all the parameters is guaranteed by the de-
composition of the fitting problem according to two nested
i dy-

namical equation of each neuron remains independent from
the others and (ii) the dynamics of each neuron within an
interspike interval is independent from the dynamics within
the other intervals.

The identification algorithm relies on the solely spike dis-
charging times and any a priori knowledge of the parameter
values, which may be provided by physiology, morphology,
etc., can be included simply constraining to the given values
(or ranges of values) the corresponding parameters, result-
ing also in a computational improvement. Furthermore, the
method also allows considering bursting neurons simply re-
curring to a preprocessing of the spike trains: all the needed
is to specify the minimal time interval for which two spikes
are considered to be separated events and not belonging to a
burst.

In order to assess the robustness of the method we gen-
erated “experimental” data sets considering neuron models
denying the most restricting hypotheses on which the method
trusts. Namely, we considered networks combining statistical
responding (Gerstner, 1995) and not renewal regularly spik-
ing (Izhikevich, 2003) neuron models. The former model de-
nies the determinism, while the later one does not satisfied the
resetting property of the neuron model we use in our method.
Furthermore, the first five networks we considered collect the
main difficulties reported in literature about the identification
of the neural connectivity, like mutual and indirect couplings,
i nter-
ndependencies of the integrate-and-fire model: (i) the
 nhibitory synapses, and excessively regular interspike i
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vals, providing a reliable platform for the assessment of the
identification technique.

In the first five experiments, we assessed separately the
connectivity pattern identification and the modeling abil-
ities of the method. For all the considered networks, the
method provided the correct connectivity pattern. Simulta-
neously, with reference to the modeling issues, the simu-
lation of the identified networks has provided spike trains
with first order statistics in satisfactory accordance with the
experimental ones. Also, for the more complex considered
networks, the mathematical analysis of the identified model
has correctly spotted intrinsic features of the isolated neu-
rons which could not be inferred from the spike trains only,
highlighting in this way the strength of the modeling tech-
nique. Finally (experiment 6), we checked the robustness of
the method with respect to the amount of the available data
(length of the spike trains) and the complexity of the un-
derlying network applying identification of the connectiv-
ity pattern for data generated by relatively large networks
with complex dynamics. The method showed a good per-
formance that increased with the length of the data under
study.

Concerning the identified connectivity pattern, it should
be mentioned that the network connectivity obtained may
differ from the anatomical network from which the data are
observed (Aertsen and Preissl, 1991; Perkel et al., 1967a,b).
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Appendix A. Network model and parameter values
adjusting procedure

Given N spike trains, we have a graph whoseN vertices
represent the neurons, and the links between vertices stand for
the effective synapses between the corresponding neurons.
The dynamics of each neuron (vertex inFig. 1) is described by
Eq.(1), driven by the external force (synaptic current) defined
by the links structure. A rather accurate mathematical model
of the synaptic current induced by a single spike is (Getting,
1989):

Isyn(t − t′) = Γ
1

λd − λr
(e−(t−t′)/λd − e−(t−t′)/λr

), (A.1)

wheret′ is the time instant when a spike from the presynap-
t nd
p er-
m . For
f zero,
w
v cale.
B -
j ork.
H rten
t

I

T d by
t rons.
T pses
o of the
s

a
v nless
m

v

w tely
a pike
r rane
hough, both of them are effectively equivalent for certain
erimental conditions, i.e. they span the same dynamica
avior, which justifies the use of the term “effective synap
r “effective network” we used through all the text to indic

he equivalent neural dynamical systems that could gen
he observed data. The application of the method on arti
ata allows measuring its potential and robustness wit
andy environment; however, it is clearly not the aim

nvestigations on real data are underway.
Conversely to the descriptive nature of the statistical m

ds, which provides only a pattern of neural connecti
he use of our deterministic approach offers a whole m
f the neural network from which the experimental sp
re coming from. Such model includes the values of the
ameters of the individual neurons (e.g. intrinsic firing
uency) and of the synapses between them. Consequ
e offer a powerful tool to approach the first of the t
ain steps in the study of neural circuits, i.e. inferring
ynamics of the neurons, and the effective connectivit

he network they belong to, from the recordings of the
ivity of a limited sample of neurons. This step is fun
ental for addressing the second objective, i.e. extrap

ng the functionality of the whole neural assembly from
roperties of the analyzed sub-networks, the main ai
euronal studies. Finally, it should be stressed that the

ained models can be subsequently studied independ
rom the experimental data; hence, information proces
n neural circuits can be investigated and neural circuits
e classified depending on their architectures and dyna
roperties.
,

