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Abstract

In the present paper we propose a novel method for the identification and modeling of neural networks using extracellular spike recordings.
We create a deterministic model of the effective network, whose dynamic behavior fits experimental data. The network obtained by our method
includes explicit mathematical models of each of the spiking neurons and a description of the effective connectivity between them. Such a
model allows us to study the properties of the neuron ensemble independently from the original data. It also permits to infer properties of the
ensemble that cannot be directly obtained from the observed spike trains. The performance of the method is tested with spike trains artificially
generated by a number of different neural networks.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction tive connectivity between neurons whose experimental spike
trains are observed is of crucial importance in neuroscience:
The qualitative and quantitative analysis of the spiking first for the correct interpretation of the electrophysiological
activity of individual neurons is a very valuable tool for the acti\/ity of the involved neurons and neural networks, and,
study of the dynamics and architecture of the neural networks second and probably more important, for correctly relating
in the central nervous systerdgndel et al., 2000; Moore et the electrophysiological activity to the functional tasks ac-
al., 1966; Perkel et al., 196)dNonetheless, such activity is complished by the network, being as simple as a response
not due to the sole intrinsic properties of the individual neural to a sensory stimulus or Comp|ex as interpreting a literature
cells but it is mostly consequence of the direct influence of text. The above mentioned notion “effective connectivity” is
other neurons, from a few to hundreds of thousands, which defined as the simplest neuron-like circuit that would repro-
in general leads to dynamical behaviors far beyond a simple duce the same temporal relationships between neurons in a
combination of those of the isolated neurons. Although any cel| assembly as those observed experimentakytsen and
behavior of a neural network depends on the interactions of prejss|, 1991 In other words, by “effective” we mean any
a high number of neural cells, on their morphology and their observable direct or indirect interaction between neurons that
entire interconnection pattern, usually we cannot record the gjters their firing activity. Summarizing, when dealing with
activity of each one of these cells but rather we are restricted multiunit extracellular recordings we have the following ob-
to a very limited sample of the neurons of the network whose jectives: (i) inferring the effective connectivity and neuron
properties we aim to capture. Moreover, deducing the effec- properties of sub-networks (limiting to neurons experimen-
tally available) and (ii) extrapolating the functionality of the
* Corresponding author. Tel.: +34 91 394 6900; fax: +34 91 394 6885. whole” from the properties of the collected and classified
E-mail addressvmakarov@opt.ucm.es (V.A. Makarov). sub-networks.
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To address these problems a common experimental ap-common situation which may just represent an objective of
proach is to use extracellular multiunit recordings. In this the research. An additional very important remark is that all
case spike trains (the time instants of spike occurrences, pointhese methods assume a stochastic nature of the spike trains
events), in general, do not allow any direct insights about generated by neurons. Consequently, no considerations are
the subthreshold and/or intrinsic membrane dynamics of themade about the dynamics of the involved neurons or about
neurons. Nevertheless, spike trains can be used to identify thehe nature of the intrinsic processes that are responsible for
functional characteristics and architecture of the neural net- such behavior, with the consequent enormous difficulties in
work they originated from (e.drerkel etal., 1967b; Segundo, subsequent steps of the study: assigning of functional and/or
2003. Though possible, identifying the effective neural cir- neurochemical properties of the neurons, determination of
cuits from the spike trains represents a very complex task anatomical correlates, etc. Furthermore, all these methods
even for a network of few neurons. The available mathemat- deal only with the connectivity patterns, i.e. only presence
ical methods result undersized with respect to the researchand sometime type and direction of the couplings between
exigencies, and the large majority of neurophysiologists re- neurons can be estimated. No knowledge about absolute val-
strict their study to the description of the neural activity by ues of couplings or other parameters of the network can be
means of cross-correlogramBerkel et al., 1967b a tool drawn.
widely understood but which provides very limited knowl- In contrast to a purely statistic approach, a deterministic
edge about the functional properties of the neural networks. one can be considered. The main advantage of determinis-
For instance, in the case of neural ensembles of three or mordic methods is the use of mathematical models for inferring
neurons the cross-correlation may be easily fooled by the single neuron or neural network properties (indirect method)
presence of indirect connections (via other neuron(s)), or alsoespecially useful where direct observation of the neural dy-
due to a common input. namics (experimental procedures) is very difficult or even im-

