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Abstract— We proposed the use of a Toda-Rayleigh ring as a
central pattern generator (CPG) for controlling hexapodal robots. We
show that the ring composed of six Toda-Rayleigh units coupled to
the limb actuators reproduces the most common hexapodal gaits. We
provide an electrical circuit implementation of the CPG and test our
theoretical results obtaining fixed gaits. Then we propose a method
of incorporation of the actuator (motor) dynamics in the CPG. With
this approach we close the loop CPG – environment – CPG, thus
obtaining a decentralized model for the leg control that does not
require higher level intervention to the CPG during locomotion in
a nonhomogeneous environments. The gaits generated by the novel
CPG are not fixed, but adapt to the current robot bahvior.

Keywords— Central pattern generator, electrical circuit, hexapod
robot

I. INTRODUCTION

Animal locomotion is driven by a central pattern generator
(CPG), which is an intra-spinal network of neurons capable
of generating a rhythmic output required for the limb control
[1]. The study of CPGs is crucial for understanding both
the global animal behaviour and particular functions of such
neural networks. Besides it is also important for designing of
neuro-inspired robots capable to move in an efficient manner
like the living organisms do.

Recently, research on the leg coordination and movement
has been shifted from descriptive studies [2] to investigations
of the neurophysiological mechanisms and control of walking
[3]. The architecture of CPGs is seldom observable in vivo
[4]. However, important aspects of their structure can be
inferred from observation of gait features such as the phase
of the gait cycle at which a given limb hits the ground.
Then phenomenological models reproducing these features
can be introduced and used for the robot design. Inspired by
this idea the use of oscillatory neural network with different
architectures has been argued [5], [6] to solve the problem
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of dynamical pattern formation and robust transition among
several types of gaits.

In fact, most animal gaits possess a degree of symmetry
and universal features not far from the behavior of rings
of coupled oscillators [7]. It has been shown that coupled
nonlinear oscillators can be considered as possible models for
locomotor CPGs in insects and other animals [4], [8]-[11].
Then transitions between different gaits can be modeled as a
symmetry breaking bifurcation, leading to the switch between
different activity patterns in a ring.

In this paper we approach the problem of locomotion control
from the nonlinear dynamics viewpoint. We make remark-
able parallels between waves observed in coupled nonlinear
oscillators and the symmetries found in animal gaits. We
describe how this observation might impose constraints on the
general structure of a neural circuit controlling locomotion.
To demonstrate the approach we consider a ring of coupled
oscillators whose nonlinear elements are drawn from works of
Lord Rayleigh and Toda [12]-[14]. In our earlier works [15],
[16] we proposed a method of combination of hamiltonian
Toda inter-particle nonlinearity with the Rayleigh active fric-
tion. We showed theoretically and numerically existence and
stability of propagating wave in such a hybrid system. Further
several hardware implementations of the six-units model have
been developed and tested [17]. Here we extend our results
and show that the excitation patterns (waves) in a ring of
coupled Toda-Rayleigh oscillators have the same symmetries
and waveforms as the three common forward-walking gaits
adopted by insects. In earlier works [4], [6]-[11], [18] gaits
have been considered as fixed oscillatory rhythms. However,
insects (and other animals e.g. crustaceans) apply free gaits,
changing rhythms according to the environment. We propose
a method how to incorporate the actuator (motor) dynamics in
the CPG based on the Toda-Rayleigh circuit, hence closing the
loop CPG – environment – CPG. Thus our approach naturally
permits to perform extensive calculations during locomotion
over a nonhomogeneous environment on the low CPG level
with no direct participation of the robot “brain”.

II. MOST COMMON HEXAPODAL GAITS

Animal locomotion typically employs several distinct peri-
odic patterns of leg movements, known as gaits. Most of the
gaits possess some degree of symmetry. Let us now briefly
describe the symmetries observable in hexapodal gaits.

