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Abstract

A model is presented that simulates the process of neuronal synchronization, formation of coherent activity clusters and their dynamic

reorganization in the olivo-cerebellar system. Three coupled 2D lattices dealing with the main cellular groups in this neuronal circuit are used

to model the dynamics of the excitatory feedforward loop linking the inferior olive (IO) neurons to the cerebellar nuclei (CN) via collateral

axons that also proceed to terminate as climbing fiber afferents to Purkinje cells (PC). Inhibitory feedback from the CN-lattice fosters

decoupling of units in a vicinity of a given IO neuron. It is shown that noise-sustained oscillations in the IO-lattice are capable to synchronize

and generate coherent firing clusters in the layer accounting for the excitable collateral axons. The model also provides phase resetting of the

oscillations in the IO-lattices with transient silent behavior. It is also shown that the CN–IO feedback leads to transient patterns of couplings

in the IO and to a dynamic control of the size of clusters.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In vitro and in vivo experiments have shown that inferior

olive neurons (IO) possess intrinsic mechanisms, which

endow them with complex functional properties (Arm-

strong, Eccles, Harvey, & Matthews, 1968; Bal &

McCormick, 1997; Bell & Kawasaki, 1972; Benardo

& Foster, 1986; Bower & Llinas, 1982; Fukuda, Yamamoto,

& Llinas, 1987; Lampl & Yarom, 1997; Llinas & Sasaki,

1989; Llinas & Volkind, 1973; Llinas & Yarom, 1981 a,b;

Sasaki, Bower, & Llinas, 1989; Sasaki & Llinas, 1985). On

the one hand, these neurons can behave as autonomous

oscillators, and, on the other hand, as a neuronal ensemble

producing synchronous spikes. These are then transmitted

through axons, the climbing fibers afferent to the Purkinje

cell (PC) array (Szentagothai & Rajkovits, 1959) and with

collaterals to the cerebellar nuclei (CN) (Chan-Palay &

Palay, 1971). In turn, CN neurons send inhibitory terminals

to the IO (Nelson, Barmack, & Mugnaini, 1984; Ruigrok,

1997) (see Fig. 1A). Furthermore, because the terminals are

situated mostly on the gap junctions coupling IO cells

(Sotelo, Gotow, & Wassef, 1986), it has been proposed that

such a return pathway serves as a feedback inhibitory,

decoupling signal to IO neurons, creating conditions for

varying, evolving multi-cluster activity, hence time-chan-

ging pools of synchronously oscillating neurons (Llinas,

1989; Llinas, Baker, & Sotelo, 1974; Mugnani & Oertel,

1981; Sotelo, Llinas, & Baker, 1974). Note that about half of

the CN cells are GABAergic and project directly to the IO.

The data suggest that the GABAergic modulation of

electrotonic coupling is a mechanism that is fundamental

to the function of the olivo-cerebellar system in all

mammals (Gottlieb, 1988).

Although neurons in different regions of the IO may have

different oscillatory properties, three main conductances, in

addition to those leading to action potentials, have been
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advocated to be responsible for the oscillatory properties of

IO neurons: a dendritic high-threshold Ca2þ conductance, a

somatic low-threshold Ca2þ conductance, and a Ca2þ-

activated Kþ conductance (Llinas & Yarom, 1981a,b;

Manor, Rinzel, Segev, & Yarom, 1997). Furthermore, the

interaction of the high-threshold Ca2þ current and the Ca2þ-

activated Kþ current has been proposed to account for the

generation of low (up to 6 Hz) firing frequency whereas

higher (up to 10 Hz) firing frequency is thought to occur at

more hyperpolarized potentials with less involvement of the

high-frequency Ca2þ current. Indeed, the Ca2þ-dependent

Kþ conductance (150–200 ms duration) inhibits firing at

frequencies above 6 Hz. If, however, the membrane

potential is shifted to more and more negative values,

hence further hyperpolarized, allowing the activation of the

high-threshold spike, the duration of the hyperpolarization

is shortened and the neuron can respond at frequencies of up

to 10 Hz.

Synchronous oscillation of IO neurons appears as

significant in timing and dynamic organization of motor

sequences in motor coordination (Llinas, 1989; Fukuda,

Yamamoto, & Llinas, 2001; Llinas & Sasaki, 1989; Llinas

& Welsh, 1993; Vallbo & Wessberg, 1993; Welsh, Lang,

Sugihara, & Llinas, 1995; Welsh & Llinas, 1997; Yama-

moto, Fukuda, & Llinas, 2001). Multi-electrode exper-

iments with PCs in the rodent cerebellar cortex (Llinas &

Sasaki, 1989; Sasaki et al., 1989) have also shown that the

number of cells participating in isochronous spike clusters is

relatively small for spontaneous activity and increases with

neuropharmacological intervention with drugs such as

harmaline or picrotoxin (Lang, Sugihara, & Llinas, 1996;