Recently, more sophisticated statistical methods have beerpossible. In general, in the literature, the indirect inference of
introduced for the identification of effective connectivity network properties from models is approached in a very ab-
in relatively large neural networks. Nevertheless, to extract stract manner, considering relatively simple, usually vaguely
the interactions among neurophysiological data from two or biophysically meaningful, neuron models (like phase oscil-
more neural elements, or brain sites, all these methods alwaydators (e.gErmentrout, 198 Fitzhugh-NagumoKitzHugh,
recur to the evaluation of some kind of covariance or correla- 1961), Plant Plant, 198}, Hindmarsh-Rose{indmarsh and
tion between the multiple signals. In fact, even the methods Rose, 198} etc.) connected in networks which are either
that go beyond simple correlation (e.g., regression analysis,large and extremely regular (chains, rings, lattices, global or
principal components analysis and multidimensional scaling) random couplings) or composed of only few (two) neurons.
conceptually embody the notion of co-variation in activity Alternatively, the Hodgkin—Huxley formalisntHodgkin and
(Horwitz, 2003. In this framework a method based on linear Huxley, 1952 for modeling the dynamics of an individual
partialization (conditional probability) in frequency domain neuron can be adopted. However, the need of a priori investi-
has been proposed iBffllinger et al., 1976; Dahlhaus etal., gations of the channel dynamics of each particular neuron and
1997; Rosenberg et al., 1988lthough this approach allows  the synaptic transduction properties, together with the com-
distinguishing direct from indirect (trough other neurons) putational complexity of its integration, restrict as well its use
connections, it does not differentiate between excitatory and to the cases of very regular networks or of only a few neurons.
inhibitory synapses, a problem solvediBighler etal. (2003)  Whilst these approaches allowed studying many phenomena
by adopting a similar approach based on partialization in time experimentally observed in the central nervous system (like
domain. Another approach, called partial directed coherencepartial synchronization, phase or frequency locking, different
(e.g.Sameshima and Baccala, 199%ses Granger causality types of waves, clustering, etc.), they lack direct biophysical
(Granger, 196pto expose the direction of information flow. interpretation and, the study of the dynamics of intermedi-
Further two more methods: direct causali§a(ninski et al., ate size networks, having biophysically supported effective
2001), and direct directed transfer functiokdrzeniewska et ~ connectivity patterns, is still a challenging problem. In this
al., 2003 have been introduced. These methods allow identi- direction, a method for extracting a dynamical system out
fying the presence of feedback between two or more neurons,of the interspike intervals (ISIs) has been proposeakicot
but coupling polarities are not directly accessible. Although and Longtin, 1997; Sauer, 1994rhis method allows con-
these methods have been successfully applied on simulateatluding, for instance, about the possible chaotic nature of
networks of randomly spiking coupled neurons, their appli- the spike timings of a neuron (e.Bavlov et al., 2001l Re-
cation to real data is basically limited because: (i) they do not cently another approach taking into account the determinis-
allow resolving mutual couplings between neurons and/or do tic dynamics of a single neuron activity has been introduced
not distinguish the type of such couplings; (ii) as a rule their (Paninski, 2004; Paninski et al., 2003; Pillow and Simoncelli,
application assumes the use of relatively large spike trains 2003. This approach provides a biophysically more realistic
with constant statistical properties, a condition difficult to alternative to the models based on Poisson (stochastic) spike
be satisfied in the experiments; (iii) they usually fail when generation. It was shown that the leaky integrate and fire cell
applied to excessively rhythmic neural assemblies, a ratherdriven by a noisy stimulus demonstrates an adaptive behavior
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similar to the effects observed in vivo and in vitro; spiking to investigate the network dynamics and functionality. Let us
dynamics may account for changes observed in the recep-now give an outline of the method, whilst the mathematical
tive fields measured at different contrasts. However, thesedetails are reported iAppendix A
methods assume neurons to be isolated; hence, they do not Having spike series dfl neurons we assume a network
provide insights about the neural network structure and its composed oN interconnected dynamical systems, each of
relationships with the observed dynamics. which describes the spiking behavior of one recorded neuron,
Within the deterministic approach, here we propose a i.e. we consider one dynamical system for each neuron. The
novel mathematical method for the identification of connec- behavior of each of th& dynamical systems is described
tivity and modeling of neural networks using extracellular by a set of differential equations that depend on a number
spike recordings. The aim is to obtain an inferable determin- of parameters unknowta priori”. The connections between
istic model of the neural ensemble, including interneuron neurons are represented byl & N matrixWwhose elements
connections. Such a model allows studying the properties of wy, are the weights of the synapses betweenrtile and
the network independently from the original data and also the k-th neurons, e.gw12 represents the synaptic weight of
permits to infer dynamical properties that cannot be directly the coupling directed from the presynaptic neuron 2 to the
obtained from the observed spike trains. The mathematicalpostsynaptic neuron 1. Schematically, it results in a graph
algorithm has been implemented and a PC package is freelywhoseN vertices represent the neurons, whose spike trains
available Makarov, 2004. are experimentally observed, and the links between vertices
correspond to effective synapses between the corresponding
neurons, as illustrated Fig. 1A. Then, the parameter values

2. Materials and methods of the network model (the parameters of each one of the
dynamical systems and among them the strengths and types
2.1. Network identification and modeling of the synapses in the network) are determined from the spike

trains by means of a minimization procedure.

The method we propose is capable to analyze a set of ex- Recently, Jolivet et al. (2004)shown that detailed
perimentally recorded spike trains providing a mathematical conductance-based models (Hodgkin-Huxley type) can be
model of interconnected spiking neurons that generates spikeVell fitted by single-variable integrate-and-fire models. Ac-
sequences like the experimental ones. Moreover, our methodcordingly, for each of thé\ interconnected dynamical sys-
provides the effective architecture of the neural network in- 8MS we use the single-compartment leaky integrate-and-fire
cluding type, direction, and strength of the synapses. OncemModel (e.gStein, 1967
obtained, the deterministic model of the neural network will
help us ininterpreting both the dynamic behavior of the single C— = —GL(V — V) + °+ Isyn(1), (1)
neurons and their interactions, characteristics that, in general,
cannot be directly obtained from the merely spike trains. For whereV is the neural membrane potenti@lthe membrane
this reason our procedure is divided in two steps: (i) determi- capacityG_ andV| are the conductance and the reversal po-
nation of a mathematical model of the neural network and the tential of the leakage curreriyn(t) is the synaptic current
neurons thatformitand (ii) the use of the mathematical model induced by the spikes from the other neurons of the network,
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Fig. 1. Graphical representation of the network model. (A) Graph Witkertices (the case of three vertices is shown). Each vertex corresponds to a single
neuron whose spike train is available experimentally. The intrinsic dynamics of a neuron is modeled by the single-compartment leaky intigr atedeid-