Figure 1 illustrates the most common gaits of an insect (for
more details see e.g. [9]). We use the following convention: the
limbs on the left and right sides are numbered starting from
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the frontal leg and marked by letters L and R, respectively
(Fig. 1A).
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Fig. 1. Sketch of the most common hexapod gaits. A) Leg numbering
convention. Letters L and R codify the left and right sides of the agent,
respectively, while the subindex stands for the limb number. B) Metachronal
(low – speed) gait. Thick segments show the swing phases (or the return
stroke) dashed segments correspond the the stance phases (or the power
stroke). No more than one leg at a time is lifted and moving forward. C)
Ripple (medium – speed) gait. D) Canterpillar (medium – speed) gait. E)
Tripod (fast – speed) gait.

When an insect moves slowly, it normally adopts the so
called metachronal gait (Fig. 1B). This gait can be described
as a “wave” propagating anteriorly from the back of the animal
(first on the left side, and then on the rigth side) according to
the scheme:

L3, L2, L1, R3, R2, R1.

For this gait the adjacent limbs of each half of the insect body
(R3 and R2, R2 and R1) are 60◦ out of phase. The limbs of
each segment (e.g. R3 and L3) are half a period (or 180◦) out
of phase.

For moving with a medium speed, an insect usually adopts
the ripple gait (Fig. 1C). Then the limb movement (swing
phase) is described by:

(L3R1), L2, (L1R3), R2.

Here brackets link the legs moving together. Accordingly, the
contralateral anterior and posterior legs, i.e. L1 and R3, L3 and
R1, move together in phase. The two limbs of each segment
are still half a period (180◦) out of phase and the consecutive
movements of the limbs are one quarter of a period (90◦) out
of phase.

Caterpillar is another medium speed gait at which the
motion of the left and right limbs are in synchrony (Fig. 1D)
according to the scheme:

(L3R3), (L2R2), (L1R1).

When an insect moves rapidly, it typically adopts the
alternating tripod gait (Fig. 1E):

(L3L1R2), (L2R3R1).

In the tripod gait, the ipsilateral anterior and posterior legs,
and the contralateral middle leg move together in phase. The
limbs of each segment are half a period (180◦) out of phase
and the adjacent limb on the right and left sides are also half
a period (180◦) out of phase.

III. OSCILLATORY MODES IN THE TODA-RAYLEIGH
SIX-UNITS RING

A. Toda-Rayleigh Ring

Toda [13] provided an exact solutions for a Hamiltonian
lattice system with exponential interaction. Figure 2A shows
the ring geometry we use. Six (by the number of legs) units are
coupled by special springs. The strength of interaction among
the nearest units exponentially increases with the decrease of
the inter-particle distance (Fig. 2B). Under appropriate limits
the Toda interaction goes into the harmonic oscillator or into
the hard sphere interaction.
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Fig. 2. The Toda ring. A) Six units (particles) are coupled in a ring by
“exponential” springs. B) Exponential coupling force acting between pairs of
neighboring units.

The Toda system is hamiltonian, whereas its circuit imple-
mentation unavoidably has energy loss. Thus any excitation
of the circuit decays in time and finally vanish. Accordingly
to sustain oscillations we need to supply energy to the sys-
tem. The energy-dissipation balance can be obtained by the
Rayleigh mechanism [12] that includes a cubic nonlinearity
in the original Toda system regulating the pumping-dissipation
balance [16].

The Toda-Raleigh model [16] in its canonical form is given
by:

ẍn + ω2
0(exn−xn+1 − exn−1−xn) − γ(μ − ẋ2

n)ẋn = 0, (1)
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where ω0 is the frequency of linear oscillations, μ is the
Rayleigh parameter, and γ defines the weight of the Rayleigh
cubic nonlinearity in the dynamics of the ring. In the limit
γ = 0 we have the original Toda equation whose exact solution
is a cnoidal wave:

exn−1−xn = 1 +
[
2Kν

ω0

]2 (
dn2

[
2K

(n

λ
± νt

)]
− E

K

)
,

(2)
where K and E denote the complete elliptic integrals of the
first and second kind, respectively, and dn is the Jacobian
elliptic function of modulus k. Thus the Toda ring has a
continuum of solutions selected by initial conditions.