Llinas & Sasaki, 1989; Llinas & Yarom, 1986). Harmaline

is a tremorgenic drug. Indeed, when harmaline is admini-

strated in vivo, it results in a 10 Hz tremor due to the

induction of oscillatory behavior in the IO (Lamarre et al.,

1971; Llinas & Volkind, 1973; de Montigny & Lamarre,

1973). Harmaline tends to hyperpolarize the membrane and

increases the voltage sensitivity of the low threshold

calcium current (Llinas & Yarom, 1986), hence allowing

the aforementioned relative high-firing frequency. Harma-

line has also been shown blocking the time-dependent

inward rectification (sag) (Yarom & Llinas, 1987). Picro-

toxin is a GABAergic antagonist and it has been shown that

injection of picrotoxin modulates the level of the electro-

tonic coupling among IO neurons increasing the size of IO

neuron clusters by partially merging smaller clusters into

larger areas of activation (Lang et al., 1996). Neurons in

different regions of the IO show differing sensitivities to

picrotoxin. Picrotoxin injection has also been shown to

increase the rate of spontaneous complex spikes to nearly

twice control levels, on average, with also an increase of

synchronicity and rhythmicity of such complex spike

activity (Yamamoto et al., 2001). Blocking the GABAergic

inhibitory connection within the IO glomeruli, where the

gap junctions are located, allows IO neuron clusters to grow

bigger increasing the electrical load of the network and

within clusters (Lang et al., 1996). The modulation of the

electrotonic coupling provides means for an external

stimulus to control the sensitivity of the loops IO–PC–

CN and IO–CN. Such modulations allow the formation of

well-organized patterns of global activity, which are of

significance in motor coordination (Welsh, Lang, Sugihara,

& Llinas, 1995). The patterns evolve in time as the

autonomous excitatory-inhibitory loops suitable to recog-

nize the clusters of synchronous firing neurons and prevent

their uncontrolled growth. The clusters in the IO generally

reorganize as the amplitudes decay with subsequent phase

resetting (Makarenko & Llinas, 1998). Details about

synchronization, clustering and related phase resetting

phenomena for various nonlinear oscillator models can be

Fig. 1. (A) Schematic organization of the Olivo-Cerebellar system including its three major components: inferior olive (IO), purkinje cell array (PC), and

cerebellar nuclei (CN) where two autonomous loops IO–PC–CN and IO–CN are displayed. (B) A three-layer system that in the simplest possible terms

depicts the most significant features from (A) and hence mimics the overall dynamics of the Olivo-Cerebellar system. It contains oscillatory (lattice Ia, somatic

subthreshold oscillations) and excitatory (lattice Ib, axonal action potentials) features of the IO neurons and the output of signal processing in the CN layer

(lattice II) feedbacking to IO. A sphere from Ia and a tube-like unit from Ib account for an IO neuron. Intra-layer couplings in the lattice Ia (only couplings of

the central unit are shown) describe dendritic gap junction couplings between IO neurons. Note that the arrowed feedforward I-II interlayer connection

(illustrated with coupling between central units only) accounts in global way for the main effect of the two loops in part A of the figure. No interactions between

units in lattices Ib and II are considered as experimental data suggest (part A is redrawn from Llinas & Welsh, 1993).
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found in the literature (Haken, 1996; Hoppensteadt, 1986;

Mikhailov & Calenbuhr, 2002; Nekorkin & Velarde, 2002;

Tass, 1999).

Recently, several models accounting for structural and

functional levels of IO neurons have been proposed

(Giaquinta, Argentina, & Velarde, 2000; Manor et al.,

1997; Schweighofer, Doya, & Kawato, 1999; Velarde,

Nekorkin, Kazantsev, Makarenko, & Llinas, 2002). For

instance, Manor et al. (1997) and Schweighofer et al. (1999)

use compartmental models and variables based on electro-

physiological properties of IO neurons thus clarifying the

relations between significant ionic currents and the dynamic

behavior of the IO neuron, starting with subthreshold

oscillations. Manor et al. (1997) discuss mechanisms

underlying subthreshold oscillations using a single compart-

ment Hodgkin–Huxley-like model that includes leakage

and low threshold calcium currents. Schweighofer et al.

(1999) propose a two-compartment model with nine ionic

currents. They were able to obtain good agreement with

available experimental data. To describe the behavior of a

single neuron all these models either demand consideration

of many variables nonlinearly coupled (Schweighofer et al.,

1999; Velarde et al., 2002) or a complex nonlinearity to

exhibit subthreshold oscillations (Giaquinta et al., 2000;

Manor et al., 1997). As our interest in the present study

focuses on understanding how collective features may

appear and hence we are only interested on simulating the

ensemble behavior of IO neurons and the autonomous

activity of the Olivo-Cerebellar circuit observable in the

absence of external input, details about the specificity of

units are not really needed here. It suffices that model IO

neurons are able to oscillate, to form clusters, and to send

spikes when subthreshold oscillations overcome a certain

threshold value. Reducing complexity in the model of a

single neuron is expected to allow transparency in the

understanding of the behavior of neuron clusters and the

dynamics of the overall process in the cerebellar functional

loop. Accordingly, we shall consider the following

simplifications. To a first approximation, enough for the

earlier mentioned scope of this work, the gap junctions are

reduced to just nearest-neighbor diffusive (electrical)

couplings (bonds). We shall not consider the details of the

process of propagation of the action potentials via axons.

Given that signal propagation is very fast (time delay is less

than 3% of the base oscillation period (Sugihara, Lang, &

Llinas, 1993)), the time intervals for transferring a spike

from IO neurons to CN are similar for all connections

(Sugihara et al., 1993) and hence negligible.