Each neuron can receive synaptic input fra¥(1) other neurons, and the links between vertices correspond to the (effective) synaptic connections between
neurons. The connectivity matrPuwy, } defines the synaptic weights to be determined. Positive (negative) weight corresponds to excitatory (inhibitory) synapse,
while zero corresponds to the absence of the synapse. (B) The input spike trains (the case of one train is shown) modify the neuron membrane potential an
increase (decrease) for inhibitory (excitatory) synapses the ISIs of the neuron, with respect to its intrinsic firing.
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Fig. 2. Qualitative illustration of the working principle of the identification algorithm. A neur&h,receives two synaptic inputs of different polarity, i.e.
excitatory and inhibitory (two upper spike trains). Input spikes provoke postsynaptic cuiggritie current associated with a single spike is modeled by an
exponential function with amplitude and polarity defined by the corresponding entry of the connectivity Mdinxhis case we have two componenis

andw; for the two synapses). The time decays of the synaptic current, or duration of the synaptic transmission, are defined by two)ysaadveiel he

gray bars show time intervals when the membrane poteitiad, altered by the synaptic current and deviates (continuous line) from the intrinsic membrane
dynamics (dashed line). When the membrane potential reaches the thréghalde modeled neuron fires a spike &gk is reset to the initial statd/, .
Accordingly, the parameter spt {i°, 7, A1, A2, w1, w2} defines uniquely the dynamics of the modeled neuron for a given input spike trains. Hence, the
parameter values can be adjusted to minimize the sum of the squared differefgdsetween the experimentally observed firing of the neuron (“experimental
output”) and the firing predicted by the model (“model output”). The resulting parametg’ giaztes the best (predictive) estimate of the intrinsic parameters
and of the entries in the connectivity matrix corresponding to the modeled neuron.