For γ > 0 the energy balance admits only a discrete set of
solutions. In the truly damped case (μ < 0) the system has
only one motionless globally stable solution {xn+1−xn = 1}.
At μ = 0 the system undergoes a symmetric Hopf bifurcation
[16]. The 2N (twelve for the six-units ring) eigenvalues of the
linearized problem are given by [19]:

δ1,2
m =

1
2

(
γμ ±

√
γ2μ2 − 16 sin2 [πm/N ]

)
, (3)

where m = 0,±1, ...,±N/2. One eigenvalue, for m = 0,
vanishes due to the translation symmetry of the system.
Another is real, δ2

0 = γμ, and changes sign at μ = 0. The
other 2(N − 1) eigenvalues are complex conjugate and cross,
simultaneously, the imaginary axis at μ = 0, obeying Hopf
theorem [20].

For positive μ, (N − 1) different oscillatory modes appear
in the system. These modes correspond to stable limit cycles
coexisting in the 2N dimensional phase space of the system.
They represent nonlinear waves (acoustic modes) propagating
along the ring and can be labeled by their wave number m. The
mode number defines the number of local compressions (wave
humps) along the ring. Thus for the six-units ring (Fig. 2A)
m = 1 corresponds to a single-peak wave; m = 2 to a two-
peaks wave and m = 3 is the so called optical mode when
the nearest neighbors move in antiphase. The sign in the mode
number defines the direction (clockwise or counterclockwise)
of the wave propagation. Two other modes, for m = ±0,
correspond to the clockwise and counterclockwise rotations of
the ring as a whole. Note that since each mode corresponds
to a stable limit cycle, only one mode can be realized in the
ring at a time with no superposition admitted. As we shall
see further the modes m = 1, 2, and 3 correspond to three
different gaits of a hexapodal robot.

B. Analog Circuit Implementation

Figure 3A shows a circuit block-scheme for the Toda-
Rayleigh ring consisting of six units. Detailed description of
all components can be found in [16]. Relative to the circuit
previously used here we introduce additional resistors RB

to get the voltage V̂ averaged over all units in the ring.
Furthermore, we introduce an amplifier to have the possibility
to increase or decrease the voltage Vsh applied to the voltage
adders. By means of the switch S the input of the amplifier can
be connected either to variable voltage source Vext or to the
common point providing voltages V̂ (Fig. 3A). In the first case
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Fig. 3. A) Block scheme of the Toda-Rayleigh ring. Each unit (marked
by a dashed box) includes three main blocks: a double capacitor (DC), a
nonlinear resistor, and voltage adder providing additional shift of the voltage
at the nonlinear resistor accordingly to the common voltage Vsh. RA is a
stabilizing high value resistor. Resistors RB are used to obtain voltage V̂
(loosely speaking averaged over the units). The additional circuit (on the
right side) including switch S, high capacitance C, external battery Vext

and amplifier with variable coefficient k is used to automatically control the
dynamics of the ring via the global feedback. B) Experimental current-voltage
relation for the nonlinear resistor, Inr(ΔV ), where ΔV = Vn − Vb − Vext

is the voltage applied to its terminals.

resistors RB are connected in parallel to RA, hence forming
effective resistors of higher conductance. In the second case
besides the nearest neighbor coupling via diodes we have
a kind of global coupling provided by resistors RB with a
feedback loop via the amplifier to the voltage adders, and
finally to the nonlinear resistors. Due to the hight value of
RB this global coupling does not affect directly the dynamics
of the circuit, but instead it controls behavior of the ring via
the feedback.

According to the current-voltage (I–V) relation of the
double capacitor (DC) [21] and to Kirchhoff’s laws, we get
equations governing the dynamics of the circuit [16], [22]:

d2Vn

dt2
= ω2

vRdc (In − In+1 + Inr − IA − IB) , (4)

where ωv is a constant depending on the inner components of
the double capacitor. Inr, IA and IB are currents through the
nonlinear and two linear resistors in the unit n, respectively
(Fig. 3A). In represents the current through the junction diode,
that can be accurately modeled with