The paper is organized as follows. In Section 2 we

outline the simplest mathematical model that adequately

mimics oscillations, synchronization and desynchronization

processes, clustering in the IO ensemble and the minimal

significant representation of the overall dynamics depicted

in Fig. 1A. A schematic diagram of the model is shown in

Fig. 1B. It involves three different, interconnected two-

dimensional lattices. The two-layer block IO accounts for

the oscillatory (somatic subthreshold oscillations in lattice

Ia) and excitatory (axon spiking in lattice Ib) features of the

IO neurons, taken separately for purposes of mathematical

description. Hence a sphere in lattice Ia combined with its

corresponding tube in lattice Ib mimics the dynamics of an

IO neuron in full. In fact, such apparently artificial

separation in two parts is suggested by the experimental

data. The gap junctions between IO cells are mostly located

on the dendrites (Llinas et al., 1974; Sotelo et al., 1974). The

feedforward coupling (arrow) that leads to lattice II is

associated with the loop IO–CN. One may assume that in

the absence of external input this loop is taken functionally

accounting for both the PC-mediated and the direct IO–CN

connections. The loop finally feeds back the IO lattice and

modulates the diffusive intra-layer bonds (gap junctions) in

the vicinity of a given neuron in Ia. Section 3 is devoted to

the study of the model in the particular case when couplings

in lattice Ia are of constant value. This choice of parameter

value mimics well the earlier mentioned consequence of

injecting picrotoxin into the IO and/or lesions of the CN

nucleus (Lang et al., 1996) in in vivo experiments that

reduce the GABAergic CN–IO inhibitory feedback loop. In

Section 4 we take up the general case and consider the

action of the feedback loop on the cluster activity of the IO

system. Thus we discuss in our mathematical model features

that resemble what in reality would be the influence of

increasing low threshold calcium conductance and neuron

hyperpolarization (using harmaline) on the coherence of

spike trains (Lang et al., 1996; Llinas & Sasaki, 1989). In

Section 5 we summarize our results.

2. The model

Following the scheme shown in Fig. 1B let us now

construct a mathematical model simulating the cooperative,

functional behavior of the cerebellar loop. According to

experimental data the IO neurons go through low amplitude

(about 5 mV) subthreshold oscillations with well-defined

frequency (about 10 Hz in vivo) and, eventually, fire spikes

when the threshold voltage is attained (Llinas & Yarom,

1986). The frequency of spikes can change from 1 to 10 Hz

(Latham & Paul, 1971). The simplest possible oscillator one

can think about is a harmonic one. Although it does not

possess robust oscillations like limit cycle behavior in a

nonlinear system (Cronin, 1987; Giaquinta et al., 2000;

Hoppensteadt, 1986; Izhikevich, 2000; Manor et al., 1997;

Schweighofer et al., 1999; Velarde et al., 2002) it suffices

for our purpose here. Indeed, as neurons are always

subjected to noise (intrinsic or arising from the medium)

we could consider a harmonic oscillator with added noise

and then it is known that when oscillations exist they are

robust (Holden, 1976; Tuckwell, 1989). A similar con-

sequence occurs when a time delay is added to a harmonic

oscillator that helps to establish limit cycle oscillations

(Campbell, Belair, Ohira, & Milton, 1995; MacDonald,
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1989; Olien & Belair, 1997; Wei, Verlade, & Makarov,

2002). Thus adding noise to such an oscillator we obtain

sustained oscillations. Noise can be introduced in the system

in different ways. Here, for simplicity, we restrict

consideration to the case of an additive Gaussian noise

(Doi, Inpue, Sato, & Smith, 1999; Gardiner, 1985;

Manganaro, Arena, & Fortuna, 1999; Tuckwell, 1989). A

more realistic multiplicative, eventually colored noise

would add difficulties that will eliminate transparency in

the main features that the noise can bring. Thus for the IO

part responsible of subthreshold oscillations we take a two-

dimensional ðn £ nÞ lattice (lattice Ia in Fig. 1B) where at

each site ðjkÞ we have

_zjk ¼ zjkðiv0 2 gÞ þ i
ffiffiffiffi
2D

p
jjkðtÞ: ð1aÞ

The quantity z is a complex variable characterizing the

dynamics of a neuron (if only the real part is used, say, x;

then Eq. (1a) would transform into the standard form of a

harmonic oscillator with second derivative in time; a dot

over a quantity denotes time derivative), g is a damping

constant, v0 is the angular oscillation frequency in the

absence of noise and damping ðv0 ¼ 2p £ 10 HzÞ; jjkðtÞ are

zero mean independent noise sources with a time correlation

function given by

kjlmðtÞjjkðt
0Þl ¼ dðjkÞðlmÞdðt 2 t0Þ;

and D is a parameter, which sets the noise intensity. As

earlier announced, in the absence of noise, D ¼ 0;

oscillations decay in time (even in the presence of passive,

e.g. electrical gap junction-like bonds between oscillators),

while for nonzero noise we have self-sustained oscillations.

Gap junctions are described by electrical resistors, diffusive-

like bonds between units in the lattice Ia (Fig. 1B)

_zjk ¼ zjkðiv0 2 gÞ þ i
ffiffiffiffi
2D

p
jjkðtÞ þ

X
lm[L

dlm
jk ðzlm 2 zjkÞ; ð1bÞ

where dlm
jk accounts for the value of the coupling or bond

strength between neurons at sites ðjkÞ and ðlmÞ: As

mentioned earlier its actual value is affected (via feedback)

by the dynamics of the CN lattice. We shall return to this

problem later when we describe the dynamics of CN. Eq.

(1b) is considered with periodic boundary conditions, thus

disregarding the influence of boundaries on the dynamics of

the system. The sum in the right part of Eq. (1b) is taken

over neighboring neurons

L : ðl 2 jÞ2 þ ðm 2 kÞ2 # R2
; ð2Þ

where R accounts for the radius of neuron interaction. The

simplest nearest-neighbor coupling implies R ¼ 1: Further

on we shall consider only this case, as this choice of

parameter value does not affect the generality of the results

obtained with the model.

The lattice (1b) is expected to produce oscillations with a

narrow frequency band peaked around v0 with relatively

slowly varying amplitudes. These oscillations are

the external input for the second ðn £ nÞ lattice (Ib in

Fig. 1B) consisting of excitable, FitzHugh–Nagumo

(Fitz Hugh, 1961; Hoppensteadt, 1986) elements

1_ujk ¼ f ðujkÞ2 vjk; _vjk ¼ ujk 2 IjkðtÞ; ð3Þ

where 1p 1 is a small parameter; ujk and vjk mimic,

respectively, voltage and recovery variables of the axon-like

unit in the corresponding site of layer Ib. We take the

nonlinear function, f ðuÞ; in the form of a polynomial

f ðuÞ ¼ au2 2
1

5
u3 þ

a2

6
u 2

a3

4

 !
: ð4Þ

The parameters a and a allow us to tune amplitude and

duration of a pulse, respectively. For 1 ¼ 0 we can formally

get the spike amplitude, Asp ¼ 1:924a; and its duration Tsp ¼

0:1327aa4; which do not practically change for 1p 1: Then

we set a ¼ 2 and choose a such that Tsp ¼ 4 ms which

is about the duration of an action potential in a collateral

axon.