and the constant currehf allows neurons to fire periodi- Fig. 2 sketches the method working principle. We as-
cally when uncoupled. Whenever the membrane potevitial sume that thé-th neuron has two afferent synapses of dif-
reaches a thresholtly, (about—50 mV) a spike is fired and  ferent types, i.e. one excitatory and one inhibitory. For each
V is instantaneously reset to the initial state, Hence, for one of the two synapses, an input spike induces an expo-
19> G| (Vinh — VL) the single neuron model (1) produces tonic nential current and the sum of them gives the postsynaptic
spikes. Whilst, for non-spiking neurons, the resting mem- currentlsyn. The amplitude and the sign of the two com-
brane potential (usually abowt60 mV) is\VP =V +19/G. ponents of the postsynaptic current are defined by the cor-
Our procedure to adjust the parameters of the model usesesponding weights of the connectivity matri, in this
the ISIs of the recorded spike trains. It relies on the general case with only two synapses let us call them shottly
assumption that when a neuron receives an excitatory inputand wy,. Between each two spikes of theth neuron, in
it fires in advance with respect to its intrinsic firing inter- absence of external input, the membrane potential evolves
val and, consequently, it increases its firing rate. Inversely, according to its intrinsic dynamics (dashed lineRig. 2,
it delays firing for inhibitory input with a consequent de- see alscAppendix A). When external spikes income, the
crease in its firing rateljg. 1B). This is a general property membrane potential deviates from its natural trajectory as
of Type | membranes that have non-negative phase resettindhighlighted inFig. 2 and, every time it reaches the thresh-
curves Ermentrout, 1995 which is indeed compatible with  old Vi, the neuron fires a spike andis reset to the ini-
the leaky integrate-and-fire neuron modedr Vreeswijk et tial stateV,. Given the input spike trains, the parameters
al., 1995. Type Il neurons can have regions with negative of the equations of the model uniquely define the dynam-
phase resetting curves, for instance when undergoing a suics within two successive spikes of the neuron. At this
percritical Hopf bifurcation (many membrane can be brought point, keeping in mind that with this method we are in-
into this regime at high enough temperatures, but it is nor- terested in capturing the underlined dynamics of the net-
mally unusual) Ermentrout, 1996 work, we adjust the parameter values in order to minimize
The dynamic behavior of each neuron is determined by the sum of the squared differences between the experimen-
the parameters of each incoming synapse, by the incomingtal spike trains and the trains predicted by the model, i.e.
spiking activity and by the parameter values that determine itsthe sum of the squaredT; highlighted in Fig. 2 The
intrinsic behavior (leaky time and intrinsic spiking). Starting set of the parameters corresponding to the global mini-
from arbitrarily assigned parameter values, we adjust them mum of the squared sum (cost function) gives the best es-
by means of a mean square methbtb{ulsky and Christo- timate of the components of the connectivity matrix and of
poulos, 2003taking into account the differences between the the other parameters of the neurons in the modeled neural
predicted and measured spike trains. networks.
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2.2. Use of the identified neural network model ing of two neurons can be due to the dynamical behavior of
three very different effective networks: (i) one of the neurons
Once a model of the whole neural network has been set-may not intrinsically fire at all and it produces tonic spikes
tled, i.e. all the parameters values of the equations (including due to input from the other neuron; (ii) alternatively, the firing
the interconnections) have been determined, it can be mathefrequencies of the two neurons are outcome of the collective
matically investigated, independently from the original data, dynamics (effective connectivity) and are, in general, differ-
in order to assess the relationships between dynamical be-ent from their intrinsic frequencies; (iii) finally, no one of the
havior and effective network architecture. The model of the two neurons is intrinsically spiking and their regular spiking
network is functionally equivalent to the real one although the is the result of the mutual effective interconnection. From
architectural differences between the real and modeled net-the correlograms and other statistical methods it is not pos-
works may be important. For example, the sequence of two sible to distinguish which of these three cases is observed.
or more interconnected neurons could be modeled by only On the contrary, this information is inferable from a simple
one or a modeled neuron may send to postsynaptic neuronsnathematical analysis of the model: namely, if the identified
both excitatory and inhibitory connections. parameter values of a neuron are sotRAG, (Vin — V) > 1,
A functionally meaningful neural network model fitting then this neuron is intrinsically firing; otherwise the neuron
the observed data opens a broad variety of investigative pos<ires due to the collective network dynamics.
sibilities. For example, one can study statistical properties
of the model dynamics or bifurcations of the vector field and 2.3. Testing the method performance: generation of
even collective chaotic behavior. As guidance, we report here “experimental” spike trains
two examples illustrating the kind of information that may
be retrieved from the model, leaving the further exploitation To verify our technique we used artificially generated
of the modeling approach to the researchers. spike trains, since the only way to judge the results of our
It should be noted that, since we built a deterministic method is to know all the properties of the network, espe-
model, we can easily reverse the problem. Indeed, as soortially the connectivity pattern. To generate the spike trains
as the parameter values of the model (i.e. connectivity ma-we consider five neural networks combining two essentially
trix, decay scales, etc.) have been identified, the model equa-different kinds of neuron models: the probabilistic spike re-
tion can be numerically integrated (simulated), resorting for sponse model (SRM3erstner, 199b6and the deterministic
instance to one of the ODE integrators of Maflatand model for regularly spiking (RS) neurons recently proposed
the model spike trains can be obtained. Thought, since theby Izhikevich (2003) On one hand we chose the SRM be-
commonly available simultaneous recordings are spike trainscause in the absence of couplings, such a neuron fires an ir-
from few neurons despite the fact that they are part of larger regular spike train with Poisson-like distribution of the ISls,
neural circuits, a natural extension of the model is to add thus no assigned firing frequency exists. Consequently, it al-
noise sources into E¢l) for modeling all unmeasured phe- lows assessing the robustness of the method with respect to
nomena, including entrances from unobserved neurons anddeterminism of the modeled neuron. On the other side, the
noising environment. In the simplest cases, white indepen-RS model has been chosen because it is a computationally
dent zero mean Gaussian processes (noise) can be used. efficient yet very plausible model of spiking neurons and
The simplest use of the model (trough simulations) is the permits to simulate a variety of behaviors of biological neu-
assessment of timing related properties. Simulations may berons, like spiking, bursting, chattering, frequency adaptation,
used to generate spike trains; then statistical properties (e.getc. (zhikevich, 2004. Since the RS model is strictly de-
crosscorrelograms) of the model generated data can be comterministic, to add variability to the dynamics and emulate
puted and compared with those of the originally measured the environmental fluctuations and/or the driving activity of
ones. This comparison can highlight, for instance, to which other “unobserved” neurons, we introduce stochastic forces
extent the observed statistical properties are related to theinto the model equations. None of the two chosen neuron
effective architecture, especially if the simulations have also models belongs to the class of integrate-and-fire ones, since
been performed slightly modifying the identified parameters. we want to assess the robustness of the proposed technique
On the other hand, there are network properties which with respect to our most restricting hypothesis, i.e. the use of
cannot be retrieved from the solely spike timings but which, integrate-and-fire model. Equations and descriptions of the
on the contrary, may be inferred from the model. In the case two models are briefly recalled #ppendix B
when two tonic, approximately synchronous, spiking neurons  Experiments 1-3 consider combinations of two RSM neu-
are observed, usually the spike trains show very high regu-rons: (1) unidirectional excitatory connection; (2) unidirec-
larity, their ISIs are practically constant and slightly varying tional inhibitory connection; (3) mutual inhibitory—excitatory
with the synaptic input. Consequently, auto-correlation his- loop. Despite that in theory there are®@1) cases, these
tograms will demonstrate equidistantly distributed peaks in- three experiments practically cover all the possible two-
dicating the tonic spiking of both neurons and, at the same neuron connections, since the other six are particular cases
time, the cross-correlation will have at least one peak indicat- of these combinations. In experiment 4 we consider the mu-
ing the common behavior. However, the joint regularly spik- tual inhibitory—excitatory loop of two RS neurons; and in



270 V.A. Makarov et al. / Journal of Neuroscience Methods 144 (2005) 265279

experiment 5 we analyze the spikes generated from a classithe connectivity pattern and intrinsic parameter values of the
cal three-neuron network formed by two interconnected RS model of the neural network. Afterwards, we simulate the
and one SRM neuron. Experiment 6 assesses robustness ahodel at the identified parameters values. We compare the
the method in respect to the amount of data (length of the connectivity patterns (presence and type of the synapses), and
available spike train recordings) and complexity of the un- we also crosscheck statistical properties, e.g. ISI and cross-
derlying network (cases of three- and five-neuron networks correlation histograms, of modeled and “experimental” spike
are considered). trains.
Finally (experiment 6), the robustness of the method is

tested on two complex networks of three and five intercon-
3 Results nected neurons. For each network we perform 100 Monte

