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Abstract—The synchronization of oscillatory activity in neural networks is usually imple-
mented by coupling the state variables describing neuronal dynamics. Here we study another,
but complementary mechanism based on a learning process with memory. A driver network,
acting as a teacher, exhibits winner-less competition (WLC) dynamics, while a driven network,
a learner, tunes its internal couplings according to the oscillations observed in the teacher.
We show that under appropriate training the learner can “copy” the coupling structure and
thus synchronize oscillations with the teacher. The replication of the WLC dynamics occurs for
intermediate memory lengths only, consequently, the learner network exhibits a phenomenon of
learning resonance.
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1. INTRODUCTION

Regular oscillatory activity observed in dynamical systems has traditionally been associated
with a stable limit cycle in the phase space. Relatively recently it has been shown that such
oscillations can also emerge in systems possessing the so-called stable heteroclinic channel [1, 2].
In a neural network consisting of more than two competing neurons with unbalanced inhibitory
connections, one may observe a situation where each neuron sequentially becomes a winner (i.e.,
strongly activated) for a limited time interval and then another neuron takes over the leadership.
Dynamically such an operating mode, called winner-less competition (WLC), may occur in a vicinity
of heteroclinic trajectories connecting saddle equilibria in a loop. Under certain conditions, the
heteroclinic loop can be stable and then in the presence of a weak noise the trajectory will wander
from one saddle to another [3–5].

On the one hand, recent studies have shown that the WLC concept can be used to describe a
large number of phenomena such as the interaction of emotion and cognition [6, 7], chunking or
binding dynamics [8, 9], and retrieval of information in sequential working memory [10], among
others. Conditions for the existence and stability of heteroclinic channels have been studied in a
number of systems (see, e.g., [11–13] and [14] for review). Recently Levanova and colleagues [15]
have shown that the sequential dynamics can be implemented not only between saddle equilibria,
but also between saddle limit cycles. Thus, the WLC concept is a hot topic in modern nonlinear
dynamics.

On the other hand, the synchronization of oscillatory activity is one of the fundamental
phenomena occurring in systems of diverse nature. Traditionally, synchronization is expected in
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dynamical systems involving the transmission of signals (energy) from one oscillatory element to
another. For example, in neural networks synaptic couplings convey electrical or chemical signals
from one cell to another, which frequently promotes synchronization [16]. However, synchronization
can also be achieved through a learning process. In this case, there are no direct ties between the
state variables describing two oscillatory systems. Instead, the information transfer is mediated
by tuning the strength of couplings in trained system under observation of the teacher dynamics
according to some learning rule. Physical mechanisms underlying such a behavior in neural networks
are based on short and long term potentiations [17, 18]. Despite a large literature on the learning
in artificial neural networks, the problem of learning of the WLC dynamics has not been addressed
so far.

In this work we propose a model of learning, i.e., a learning rule, which allows one neural network,
acting as a teacher, to impose the same heteroclinic circuit in another learner network. As a result,
in the learner there appear WLC oscillations synchronized in phase with the oscillations of the
teacher. The proposed learning rule includes memory effects, i.e., the learner integrates over some
time the incoming information. We show that the learning is effective for intermediate values of
the memory time constant only. Thus, we describe a phenomenon of “learning resonance”. The
reported mechanism of learning can be useful for replication of scenarios of cognitive navigation in
dynamic environments [19].

2. HETEROCLINIC CIRCUIT IN A SINGLE NETWORK: WINNER-LESS DYNAMICS
Figure 1 shows a sketch of the network architecture composed of two neural networks: a teacher

and a learner. Both the teacher and the learner networks consist of three mutually inhibitory
coupled neurons. The coupling strengths α = {αi}3

i=1 and β are fixed, while γ(t) = {γi(t)}3
i=1 can

be changed under learning according to the dynamics of the state variables in the teacher, x(t) ∈ R
3
+,

and in the learner, y(t) ∈ R
3
+. Note that there is no direct influence of x(t) on y(t).

Fig. 1. Sketch of two neural networks (teacher and learner). Each network consists of three inhibitory coupled
cells (synaptic strengths marked by parameters αi, β, and γi, i = 1, 2, 3). During learning red couplings, γi(t),
can be changed according to the teacher dynamics observed by the learner.