Axons (and PC) in lattice Ib are taken uncoupled and get

excitation from layer Ia via the activation current IjkðtÞ as

experiments with IO neurons suggest (Llinas & Welsh,

1993). We consider unidirectional coupling between

corresponding elements in lattices Ia and Ib. The current

Ijk depends on the corresponding variable in the bottom

layer in IO (Fig. 1B). The simplest choice for this current is

IjkðtÞ ¼ 2I0 þ xjkðtÞ; ð5Þ

where xjk ¼ Rezjk and I0 is a positive constant dealing with

the level of hyperpolarization of IO neurons. The system (3)

has its threshold at Ijk ¼ 2a: Consequently, from Eq. (5) we

have a threshold value for oscillations in the lattice Ia

(Fig. 1B) xth ¼ I0 2 a: For Ijk , 2a there exist only low

amplitude oscillations around the rest state (with average

membrane potential kujkl ¼ 2I0). However, if Ijk . 2a the

variable ujk performs a large excursion to high values and

comes back. Thus, the IO neuron produces spikes in Ib with

amplitude Asp and duration Tsp:

The CN lattice gets excitatory signals from the

corresponding axons in lattice Ib and then inhibits couplings

(decreasing coupling strength values) in the IO lattice by

decreasing IPSP for time intervals about 30 ms. Accord-

ingly, for the CN lattice (lattice II in Fig. 1B) we take

t _wjk ¼ 2wjk þQðujkÞ; ð6Þ

where w is the variable mimicking the CN response, t is the

time scale of decay, and QðuÞ is the sigmoidal (Boltzmann)

function

QðuÞ ¼
exp 10ðu þ I0 2 0:6Þ

� �
1 þ exp 10ðu þ I0 2 0:6Þ

� � : ð7Þ

Without stimulus (the corresponding unit in lattice Ib is

at rest, ujk ¼ 2I0) QðujkÞ < 0 and, consequently, for system

(6) we have wjk ¼ 0: Each incoming spike switches-on the

function QðujkÞ for a period Tsp: This leads to an almost
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linear increase of wjk up to the value Tsp=t and in turn wjk

exponentially decays to the rest level. The duration of the

resulting pulse, with 0.7 height, is about tln 10
7
: Thus to

have it lasting for approximately 30 ms we set t ¼ 0:08:

The pulse formed by the variable w reduces the strength

of the electrical coupling in the vicinity of a given neuron in

the IO lattice (Fig. 1B). Thus for the coupling coefficients,

dlm
jk ; in the system (1b) we can write

dlm
jk ¼

1

1 þ G
P

wpq

d; ð8Þ

where d is the maximal coupling strength, i.e. in the absence of

feedback loop; G accounts for the magnitude of coupling

degradation due to the feedback; and summation is taken over

units which can destroy the bond ðlmÞ2 ðjkÞ: In Fig. 1B we

assume that decoupling affects only four bonds. Thus, only two

neurons, ðlmÞ and ðjkÞ; can destroy the coupling ðlmÞ2 ðjkÞ:

In addition, the activity of lattice Ib in Fig. 1B reflects the

spiking behavior of the PC level and allows us to monitor

such activity, since each PC is innervated by one climbing

fiber and a single IO spike generates a single ‘complex

spike’ in PC (Eccles et al., 1966; Llinas & Simpson, 1981;

Yarom,1989). To visualize spiking activity and the space-

time evolution of the system we use ‘raster displays’ (Lang

et al., 1996), plotting a small vertical bar for each spiking

event occurring in the lattice Ib (Fig. 1B). We shall use this

to compare our results to experimental data obtained by

multi-electrode recordings from rodent cerebellar cortex

(Fukuda et al., 2001; Yamamoto et al., 2001).

3. Response of the excitable elements to subthreshold

oscillations in the oscillatory lattice without feedback

loop

Let us suppose now that the value of the electrical

coupling between IO neurons is constant and does not

depend on the dynamics of the CN lattice, dlm
jk ¼ d ðG ¼ 0Þ:

As mentioned earlier such mode can be achieved in

experiments by the blockage of GABA with picrotoxin or

lesions of the CN (Fukuda et al., 2001; Lang et al., 1996;

Yamamoto et al., 2001). Then due to the unidirectional

coupling between lattices Ia and Ib in IO (Fig. 1B) we can

consider the lattice Ia as a master lattice, which slaves the

second lattice Ib. We expect that the noise will excite

oscillations in the units in the master lattice, which are not

correlated for d ¼ 0; and become more and more correlated

with the increase of the coupling coefficient. Consequently,

due to the inter-lattice interaction we get spike trains with

higher and higher level of coherence.