Carlo experiments varying the data segment length (duration

First, the performance of the method is assessed on thred! recording), and then we calculate the number of success-
neural networks of two probabilistic (SRM) neurons with ful structura_l !nferences as the number qf correctl)_/ detected
low firing rates and one network of two tonic (RS) neurons; Synapses divided by the number of possible couplings.
we generate experimental traces lasting 40 s for the SRM net-
works and 20 s for the RS network, thus having about 50-1503.1. Experiment 1
spikes for each experiment. Second, we use a mixed SRM-RS
three-neuron network with experimental spike trains lasting  Fig. 3shows the results for the case of the unidirectional
20s. In each experiment we apply our method to identify excitatory coupling. Here and further on, we use “V”and “T"-
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Fig. 3. Identification and modeling of a two-neuron network with unidirectional excitatory coupling between two SRM neurons. The upper paméteXperi
shows the experimental spike trains and their IS| and cross-correlation histograms. The lower part (“model”) illustrates: the identifiedtgonatedtjWg,
which captures correctly the experimental connectivity pattern (only presence, polarity and relative weights are comparable); and the keotaies with
their I1SI and cross-correlation histograms, which are in a good accordance with their experimental counterparts.
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like links ends to mark excitatory and inhibitory synapses It should be noted that the “experimental” and identified
respectively. The first neuron is autonomous; hence it fires coupling matrices can be compared only qualitatively as the
irregularly with a very broad spectrum of ISIs. The firing of absolute values of their entries are incommensurables. In fact,
the second neuron, even though irregular, does depend on théhey refer to two completely different mathematical models.
spiking of the first neuron. The upper partkif). 3 marked Moreover, even in the case where the same model has been
as “experiment”, illustrates the experimental spike trains and used for both “experiment” and identification, the matrices
the corresponding ISI and cross-correlation histograms. Theare not “linearly” comparable since their elements are nonlin-
cross-correlation histogram exhibits a high peak centered atearly obtained upon the spike timings, e.g. for strong enough
a positive closed to zero value of time shift, suggesting the coupling strength the spiking rate may saturate or even de-
presence of coupling. The firing rate of both neurons is within crease.

the range of 0.5-50 Hz but, due to excitatory input, neuron  We performed a simulation using the model of the net-
2 fires more frequently since the mean frequencies are 2 andwvork we obtained and to which we have added a white noise.
4 Hz for neurons 1 and 2, respectively. Neuron 2 may also The lower part ofFig. 3, marked as “model”, reports the
produce bursts as a response to input spikes that stronglyspike trains and the corresponding ISI and cross-correlation
depolarize it. The blind use of the identification method de- histograms of the model. The comparison of the upper and
tects correctly the presence (and strength) of the excitatorylower part of the figure highlights a good statistical agreement
coupling w21=+31.3). It also estimates a negligible value of the model with the experimental data. Indeed, as for the
(about 1% of the excitatory link) for the feedback coupling experimental data, neuron 1 fires with a strong variability of
(w12=-0.3). Indeed, further investigations show that this ISlIs whilst, since the firing of the first neuron evokes spikes
vanishing coupling is irrelevant for the dynamics of the net- in second one, the ISI histogram of neuron 2 decays rapidly.
work. Furthermore, the cross-correlation histogram exhibits a high
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Fig. 4. Same as ifig. 3for the case of inhibitory coupling.



272 V.A. Makarov et al. / Journal of Neuroscience Methods 144 (2005) 265279

peak for small positive values of the time shift very similar the spike trains from the two neurons are not trivially interre-

to the one of the experimental data. lated. The presence of the excitatory synapse is pointed out by
the experimental cross-correlation histogram, which shows a
3.2. Experiment 2 peak similar to that irFig. 3 for the case of unidirectional

coupling. However, the presence of an inhibitory synapse is

Similarly to the first casefig. 4 shows the results for the  not obvious as there is no pronounced difference between
case of inhibitory synapse. The inhibitory synapse induces the histograms ofigs. 3 and 50n the contrary, alike to the
two observable effects on the statistics: first of all the elon- previous cases, the identification method provides the cor-
gation of the ISI histogram of neuron 2, i.e. its mean firing rect connectivity pattern, and the simulation of the network
frequency decreases to 1.6 Hz, and second, the emergence aesults in a satisfactory statistical accordance of experimental
avalley inthe positive part of the cross-correlation histogram. and model produced data.
Alike to the case of the excitatory synapse, the identification
method provides the correct connectivity pattern, and the sta-3.4. Experiment 4
tistical properties of the model results very similar to those
from the experiment, supporting further the potential of the  The last two-neuron network is composed by two tonic

method. spiking neurons connected into an excitatory—inhibitory loop
as shown inFig. 6. The experimental spike trains and the
3.3. Experiment 3 results of their statistical analysis are shown in the upper

part (“experiment”) offFig. 6. The autocorrelations clearly
Fig. 5shows the results for the more complex case of two demonstrates equidistantly distributed peaks representative
neurons forming an excitatory—inhibitory loop. In this case of the tonic spiking of both neurons, whilst the peaks in the
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Fig. 5. Same as ifig. 3for the case of excitatory—inhibitory coupling loop.
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Fig. 6. Same abig. 3for the case of a two-neuron network of mutually interconnected tonic spiking neurons (RS model).

cross-correlation highlight the presence of synaptic coupling. neurons allows spotting exactly the intrinsic nature of both
However, as in the previous experiment, the analysis of the neurons as being regularly spiking, highlighting in this way
histogram does not allow outlining the connectivity pattern the modeling ability of our identification technique.

neither allows drawing any conclusion about the intrinsic

spiking nature of the two neurons. On the contrary, our iden- 3.5. Experiment 5

tification method provides the correct connectivity pattern.