In = Is exp
(

Vn−1 − Vn

Vt

)
, (5)

where the constants Is and Vt depend on the inner diode
structure. Thus using diodes we obtain the Toda exponential
coupling (Fig. 2B) between neighboring units. Depending on
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the position of the switch S, the voltage V̂ can be equal
to zero (common point is connected to the ground) or it
may vary. The current through the non-linear resistor (block
NR in Fig. 3A) Inr is a nonlinear function of the voltage
applied to its terminals ΔV = Vn − Va. The function Inr

(Fig. 3B) is a cubic-like with three zeros and positive slope
at the origin, hence having a part with negative differential
resistance. Accordingly, we have the Rayleigh energy pumping
mechanism. Note that the voltage applied to the nonlinear
resistor is a linear combination of time derivative of the voltage
at the unit, Vn, and the “shift” voltage Vsh.

IV. CENTRAL PATTERN GENERATORS BASED ON THE
TODA-RAYLEIGH ELECTRICAL CIRCUIT

Let us now show how the symmetries of different gaits
shown in Fig. 1 can be modeled by oscillatory modes gen-
erated by Toda-Rayleigh electronic circuits.
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Fig. 4. Hexapod CPG based on the Toda-Rayleigh six-units ring. A) Twisted
ring topology. B) Connection scheme of the Toda-Rayleigh units to the limb
actuators. Each rectangular block represents a complete electrical unit shown
in Fig. 3 coupled through an adapter to the motor driving the corresponding
leg.

To accommodate oscillatory modes above described to the
gate symmetries we change the initial ring geometry. Fig-
ure 4A illustrates how a new twisted topology can be obtained.
For the new topology in the clockwise numbering we have the
following sequence of units:

3 → 2 → 1 → 4 → 5 → 6.

Note that this sequence is used only for mapping of the
oscillators to the limbs, whereas the actual Toda-Rayleigh
circuitry remains unchanged. However, this trick helps us to
get a direct mapping of the wave modes observed in the
electrical circuit to gait symmetries described above (Fig. 1).

We associate each limb with a single oscillator whose
dynamics drives through an adapter the corresponding actuator
(Fig. 4B). The actuator motor rotates according to the volt-
age dynamics of the corresponding Toda-Rayleigh oscillator.
When the voltage derivative is positive we have the swing
phase, whereas the negative derivative corresponds to the

stance phase. Then the interlimb coordination will naturally
follow from the coupling and dynamical interaction of the
oscillators.

Figure 5 show experimental traces of the three oscillatory
modes (m = 1, 2, and 3) generated by the Toda-Rayleigh six-
units ring. The three modes lead to the limb movements with
symmetries shown in the lower insets of Fig. 5. Comparing
the gaits obtained with the Toda-Rayleigh CPG to the insect
gaits shown in Fig. 1 we indeed see that the metachronal,
canterpillar and tripod gaits are successfully generated by the
CPG (Figs. 5A, 5B and 5C). Note that some overlapping in
swing phases observed in Fig. 5 is also observed in the insect
gaits.

V. CPG INTEGRATING THE ACTUATOR DYNAMICS IN THE
GAIT CONTROL

Denomination as e.g. metachronal gait may lead to a mis-
interpretation of the gait as being fixed. However, insects (and
other animals e.g. crustaceans) make use of free gaits, i.e.
the gait characteristics are always changing according to the
environment. For example when small obstacle is on the path
the swing phase of a leg can be shifted or made shorter.

The earlier CPGs (see e.g. [4], [6]-[11], [18]) and that shown
in Fig. 4B always produce the same rhythms (fixed gaits)
thus having no account for the dynamics of the robot legs,
neither the body. In this section we propose a new circuit
implementation for the Toda-Rayleigh ring that includes the
robot current state as a variable. Thus the new CPG will be
able to change some characteristics of the gait “on the fly”.

The idea is to replace the double capacitor (Fig. 3A) by a
loop going through the corresponding motor controlling the
leg. Figure 6 illustrates how the DC-block can be replaced
by the motor-leg-sensor block. Note that the sensor is used
only to get the current angle of the motor. As we show
below such replacement conserves the main circuit equations
describing the dynamics of the Toda-Rayleigh ring. However,
through the loop involving the motor we get new parameters
directly depending on the leg dynamics. In normal conditions
(say when walking over a flat surface), these parameters will
be constant not affecting the circuit operation, however, if
the environment changes, for instance the robot goes from
the horizontal to inclined surface, we get an autonomous
tuning of the gait frequency or even a switch to another more
appropriated gait for the new scenario.