Let us now investigate how the noise affects the

oscillations in the first layer for different values of the

coupling, d; and the response of the slaved lattice to such

activation. Clearly, for small intensity levels the noise is

able to excite only low amplitude oscillations. In the limit of

uncoupled neurons, d ¼ 0; we get from Eq. (1b) n £ n

independent stochastic differential equations

€xjk þ 2g_xjk þV2
0xjk ¼

ffiffiffiffiffiffiffi
2v0D

p
jjkðtÞ ð9Þ

where V2
0 ¼ v2

0 þ g2: The noise intensity now is pro-

portional to v2
0D: The fluctuation–dissipation theorem

(Gardiner, 1985) yields T ¼
v2

0D

4g
; where T represents the

noise ‘temperature’. The calculation of the power spectrum

of the stochastic process defined by Eq. (9), i.e. of the

thermal noise, is straightforward

SðvÞ ¼
v2

0D

½v2 2 ðv2
0 þ g2Þ�2 þ 4g2v2

: ð10Þ

If v0 . g the power spectrum Eq. (10) has a peak at the

frequency v2
max ¼ v2

0 2 g2 with height

SðvmaxÞ ¼
D

4g2
: ð11Þ

When dissipation is small and hence its time constant is

much larger relative to the oscillation period, gp v0; we

have a narrow band process or quasi-monochromatic noise.

The variables xjk perform fast random oscillations at a

frequency around v0 with slowly varying amplitude. Such

oscillations are similar to the subthreshold oscillations

observed in IO neurons in vitro, therefore further on we

shall use this parameter choice.

Since the oscillators in the lattice (9) are independent, the

normalized cross-correlation function

CxðRÞ ¼
1

s2
x

ðkxjkðtÞxkmðtÞl2 kxl2Þ ð12Þ

has zero value for all R . 0: Here sx is the standard

deviation of the process xðtÞ and R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj 2 lÞ2 þ ðk 2 mÞ2

p
is the distance between oscillators at sites ðjkÞ and ðlmÞ:

Thus, we can consider only one unit in Eq. (9) (lattice Ia)

and its influence on the dynamics of the corresponding unit

in the FitzHugh–Nagumo lattice Ib (Eq. (3)). Firing activity

of noise-driven excitable systems has been investigated by

several authors (Baltanas and Casado, 1998; Lee et al.,

1998; Longtin, 1997; Makarov, Nekorkin, & Verlade, 2001;

Pikovsky & Kurths, 1997). Baltanas & Casado (1998) have

found that a system similar to Eqs. (3) and (9) (one unit has

been considered) is capable of generating both spikes and

bursts of spikes. Moreover, spike trains reflect the structure

of the underlying oscillations. Inter-spike interval histo-

grams (ISIH) show an imperfect phase locking between ISIs

and both the period of the fundamental oscillatory

component and the time scale of the random modulation.

In this section we extend the study to the case of coupled

units (via lattice Ia in Fig. 1B). Fig. 2 shows an example of

the time realization of the stochastic process, xðtÞ; its power

spectrum and the response of the corresponding units in the

Axon (Ib) and CN (II) lattices. The spectrum of the process

xðtÞ has a well-defined peak at the frequency 10 Hz. In the

axon ½uðtÞ� we have narrow spiking oscillations, Tsp ¼ 4 ms;
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which strongly depended on the variable xðtÞ: Namely,

spikes appear near maxima of xðtÞ when neurons overtake

the threshold value in Eq. (4). Thus, the stochastic process

modeled by Eq. (9) brings rhythmicity to axon firing forcing

the generation of spikes with proper timing. In turn the short

spikes in the axon excite pulses with duration about 30 ms in

the corresponding unit in the CN lattice. If spikes follow

with short ISI then the variable w does not have time to

recover, the next pulse starts from nonzero amplitude and,

consequently, it is a bit higher.

For nonzero electrical coupling between units in the

master lattice (Ia) we expect that IO neurons will be able to

synchronize their oscillations and, consequently, initiate

synchronous activity in the slaved (second) lattice (Ib).

However, the synchronization cannot be perfect due to the

noisy origin of the oscillations. Thus, we expect to observe

imperfect synchronization of spike trains recorded from

different units in the Axon lattice (Ib). For nonzero coupling

between IO neurons ðd – 0Þ Eq. (9) becomes

€xjk þ 2g_xjk þV2
0xjk ¼ 2d½ðD_xÞjk þ gðDxÞjk�2 d2ðDðDxÞjkÞjk

þ

ffiffiffiffiffiffiffi
2v2

0D
q

jjkðtÞ; ð13Þ

where to simplify notation we use the discrete Laplace

operator:

ðDxÞjk ¼ ðDxÞj þ ðDxÞk; ð14Þ

with

ðDxÞj ¼ xj21k 2 2xjk þ xjþ1k;

ðDxÞk ¼ xjk21 2 2xjk þ xjkþ1:

Stochastic oscillations in the lattice (13) have a chance to

synchronize for some time intervals due to the coupling

terms in the RHS of Eq. (13).

Before we proceed with the whole Eq. (13) let us

consider the simplest case, when the lattice consists of two

units only. Then introducing two new variables s ¼ x2 2 x1

and r ¼ x2 þ x1; we get from Eq. (13)

€s þ 2ðgþ 2dÞ_s þ ðV2
0 þ 4dgÞs ¼

ffiffiffiffiffiffiffi
4v2

0D
q

jsðtÞ;

€r þ 2g_r þV2
0r ¼

ffiffiffiffiffiffiffi
4v2

0D
q

jrðtÞ;

ð15Þ

where js ¼ ðj1 2 j2Þ=
ffiffi
2

p
; and jr ¼ 2ðj1 þ j2Þ=

ffiffi
2

p
are new

independent noise sources with correlation function

kjs;rðtÞjs;rðt
0Þl ¼ dðt 2 t0Þ: Eqs. (15) are independent, and

similar to Eq. (9) for a single unit. Using the power

spectrum (10) we get for processes x ðfor d ¼ 0Þ; r and s;

respectively,

kx2l ¼
v2

0D

2gV2
0

; kr2l ¼
v2

0D

gV2
0

;

ks2l ¼
v2

0D

ðgþ 2dÞðV2
0 þ 4dgÞ

:

ð16Þ

For high values of the coupling the mean square

displacement of the difference variable, s; tends to zero, i.e.

oscillations in both units become synchronized. The

standard deviation, i.e. the average amplitude of oscil-

lations, for processes x1ðtÞ and x2ðtÞ; which is the value

sx ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kr2lþ ks2l

p
; is lower than the standard deviation

for a single unit and decreases where the value of the

coupling coefficient, d; increases. For large values of d

Fig. 2. Noise-sustained oscillations in a unit of the IO lattice (Ia) and response of corresponding units in Axon (Ib) and CN (II) layers (uncoupled case, d ¼ 0).