Also the simulation of the modeled network provides results  Fig. 7summarizes the results obtained when applying the
in a satisfactory statistical accordance with the experimental identification technique to a mixed RS-SRM three-neuron
ones. As it can be seen, there is a good qualitative agree-network. Considering the experimental data we observe that
ment between experimental and model cross-correlation his-neuron 1 has a relatively high firing frequency and strong
tograms, though the former one has less pronounced peaksariability of ISIs and it fires in bursts when gets the excita-
and the depression between peaks is not as strong as in theory input from the low rate irregularly firing neuron 2. On
model histogram. This is due to the nature of the RS model we the other side, neuron 3 shows regular fast spiking activity.
use for generating experimental spike trains which does notNote that this case has different feedback loops and indirect
belong to the class of renewal models, i.e. its spiking shows (via third neuron) connections, which makes problematic the
adaptation phenomenoiizkikevich, 2004. Consequently,  study of the connectivity pattern by means of the conventional
the ISI following a short ISI tends to elongate, which in turn  cross-correlation methods. However, in agreements to all the
results in the fuzzy peaks of the experimental crosscorrelo- previous considered experiments, also for this harder case
gram. Finally, the simulation of the two isolated (modeled) the application of our deterministic method leads to the iden-
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Fig. 7. Test of the method on a complex three-neuron network. Neurons 1 and 2 are modeled with SRM, while neuron 3 (SR model) fires tonic spikes with a
high firing rate. The network includes different excitatory—inhibitory loops and indirect connections. The connectivitphaisixised for the generation of
experimental spike trains. The outcome of the method application is the nétgxwhich captures correctly the interneuron connectivity. Simulation of the
identified neural network (model) shows a good statistical accordance with the experimental data.

tification of the correct connectivity pattern. Yet again, the talone. Inthe case ofthree- (five-)neuron networks there exist
simulation of the identified network provides results in a sat- 6 (20) couplings to be identified by the meth&dy. 88 shows
isfactory statistical accordance with the experimental ones. (100 Monte Carlo simulations) the mean percentage of the
The simulation of each one of the three neurons taken sepa-correctly identified synapses as a function of the recording
rately allows spotting the intrinsic regularly spiking nature of length. In both cases the method shows a good performance
one of them, further highlighting the power of the proposed increasing with the amount of the data available for identi-

modeling technique. fication. In the case of the three-neuron network the method
identifies correctly a 76.9% of the synapses with only spike
3.6. Experiment 6 trains lasting 10s. The percentage reaches the 96.5% with

30s of data and practically does not vary after this time in-
Fig. 8 summarizes the results of the robustness test. Theterval (95.9% with 60s). With the five-neuron network the
network architecture, connectivity matrix and experimental performances are of 59.1%, 73.3% and 85.8%, respectively.
spike trains for the case of the five-neuron network are shown Note that before identification each synapse in the connec-
in Fig. 8A, together with two representative examples of the tivity pattern has “a priory” three equiprobable possibilities
connectivity matrix found during the identification using 20 (it may be excitatory, inhibitory or null). Hence, a 50% of
and 60 s lasting spike trains, respectively. The matrix obtained successes in the identification would mean a better perfor-
for longer spike trains is structurally closer to the experimen- mance than just a random assignation that in this case will
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Fig. 8. Performance test of the network identification. (A) Results of a five-neuron network simulation and examples of connectivity matrieebwdwentifi

using recording samples of two different durations: 20 and 60 s. (B) Mean percentage of correctly identified synapses as a function of the retiordfog dur

the three- and five-neurons networks (in the former case experimental conditions are the saig. 8. iNote that when counting successes we distinguish
between inhibitory, null, and excitatory synapses. Thus even 50% of successful inferences correspond to a prediction much better than the @ne made by
random generator which would provide a 33% of success.

have 33% of success. As expected, the complexity of the net-namical equation of each neuron remains independent from
work (number of involved neurons) decreases the method per-the others and (ii) the dynamics of each neuron within an
formance. For the same recording length a simpler network interspike interval is independent from the dynamics within
(three neurons) is identified better than the complex one (five the other intervals.
neurons). The identification algorithm relies on the solely spike dis-
charging times and any a priori knowledge of the parameter
values, which may be provided by physiology, morphology,
4. Discussion and conclusions etc., can be included simply constraining to the given values
(or ranges of values) the corresponding parameters, result-
In the present paper we have proposed a novel determinising also in a computational improvement. Furthermore, the
tic method, which, for given spike trainsNfneurons, allows ~ method also allows considering bursting neurons simply re-
obtaining a mathematical model describing both the architec- curring to a preprocessing of the spike trains: all the needed
ture and the dynamical behavior of the underlined biological is to specify the minimal time interval for which two spikes
neural network. We have also shown that the obtained neuralare considered to be separated events and not belonging to a
network model produces spike trains with statistical proper- burst.
ties similar to those of the experimental data. In order to assess the robustness of the method we gen-
To model the network we use a set of interconnected erated “experimental” data sets considering neuron models
integrate-and-fire neurons. All the parameter values neces-denying the most restricting hypotheses on which the method
sary to univocally define the neural network, i.e. the matrix trusts. Namely, we considered networks combining statistical
of the network connectivity, the synaptic time scales, and the responding Gerstner, 1996and not renewal regularly spik-
intrinsic parameters of the neurons, are calculated from theing (Izhikevich, 2003 neuron models. The former model de-
recorded spike trains trough an optimization procedure min- nies the determinism, while the later one does not satisfied the
imizing the difference between the predicted and the mea- resetting property of the neuron model we use in our method.
sured timings of spike episodes. Given the spike events, theFurthermore, the first five networks we considered collect the
identification of all the parameters is guaranteed by the de- main difficulties reported in literature about the identification
composition of the fitting problem according to two nested of the neural connectivity, like mutual and indirect couplings,
independencies of the integrate-and-fire model: (i) the dy- inhibitory synapses, and excessively regular interspike inter-
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lation of the identified networks has provided spike trains
with first order statistics in satisfactory accordance with the
experimental ones. Also, for the more complex considered Appendix A. Network model and parameter values
networks, the mathem_atu?al _anaIyS|s of the |de_nt|f|ed model adjusting procedure
has correctly spotted intrinsic features of the isolated neu-