ic neuron arrives,Γ accounts for the synaptic strength a
olarity (weight), andλd andλr are the time constants det
ining the decay and the rise time scales, respectively

ast synapses the rise scale can be approximately set to
hile for a slow synapse (e.g. GABAA or NMDA) it is not
anishing although being usually less than the decay s
esides, from the modeling point of viewλd plays a ma

or role in determining the dynamics of the model netw
ence, to simplify the identification method, we can sho

he synaptic equation to:

syn(t − t′) = Γ
1

λd
e−(t−t′)/λd

. (A.2)

he total synaptic current for a neuron can be accounte
he sum over spikes generated by all the presynaptic neu
he synaptic weights may be different among the syna
r be equal to zero, meaning in this case the absence
ynaptic coupling between certain neurons.

Let us consider one of the vertices-neurons, say thek-th
nd, to simplify notation, so forth we drop the indexk in all
ariables and parameters. First, we introduce dimensio
embrane potential and time:

= V − VL

Vth − VL
, tnew = told

θ
, (A.3)

hereθ is a time scale constant that can be appropria
djusted to account for neurons with largely different s
ates. Then, the evolution of the dimensionless memb
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potential,v̇, is written as

v̇ = −v

τ
+ i0 +

N∑
n=1, n�=k


wn

∑
j

1

λn

exp

[
− t − tnj

λn

]
 ,

if v = 1 thenv = 0 (A.4)

where the decay time scale,τ; the constant current,i 0; synap-
tic time scales{λn} and weights,{wn} are given by

τ = C

GLθ
, i0 = θ I0

C(Vtr − VL)
, λn = λd

n

θ
,

wn = Γn

C(Vtr − VL)
. (A.5)

The first sum in Eq.(A.4) is taken over all the presynaptic neu-
rons, whilst the second one is taken over the spikes generated
by these neurons between two consecutive spikes of neuron
k. Note that all these parameters and the membrane potential
are related to neuronk, so to have a complete set of equa-
tions we need to repeat the same procedure for all the other
neurons. Summarizing, forN membrane potentials we have
N equations as Eq.(A.4), each of which has 2N independent
parameters:pk = (i0k, τk, λk1, ..., λkN,wk1, ..., wkN ), being
λkk andwkk meaningless.
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Fig. A.1. Illustration of relative time intervals between presynaptic and post-
synaptic spikes; a fragment of two spike trains of postsynaptic neuronk, and
presynaptic neuronn is shown. The postsynaptic neuron in itsi-th ISI, Ti ,
receives two spikes with relative intervalstin1 andtin2.

the connectivity matrixWand the other intrinsic parameters.
We stress once more that, in general, the parameter values
defining the dynamics of each neuron in the network (i.e.,
decay scale, constant current, and the synaptic constants) may
differ amongst the neurons, thus accounting for the diversity
of neurons and synapses.

Assuming that in the experiment we observed a sufficient
number of spikes, soM 
 2N, we can consider Eq.(A.6)
as a nonlinear regression problem. Indeed, Eq.(A.6) can be
presented in the form:

F (T̄ i, {tinj}, p) = 0 (A.7)

where all input events{tinj} are known precisely (up to ex-
perimental precision). On the contrary, due to contamination
by noise and inputs from unobserved neurons, the predicted
relative time of spike occurrences,̄T i, may have a strong
variability with respect to the measured values,Ti . Thus, we
can considerTi as a response vector in a nonlinear regression
problem.

Eq. (A.7) are transcendental with respect tōT i, so they
can be inverted only numerically; moreover, they may have
more than one solution. For a given parameter setp, we solve
the ambiguity selecting the solution that corresponds to the
minimal value ofT̄ i; which physically means that a neuron
fires a spike as soon as its membrane potential crosses the
t
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w
t r val-
u

dentification of the all parameter values. First, each Eq.(A.4)
an be integrated independently from the others since th
oming spike time occurrences are known. This allows fi
ach neuron to the data independently from the other ne
nd their corresponding parameters. The second deco
ition follows from the main property of integrate-and-
odels, namely the state variable, alias the membran

ential, is reset to a known value at every spike; this lets
ynamics of the neuron between two of its successive s
e independent from its dynamics in the other ISIs.