(A) Examples of time realization of quasi-monochromatic noise (QMN), x11ðtÞ (top), spiking behavior of the variable u11ðtÞ (middle) and pulse train for w11ðtÞ

(bottom); (B) corresponding power spectrum of QMN (v0 ¼ 2p £ 10; g ¼ 2; I0 ¼ 2:03; D ¼ 0:003).
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the quantity sx approaches the value
ffiffiffiffiffiffiffi
kx2l=2

p
: Thus besides

their synchronizing role, the coupling terms in Eq. (13) act

like additional damping and the resulting oscillations have

lower mean amplitude than for d ¼ 0: Using Eq. (16) we

can calculate the cross-correlation function for the

processes x1ðtÞ and x2ðtÞ

Cx ¼ 1 2
gV2

0

V2
0ðgþ dÞ þ 2dgðgþ 2dÞ

: ð17Þ

For V2
0 q dg; from Eq. (17) we obtain Cx < 1 2 g

gþd
:

Thus to get highly correlated oscillations for x1ðtÞ and x2ðtÞ

we require that d q g (damping is small compared to the

coupling between elements in Ia) and, finally, we obtain

highly coherent spike trains for u1ðtÞ and u2ðtÞ:

To check the aforementioned results with the whole

lattice, we have made several numerical integrations with

different values of the coupling coefficient d: Fig. 3 shows

the standard deviation, sx; of oscillations in the Ia lattice as

a function of the coupling coefficient. As we have seen for

the case of two units, the standard deviation decreases with

the increase of d: However, due to the higher number of

bonds involved and the collective dynamics in the lattice,

the standard deviation of oscillations in the IO decays faster

than for two units. The value of the average amplitude

(standard deviation) controls the spiking activity of the

slaved (Axon) lattice Ib. For higher values of sx; events

such that xjk crosses the threshold, ðI0 2 aÞ; in Eq. (3)

become more probable. Consequently, spikes appear more

frequently. For I0 2 a ¼ sx; in a first approximation, events

Fig. 4. Picrotoxin-like effect for different values of coupling between IO neurons with fixed value of sx ¼ 0:026 controlled by the noise intensity. (A)

Vanishing coupling d ¼ 0; D ¼ 0:003; (B) Intermediate coupling d ¼ 50; D ¼ 0:2; (C) Strong coupling d ¼ 200; D ¼ 0:55: Spatiotemporal evolution of the

oscillations in the (Ib) Axonal layer (left panels). A (8 £ 8)-square part of the (15 £ 15)-lattice is shown on the raster displays. Each vertical black bar

corresponds to a spiking event in a given unit. Two successive snapshots (right panels) with Dt ¼ 100 illustrate oscillations in the (Ia) IO-layer. Gray intensity

is proportional to the value of x:

Fig. 3. Standard deviation of the process xðtÞ (average oscillation amplitude

in the IO-layer (Ia)) as a function of coupling strength, d, for fixed value of

the noise intensity D ¼ 0:2 in the (15 £ 15) IO lattice (v0 ¼ 2p £ 10;

g ¼ 2).
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with xðtÞ maxima above or below the value sx are

equiprobable and hence the average number of spikes is

one in two periods of xðtÞ: To avoid difference in spiking

activity for different values of d we tune the noise intensity,

D ¼ DðdÞ; so that sx remains constant. Fig. 4 summarizes

the results of such computations. Clearly, the oscillations

both in the IO lattice (Ia) and in the Axon layer (Ib) have

moderate level of coherence for d ¼ 50 and a high level for

d ¼ 200 (Fig. 4b and c) relative to the case d ¼ 0: Fig. 5

shows cross-correlation functions for several different

values of the coupling strength. For d ¼ 200 (Fig. 4c)

almost all units in the IO layer (Ia) belong to few transient

clusters where elements oscillate together for a while. Such

clusters randomly drift over the lattice. Due to the

synchronous oscillations in the IO (Ia) we observe coherent

spikes in the Axon layer (Ib). However, from time to time

the oscillation amplitudes drastically decrease and clusters

break through the phenomenon of phase resetting earlier

mentioned (Nekorkin, Makarov, & Velarde, 1998; Tass,

1999). This leads to silent behavior in the Axon lattice

during several periods (Fig. 4b and c). Then units in the IO

lattice reorganize, their oscillation amplitudes grow and

new spike trains appear in the Axon lattice (Ib).

4. Restrictions to cluster growth due to the feedback loop

Let us now consider the three-layer system with closed

feedback loop ðG – 0Þ and, in the general case, when the

coupling coefficients between IO neurons in lattice Ia are

not constant. As already mentioned each coupling between

units in the IO lattice can be altered by the signals activated

by the neurons, which are linked by this coupling. The

signals pass via Axons to CN and finally decrease the

coupling coefficient due to Eq. (8). The upper two diagrams

of Fig. 6 show pulse trains in two neighboring neurons with

indexes (11) and (12) in the CN lattice (II) activated by

spikes coming from the Axon layer (Ib) and the lower

diagram of Fig. 6 shows the evolution of the coupling

coefficient between the original IO (Ia) neurons with

indexes (11) and (12). Each pulse, due to Eq. (8), reduces

value of the coupling coefficient between IO neurons while

it lasts. Thus the average coupling between neurons is lower

than for vanishing G; as discussed in Section 3. Conse-

quently, the coherence level of oscillations in the IO layer

(Ia) and spike trains in the Axon layer (Ib) will be smaller

for the same parameter values.