rons which could not be inferred from the spike trains only, Given N spike trains, we have a graph whdsevertices

highlighting in this way the strength of the modeling tech- o asentthe neurons, and the links between vertices stand for
nique. Finally (experiment 6), we checked the robustness of g effective synapses between the corresponding neurons.
the method with respect to the amount of the available datayp,o dynamics of each neuron (vertesig. 1) is described by
(length of the spike trains) and the complexity of the un- g4 (1) driven by the external force (synaptic current) defined

derlying network applying identification of the connectiv- .y the jinks structure. A rather accurate mathematical model
ity pattern for data generated by relatively large networks ¢ ihe synaptic current induced by a single spikedetting,
with complex dynamics. The method showed a good per- 1989:

formance that increased with the length of the data under

study. 1
Concerning the identified connectivity pattern, it should Isyn(t — ) = I

be mentioned that the network connectivity obtained may

differ from the anatomical network from which the data are . L .

observed Aertsen and Preissl, 1991; Perkel et al., 196)(a,b vyheret IS the.tlme instant when a spike from the presynap-

Though, both of them are effectively equivalent for certain ex- tic neuron a_rnves]“ a%count? for the s_ynaptlc strength and

perimental conditions, i.e. they span the same dynamical be—pOI""my (weight), and.” and1’ are the time constants deter-

havior, which justifies the use of the term “effective synapse” ][mr;lng the de(;ﬁy ?”d thelrlse tlrge scales,_ restplectlvtely. For
or “effective network” we used through all the text to indicate ast synapses Ihe rise scale can be approximately Set 1o z€ero,

the equivalent neural dynamical systems that could generateWhile for a slow synapse (e.g. GARAor NMDA) it is not

the observed data. The application of the method on artificial vanishing although being usually less than the decay scale.

data allows measuring its potential and robustness within a_l3e5|des, from the modeling point of view! plays a ma-

handy environment; however, it is clearly not the aim and jor role in determining the dynamics of the model network.
investigations on reéll data aré underway. Hence, to simplify the identification method, we can shorten

Conversely to the descriptive nature of the statistical meth- the synaptic equation to:
ods, which provides only a pattern of neural connectivity, 1
the use of our deterministic approach offers a whole m_odel Tsyn(t — 1) = F_de—(;_,')//\d_ (A.2)
of the neural network from which the experimental spikes A

are coming from. Such model includes the values of the pa- )
rameters of the individual neurons (e.g. intrinsic firing fre- 1he total synaptic current for a neuron can be accounted by

quency) and of the synapses between them. Consequentlythe sum over spikes generated by all the presynaptic neurons.
we offer a powerful tool to approach the first of the two |he Synaptic weights may be different among the synapses
main steps in the study of neural circuits, i.e. inferring the OF P& equal to zero, meaning in this case the absence of the
dynamics of the neurons, and the effective connectivity of Synaptic coupling between certain neurons.

the network they belong to, from the recordings of the ac- L&t us consider one of the vertices-neurons, saykitie
tivity of a limited sample of neurons. This step is funda- and, to simplify notation, so forth we drop the indein all
mental for addressing the second objective, i.e. eXtrapoh—ﬁ_varlables and pargmeters: First, we introduce dimensionless
ing the functionality of the whole neural assembly from the Membrane potential and time:

properties of the analyzed sub-networks, the main aim of

neuronal studies. Finally, it should be stressed that the ob- _ V=WV P fold (A.3)
tained models can be subsequently studied independently ~ Vin— V' o 6’ '

from the experimental data; hence, information processing

in neural circuits can be investigated and neural circuits canwhere@ is a time scale constant that can be appropriately
be classified depending on their architectures and dynamicaladjusted to account for neurons with largely different spike
properties. rates. Then, the evolution of the dimensionless membrane

@ ey ()
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potential,v, is written as i
N ' i
. v o 1 t—tyj i |
V=——+1 + w —exp| —— , k
P Y (w o] | |
n=1, n#k J '
if v = 1thenv =0 (A.4) I E I | I
n 4
where the decay time scate the constant currerit%; synap- I | ! l I
tic time scalegAn} and weights{w, } are given by > !
1 i
c 61° Ad : ;
T=—=", = —=——=7> )"n = > : I
GO C(Vr — W) 0 e
T
1—' ni
Wy = ———. (A.5)
C(Vtr - VL) Fig. A.1. lllustration of relative time intervals between presynaptic and post-

Thefirst sumin EC(A.4) is taken over all the presynaptic neu- synaptic spikes; a fragment of two spike trains of postsynaptic neyieord
hilst th d is tak th ik t &resynaptic neuron is shown. The postsynaptic neuron iniih ISI, T',
rons, whiistthe second one IS taken over (ne SpIKes generatedeqjves two spikes with relative intervajs andr .
by these neurons between two consecutive spikes of neuron
k. Note that all these parameters and the membrane potentiajhg connectivity matrisVand the other intrinsic parameters.

are related to neurok, so to have a complete set of equa- \yg stress once more that, in general, the parameter values
tions we need to repeat the same procedure for all the Otherdefining the dynamics of each neuron in the network (i.e.,

neurons. Summarizing, fod membrane potentials we have  yecay scale, constant current, and the synaptic constants) may
N equations as EGA.4), each of which hasi2independent itter amongst the neurons, thus accounting for the diversity

parametersp; = _(ig, Thy AkLs -y AN Wi, --o WEN), DEING of neurons and synapses.