Let us now denote by{Ti = ti+1 − ti} (i = 1,2,. . .,M) the
ength of all the consecutive measured (experimental) IS
euronk. Then, we classify all the spikes generated by
ther neurons according to the ISI in which they fall, and
enote with{tinj} the relative (toti) times within this interval
here the indexn indicates the number of the source neu
f the spike (n �= k), index i stands for the number of the I
f thek-th neuron, and indexj for the number of input spik
f neuronn falling inside the ISIi (Fig. A.1). Integrating Eq
A.4) over each ISI, with boundary conditionsv(ti) = 0 and
(ti + T̄ i) = 1, we obtainM equations as

(1 − e−T̄ i/τ)i0τ + τ

N∑
n=1, n�=k

wn

τ − λn

∑
j

(e−(T̄ i−tinj)/τ

− e−(T̄ i−tinj)/λn ) = 1. (A.6)

hereT̄ i is the relative (toti) predicted by the model tim
ccurrence of thei + 1 spike of neuronk.

This procedure is repeated for all the other neurons o
etwork, thus obtaining the equations completely defi
hreshold. We present this solution as

¯i = G({tinj}, p). (A.8)

hen, comparing the predicted and measured spike tim
urrences, we may formulate the following least square fi
roblem (Fig. 2):

in
p

J =
∑
i

(�T̄ i)
2 =

∑
i

[T i − G({tinj}, p)]
2
, (A.9)

hose solution provides the set of parametersp* (including
he connectivity matrix) that estimates the real paramete
es.
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Two main issues should be addressed when solving the re-
gression problem (A.9) with real (physiological) data. First,
the use of robust regression methods is preferable, e.g. nonlin-
ear trimmed least squares estimator (Cizek, 2001). Indeed, the
measured spike trains may be strongly corrupted by noise, be-
cause of the influence of “hidden” neurons or in consequence
of wrong assignment during the spike-separation procedure
(which is a complex problem as well; see for details e.g.
(Harris et al., 2000)). Second, neuron bursting must be han-
dled to avoid the deterioration of the method performance.
Indeed, when a neuron produces a burst, a lot of very short
“fake” ISIs appear. This would wrongly bias the solution of
Eq. (A.6) to high values ofI 0, with the consequent under-
estimation of the connectivity weights (strong intrinsic high
frequency firing). To avoid this problem we consider a burst
of neuronk as a unique event when its parameters, and cor-
responding row of the connectivity matrix, are estimated. So
the ISIs,{Ti}, are measured between the last spike of a burst
and the next nearest spike.

Appendix B. Spike generation models

B.1. Spike response (probabilistic) model

The membrane potential of thek-th neuron is defined by
t
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Eqs.(B.1)–(B.4), together with the thresholdθ, define a
noise free model. In the presence of noise, the neuron may
emit a spike even if the membrane potential has not reached
the threshold or, on the other hand, it may not fire if the
membrane potential crosses the threshold for a short time
interval. A simple way to deal with noise is to introduce the
probability of firing:

P = 1
2(1 + tanh[β(h(t) − θ)]), (B.5)

where the parameterβ determines the amount of internal
noise. The probability for firing is equal to 1/2 forh(t) = θ

and goes asymptotically to zero forh(t) → −∞ and to one
for h(t) → +∞.

B.2. Regularly spiking neuron

The RS neuron model proposed byIzhikevich (2003)is

v′ = 0.04v2 + 5v + 140− u + Idc + Is + ς(t),

u′ = a(bv − u), (B.6)

where time is scaled to ms,v is the membrane potential in mV,
u represents a membrane recovery variable accounting for the
activation of K+ and inactivation of Na+ ionic currents, while
Is andIdc account for synaptic and dc currents, respectively.
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he sum of two terms (Gerstner, 1995):

k(t) = href
k (t − t̂) + h

syn
k (t) (B.1)

herehref(t − t̂) is a kernel describing the refractoriness
he neuron,̂t the last firing time of the neuron, andhsyn

k (t)
escribes the effect of the synaptic inputs from other neu
he refractoriness is modeled as

ref(s) =




0 for s ≤ 0,

−∞ for 0 < s ≤ sref,
η0

sref − s
for s > sref,

(B.2)

heresref is the absolute refractory period andη0 accounts fo
he recovering scale. The change in the membrane pot
t the soma due to a single incoming spike (postsyn
otential) is described by the kernel (α-function):

(s) = s

τ2
ε

exp

(
− s

τε

)
, (B.3)

hereτε is the synaptic decay constant. In order to calcu
syn
k (t), the contribution from a single spike is summed o
ll spikes of all presynaptic neurons:

syn
k (t) =

N∑
n=1,n�=k

wkn

∫ ∞

0
ds ε(s)

∑
j

δ(t − s − tnj ) (B.4)

here{wkn} is the connectivity matrix, and{tnj } are the firing
imes of neuronn.
o account for variability in the spike trains we introduced
tochastic process,ς(t), into the deterministic model. In o
imulations we set parameters to their typical values:a= 0.02,
= 0.27,c=−65, andd= 2, ensuring high frequency (ton
piking with a spike frequency adaptation.
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