Besides the decoupling coefficient, G; the value of the

hyperpolarizing current, I0; should significantly influence

the evolution of the system. In experiments, harmaline

injection leads to a decrease in spiking activity (the average

spike rate) of PC (and axons), but spike trains become more

Fig. 5. Cross-correlation functions calculated using Eq. (12) with time averaging and following averaging over a lattice for different values of inter-layer

coupling coefficient, d : (A) for the IO lattice (Ia), (B) for the Axon lattice (Ib).

Fig. 6. Illustration of the influence of the (CN–IO) feedback loop on the

intra-layer coupling coefficient between IO neurons with indexes (11) and

(12) in lattice Ia. The sequence of pulses in two neighboring units in the (II)

CN lattice (top and middle panels), and resulting coupling coefficient d11
12

between corresponding neurons in the (Ia) IO lattice (bottom).
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coherent. To test our model for its ability to account for this

experimental fact we have made several computations with

different values of I0: Fig. 7 shows two examples of spike

trains in the Axon layer (Ib) on the raster display and cross-

correlation functions for different values of I0: As expected,

the spiking activity for low level of hyperpolarizing current

(I0 ¼ 2:025 in Fig. 7a) is higher than for higher levels of the

current (I0 ¼ 2:035 in Fig. 7b). There is less correlation

between units in the first case (Fig. 7c). This phenomenon

can be explained in the following way. An increase of

Fig. 7. Illustration of the influence of the hyperpolarizing current, I0; on the coherence of spike trains in the Axonal lattice (Ib) with operating feedback (CN–

IO) loop. (A) I0 ¼ 2:025; (B) I0 ¼ 2:035; (C) Cross-correlation function of spike trains in the Axonal lattice (Ib) for three different values of I0:

Fig. 8. Illustration of the restriction on cluster size in the (100 £ 100) IO lattice due to control feedback loop via the CN lattice. Three successive snapshots with

Dt ¼ 100 ms (color corresponds to the value of xÞ (A) without feedback loop, G ¼ 0; (B) with operating feedback loop, G ¼ 30 (d ¼ 200; D ¼ 0:55;

I0 ¼ 2:03).
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hyperpolarizing level, I0; leads to a lower probability in the

appearance of spikes in the Axon lattice (Ib) since the

probability is a monotonically increasing function of

sx 2 ðI0 2 aÞ: ð18Þ

Thus the spiking activity decreases with increasing

values of I0 (down to zero for I0 !1). Then in the CN

lattice pulses formed by the spikes become rare that leads to

higher mean values of the coupling coefficients in the IO

layer. Since the coherence level is higher for high coupling

values (see Fig. 5b), we get more correlated spike trains in

the Axon layer (Ib). Then, a higher coupling, due to its

damping character, decreases the mean oscillation ampli-

tude, sx; and the spiking activity further diminishes due to

Eq. (18). This process eventually reaches a saturation level

and, finally, we have stationary oscillations with rare albeit

more coherent spikes in the Axon lattice (Ib).

Finally, we have carried out computations with rather

large (100 £ 100) lattices. This allows us to estimate

the so-called Markov parameter b for the IO layer allowing

comparison with experimental results (Makarenko, Welsh,

Lang, & Llinas, 1997). This parameter estimates how much

a given spatial distribution differs from the uniform one. If

no statistically reliable difference exists then b! 0: Fig. 8

shows several successive snapshots of the oscillations in the

IO lattice (Ia) without ðG ¼ 0Þ and with ðG – 0Þ feedback

loop. In both cases we observe, as a result of synchroniza-

tion, clusters of neurons oscillating together (the same gray

intensity in Fig. 8). The boundaries of the clusters in the

lattice Ia change in time and clusters erratically wander over

the lattice. However, the average size of the clusters with

feedback loop ðG – 0Þ is smaller than with constant

coupling. Besides, the boundaries between clusters are

‘clearer’ (the gradient of gray is higher). This occurs due to

‘self tuning’ of bonds between units inside and outside a

cluster, which is impossible with a constant coupling

coefficient ðG ¼ 0Þ: Generally, the coupling between units

deep inside a cluster is stronger than between units at the

boundary of clusters. Thus the feedback loop, via the CN

lattice, not only helps breaking and recreating clusters in the

IO lattice preventing their uncontrolled growth but also

makes them ‘brighter’. This makes the time lag of the

coherence of spikes in the Axon lattice (Ib) smaller when

the feedback loop operates (Fig. 9a). The Markov parameter,

b; reflects an important consequence of the negative

feedback for the system. Its standard deviation is signifi-

cantly lower when the feedback is activated. This means

that the system is kept at a particular level of spatial

organization with specific number of degrees of freedom.

5. Conclusions

We have studied the time evolution of a three-layer

mathematical model that adequately simulates the qualitat-

ive dynamics of cluster formation, reorganization and spike-

train generation in the Olivo-Cerebellar system. We have

restricted the study of the model to the autonomous

functioning of the system (without external input signals

like those arising from sensory- and moto- neurons) because

a considerably more complex behavior is expected in

the presence of external input, which requires a separate

study. The model incorporates the (excitatory) feedforward

and (inhibitory) feedback loops as it is known to occur with

IO neurons, collateral axons (related, indeed, to the PC

layer), and CN. Unavoidable noise always existing in

neurobiological systems is taken into account not just as an

accessory element affecting the dynamics, but for the

purpose of adequately using the simplest mathematical

oscillator, the harmonic oscillator. Indeed, the (white

additive) noise helps sustaining subthreshold oscillations.