First we note that, in a quite general case, the dynamics of
the motor moving a leg obeys the following equation

J
d2θn

dt2
+ ν

dθn

dt
+ σ = ΦI (6)

where θn is the angle of the n-th rotor, I is the current thought
the motor, J is the momentum of inertia, ν is the friction
coefficient, σ is the load torque, and IΦ is the electromagnetic
torque. Note that motor parameters are coupled to the leg
dynamics and play a role of the feedback coming from the
environment.

Second, by using an angle-voltage converter coupled to the
rotor of the motor, we obtain the voltage Vn(t) = θn(t)/Cv .
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Fig. 5. Oscillatory modes generated by the six-units Toda-Rayleigh circuit
and their relations to hexapode gaits. Upper insets show oscilloscope traces
of the voltages from all units. Bottom insets show the corresponding phase
relations. A) The wave mode with m = 1 corresponds to the metachronal
gait (compare to Fig. 1). B) The mode m = 2 corresponds to the canterpillar
gait. C) The optical mode (m = 3) models the tripod gait.
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Fig. 6. CPG with the dynamics of the limb actuators integrated into the
gate control. A) Scheme showing the point of the circuit to get the values of
the variables Vn and Idc in the case of DC block and motor. B) Feedback
loop through the robot environment allowing to tune the CPG according to
the robot task. DC-block (Fig. 3) is substituted by the motor-leg-sensor block,
voltage adder, and voltage to current converter. C) Ring configuration. Filled
circles correspond to electrical circuits with the motor dynamics replacing the
double capacitors in the circuit.

Then the new variable Vn(t) evolves according to:

d2Vn

dt2
+ ν′ dVn

dt
+ σ′ = αI, (7)

where α, σ′ and ν′ are suitable constants.
Third, we can compensate the constant term and first

derivative by splitting the current I = Iv + I0 + Idc (Fig. 6B)
obtaining:

I0 =
σ′

α
, Iv =

ν′

α

dVn

dt
. (8)

Then from Eq. (7) follows:

d2Vn

dt2
= αIdc , (9)

which is equivalent to the voltage equation of the double
capacitor [16], [21]. Thus we obtain Eq. (4) describing the
network where instead of the electrical circuit with the double
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capacitor we make use of the dynamics of the motors. Accord-
ingly we obtain a feedback coming from the body-leg-motor
system.

Note that in the new electrical circuit we use a voltage-
current converter (labeled by V → I in Fig. 6B) to compen-
sate the difference between Eqs. (4) and (9). Although both
expressions are mathematically equivalents, in the case of the
DC block, both Vn and Idc correspond to the same conductor
in the circuit, whereas in the case of the motor dynamics,
those magnitudes refer to different points as it is illustrated in
Fig. 6A.

Finally, Fig. 6C shows topology of the new CPG containing
six units with motors incorporated into the electrical circuit.
This CPG conserves all the gaits of its fixed counterpart, but
now parameters of Eq. (4) depend directly from the mechanical
characteristic of the hexapod.

VI. CONCLUSIONS

We have proposed the use of the Toda-Rayleigh ring as
a central pattern generator (CPG) for controlling hexapodal
robots. We have shown that in order to model the main gaits,
one can use a ring composed of six-units coupled though
adaptors to the limb actuators (motors).

To illustrate our results we built an electrical circuit of oscil-
latory elements and have shown that the dynamical behaviour
of the circuit reproduces the phase relationships found in
gaits of a six-legged animal. Moreover, changing one external
parameter (a voltage) one can switch between different modes
or gaits.

Then we have proposed a method allowing natural incor-
poration of the actuator (motor) dynamics in the CPG. With
this approach we close the loop CPG – environment – CPG,
thus obtaining a decentralized model for the leg control. Such
novel model does not require higher level intervention to the
CPG for locomotion in a nonhomogeneous environments.
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