Akk andwik meaningless. _ _ Assuming that in the experiment we observed a sufficient
There are two nested independencies which allow the  mper of spikes, sd>> 2N, we can consider EqA.6)

identification of the all parameter values. First, each(Bat) as a nonlinear regression problem. Indeed, (&) can be

can pe inte_graf[ed independently from the oth(_ars since t_h_e i”'presented in the form:

coming spike time occurrences are known. This allows fitting =

each neuron to the data independently from the other neuronsF (7", {tij}, p)=0 (A.7)

and their corresponding parameters. The second decompo- ,

sition follows from the main property of integrate-and-fire Where all input eventg, ;} are known precisely (up to ex-
models, namely the state variable, alias the membrane po-Perimental precision). On the contrary, due to contamination
tential, is reset to a known value at every spike; this lets the by noise and inputs from unobserved neurons, the predicted

dynamics of the neuron between two of its successive spikesrelative time of spike occurrences;, may have a strong
be independent from its dynamics in the other ISls. variability with respect to the measured valu®s,Thus, we

Let us now denote by T =t*1 —t'} (i=1,2,..,M) the can considel' as a response vector in a nonlinear regression
length of all the consecutive measured (experimental) ISIs of problem. _
neuronk. Then, we classify all the spikes generated by the  Ed. (A.7) are transcendental with respect® so they
other neurons according to the IS in which they fall, and we can be inverted only numerically; moreover, they may have
denote with{z/ ;} the relative (td') times within this interval; ~ more than one solution. For a given parametepse solve
where the index indicates the number of the source neuron the ambiguity selecting the solution that corresponds to the
of the spike k), indexi stands for the number of the ISI  minimal value of7"; which physically means that a neuron
of thek-th neuron, and indejxfor the number of input spike ~ fires a spike as soon as its membrane potential crosses the
of neuronn falling inside the ISi (Fig. A.1). Integrating Eq.  threshold. We present this solution as
(A.4) over each ISI, with boundary condition§’) =0 and

— T = i .

v(f' + T') = 1, we obtainM equations as "= G({n,}, p)- (A-8)

B N o Then, comparing the predicted and measured spike time oc-
1—e /Mm% 4 ¢ Z Yn_ Z(e—(T’—fL_;)/T currences, we may formulate the following least square fitting

etk T A problem Fig. 2):
Ti_gi . — . . 2
e ™)y — g (A§)  mins=3" ATy =3I - G p) (A.9)

whereT" is the relative (td') predicted by the model time l l
occurrence of the+ 1 spike of neuroik. whose solution provides the set of parameféréncluding

This procedure is repeated for all the other neurons of the the connectivity matrix) that estimates the real parameter val-
network, thus obtaining the equations completely defining ues.
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Two main issues should be addressed when solving there-  Egs.(B.1)+B.4), together with the thresholg] define a
gression problem (A.9) with real (physiological) data. First, noise free model. In the presence of noise, the neuron may
the use of robust regression methods is preferable, e.g. nonlinemit a spike even if the membrane potential has not reached
eartrimmed least squares estimat@izgk, 200). Indeed, the the threshold or, on the other hand, it may not fire if the
measured spike trains may be strongly corrupted by noise, be-membrane potential crosses the threshold for a short time
cause of the influence of “hidden” neurons or in consequenceinterval. A simple way to deal with noise is to introduce the
of wrong assignment during the spike-separation procedureprobability of firing:

(which is a complex problem as well; see for details e.g. 1
(Harris et al., 200)). Second, neuron bursting must be han- £ = 3(1 +t@nh(a() — 6)]), (B.5)

dled to avoid the deterioration of the method performance. \\here the parametes determines the amount of internal
Indeed, when a neuron produces a burst, a lot of very shortjise The probability for firing is equal to 1/2 foft) =6

“fake” ISIs appear. This would wrongly bias the solution of 4 goes asymptotically to zero foft) - —oco and to one
Eq. (A.6) to high values of ©, with the consequent under- for h(t) — +o0.

estimation of the connectivity weights (strong intrinsic high

frequency firing). To avoid this problem we consider a burst
of neuronk as a unique event when its parameters, and cor-
responding row of the connectivity matrix, are estimated. So
the ISIs {T'}, are measured between the last spike of a burst

B.2. Regularly spiking neuron

The RS neuron model proposed lzjikevich (2003)is

and the next nearest spike. v = 0.04° + 50 + 140— u + Igc + Is + <(2),
u' = a(bv — u), (B.6)
Appendix B. Spike generation models where time is scaled to msis the membrane potentialinmV,
_ o urepresents a membrane recovery variable accounting for the
B.1. Spike response (probabilistic) model activation of K and inactivation of N&ionic currents, while

. _ . Is andlyc account for synaptic and dc currents, respectively.
The membrane potential of tieth neuron is defined by 1o account for variability in the spike trains we introduced the

the sum of two termsGerstner, 1996 stochastic process(t), into the deterministic model. In our
_ ety » syn simulations we set parameters to their typical valaes0.02,
hit) = (0 — 1) + (1) (B.1) b=0.27,c=-65, andd=2, ensuring high frequency (tonic)

whereh'(; — 7) is a kernel describing the refractoriness of SPIKINg with a spike frequency adaptation.
the neuronj the last firing time of the neuron, arig”"(r)
describes the effect of the synaptic inputs from other neurons.
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