When dissipation in such an oscillator is small and hence its

Fig. 9. Characteristics of oscillations in a large (100 £ 100) system for different coupling regimes (without feedback loop, G ¼ 0; and with feedback loop,

G ¼ 30Þ: (A) Cross-correlation functions for spike trains in the Axonal lattice (Ib); (B) Markov parameter b; calculated for oscillations in the IO lattice (Ia), as a

function of time. In a first stage (left of the dashed vertical line) the intra-layer coupling is constant, and no feedback mechanism is involved G ¼ 0: In the

second stage (right of the dashed line) the feedback loop is operating, G ¼ 30: All other parameter values and conditions are the same as in Fig. 8.
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time scale is much larger than the oscillation period, the

outcome is a quasi-monochromatic (colored) noise. Its

spectrum has a well-defined peak at the frequency 10 Hz,

and the waveform is similar to the subthreshold oscillations

observed in IO neurons. Although the nature of the model

subthreshold oscillation is stochastic, it brings rhythmicity

to axon firing forcing the generation of spike trains with

time structure of the underlying oscillations (the interspike

histogram shows pronounced peaks at multiples of 100 ms).

Every time there is a spike in an axon, there appears a pulse

in the CN lattice leading to a reduction of the strength and/or

number of connections between an IO neuron and its

neighbors. Depending on the strength of bonds (gap-

junctions) in the IO base layer different patterns of

synchronous activity (clusters of different sizes) can appear.

IO neurons will be able to synchronize their oscillations and,

consequently, initiate synchronous activity in the feed-

forward lattices.

The qualitative behavior of the model explains well the

features observed in experiments with IO neurons and also

allows making further significant predictions, amenable to

experimental test. We have studied the dynamics of the

model with and without inhibitory CN–IO feedback. The

latter case simulates the pharmacological intervention with

picrotoxin or lesion of CN in in vivo experiments. In the

absence of feedback the network shows synchronous activity

with larger and larger clusters as the coupling strength

increases. However, the synchronization cannot be perfect

due to the noisy origin of the oscillations. Thus, we observe

imperfect synchronization of spike trains recorded from

different units in the Axon lattice. Eventually the oscillation

amplitudes drastically decrease thus allowing fast ‘switch-

ing’ of oscillation phases and, hence clusters split in a phase

resetting process. This leads to silent behavior in the Axon

lattice during several periods. Then units in the IO lattice

reorganize into new clusters, their oscillation amplitudes

grow again and new spike trains appear in the Axon lattice.

This is also in agreement with experimental data.

Computations for two units show that a high coupling

strength between units results in highly coherent oscillations

and spiking, but the increase in the coupling also decreases

the mean amplitude of (subthreshold) oscillations. Thus

besides the synchronizing role, the bonds act like additional

damping and the resulting oscillations have lower mean

amplitude. These two features are also found in experiments

(Benardo & Foster, 1986). If the (inhibitory) feedback is

present the synchronization in the network is drastically

reduced and clusters become smaller in size. Spikes in an

axon via the CN lattice reduce the strength of bonds or

couplings between IO neurons. As the average coupling

strength is reduced the coherence level is also reduced.

Increasing the hyperpolarization level of the IO neurons

we found a decrease in the firing rate, as expected, and a

less obvious increase in the coherence level of the spikes.

This is what happens in experiments with IO neurons using

harmaline (Llinas, 1989; Sasaki et al., 1989; Yamamoto

et al., 2001). For strong hyperpolarization, firing events

occur less frequently when both oscillation amplitudes of

all pairs of neighboring units are high and oscillation

phases are close (otherwise it is difficult to go above

threshold). Then in the CN lattice pulses formed by the

axon spikes become rare. This leads to less significant

damping effect of the couplings by the inhibitory feedback

and, consequently, the mean coupling values in the IO

layer increases. Since the coherence level is higher for high

coupling values more correlated spike trains are observed

in the Axon layer. Then, higher values of the coupling

strength, due to its damping character, decrease further the

mean oscillation amplitude. Consequently, there is further

improvement of the coherence level until saturation is

reached. Besides, the boundaries between clusters become

sharper due to the enhancement (via feedback) of the

coupling strength inside a cluster relative to its environ-

ment. Uncoupled signals from CN are less frequent for the

synchronously firing neurons (in one cluster) than for those

firing out of phase (in different clusters). Hence the

coupling between units deep inside a cluster is stronger

than between units at the boundary of clusters. Thus the

feedback loop, via the CN lattice, not only helps breaking

and recreating clusters in the IO lattice preventing their

uncontrolled growth but also makes them ‘brighter’.

Finally, in the case when the inhibitory CN–IO feedback

loop is operating ðG – 0Þ a decrease is predicted for the

standard deviation of the Markov parameter, b; discrimi-

nating a pattern from homogeneous random distribution.

The study presented here offers ground for future work.

For instance, the model could be extended by using more

sophisticated model neurons (like robust nonlinear oscil-

lators without or with noise) and more accurate (intralayer)

IO neuron bonds. One can also have more complexity in

the model of axons and other interlayer (IO–PC–CN)

couplings by adding delays, or take into account external

inputs thus incorporating other parts of the cerebellar

related circuitry, all together leading to a useful tool to test

motor-control mechanisms. Note that if external stimuli are

added, the PC layer is expected to play an important role

and its dynamics has to be explicitly included in the model.

This layer will modulate (in accordance to the input signal)

the inhibitory feedback to IO in such a way that clusters of

synchronous activity associated with a specific movement

may be increased (stabilized) during the movement, while

‘not-desirable’ clusters could be suppressed. This needs the

system to be highly responsive and ready for fast cluster

reorganization that, in our view, may happen via appro-

priate blocking of gap-junctions like the present study

predicts.
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