First, let us consider the dynamics of the teacher. The governing equation [11] is

ẋ = x � (1 − ρx) + η(t), (2.1)

where x(t) � 0 describes the neuronal activity at time instant t and η(t) ∈ R
3 is the Gaussian white

noise. In numerical simulations we set the means and the covariance matrix to 〈ηi〉 = 2× 10−5 and
C = 2.25 × 10−12I3, respectively. The matrix ρ ∈ M3×3(R+) describes the local couplings among
the neurons:

ρ =

⎛
⎜⎜⎜⎝

1 α2 β

β 1 α3

α1 β 1

⎞
⎟⎟⎟⎠ .

Given that the following conditions are satisfied

0 < αi < 1 < β, κ1κ2κ3 > 1, (2.2)
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where κi = β−1
1−αi

, earlier it was shown that in the system (2.1) there exists a globally stable
heteroclinic circuit [11]. Further on we will assume that β > 2 (we set β = 2.8 in numerical
simulations). Then inequality (2.2) will be satisfied for any 0 < αi < 1, i.e., the teacher will exhibit
the WLC dynamics.

Figure 2a shows a typical example of a trajectory in the phase space of (2.1) imposed by the
presence of a heteroclinic circuit connecting equilibrium points (1, 0, 0), (0, 0, 1), and (0, 1, 0). The
direction of traveling through the circuit depends on the selected combination of the coupling
strengths (2.2). In particular, here we observe the sequence 1 → 3 → 2 → 1 → · · · . In other words,
we start with domination of the activity in the first neuron (x1 is high, while x2,3 are small). Then
the third neuron takes over the leadership and after it the second one goes, and the loop is closed
(Fig. 2a).

Fig. 2. Winner-less dynamics generated around a heteroclinic circuit in a single neural network. (a) A typical
example of a trajectory wandering in the phase space among three saddles (left panel) and the time evolution
of the neuronal activity, x1,2,3(t) (right panel; blue, red, and green colors correspond to neurons 1, 2, and 3,
respectively). Neurons sequentially in a loop exhibit high activity (α1 = 0.38, α2 = 0.63, α3 = 0.60). (b) The
period of the dominant activity in one neuron over the others versus the corresponding coupling strength, αi.
The red curve corresponds to law (2.5).

Numerical simulations show (Fig. 2b, black dots) that the time interval during which the activity
of the i-th neurons prevails over the others (e.g., for i = 1, T1 = {t : x1(t) > max{x2(t), x3(t)}})
increases with the magnitude of the corresponding coupling αi. This interval is determined by the
passage time of the trajectory near the corresponding saddle. Let us now estimate it from the
model (2.1).

The equilibria of (2.1) are given by x̄ � (1− ρx̄) = 0. Without loss of generality we can consider
only one of them, the saddle in x̄1 = (1, 0, 0), which corresponds to domination of the activity in
the first neuron. In a vicinity of x̄1 Eq. (2.1) can be approximated by

ξ̇ =

⎛
⎜⎜⎜⎝

−1 −α2 −β

0 1 − β 0

0 0 1 − α1

⎞
⎟⎟⎟⎠ ξ, (2.3)

where ξ = x − x̄1. Thus, x̄1 is indeed a saddle with dim(W u) = 1, as expected. By fixing the initial
conditions ξ0 = (ξ10, ξ20, ξ30) satisfying ‖ξ0‖ = ε, we find the solution of (2.3):

ξ1(t) = ξ10e
−t +

α2ξ20

β − 2

(
e−(β−1)t − e−t

)
− βξ30

2 − α1

(
e(1−α1)t − e−t

)
,

ξ2(t) = ξ20e
−(β−1)t, ξ3(t) = ξ30e

(1−α1)t.

(2.4)

Then we can estimate the time interval of domination of the first neuron, p1, from the condition
‖ξ(p1)‖ = ε. By neglecting exponentially small quantities, we get from (2.4):

ξ2
30e

2(1−α1)p1

(
β2

(2 − α1)2
+ 1

)
= ε2.

REGULAR AND CHAOTIC DYNAMICS Vol. 21 No. 1 2016



100 SELSKII, MAKAROV

Thus, the period of the dominant activity in the i-th neuron can be approximated by

p(αi) =
p0

1 + ln 2
1 + ln(2 − αi)

1 − αi
, (2.5)

where p0 is the period for αi → 0 (which slightly depends on β) and we extended the result to all
neurons. Figure 2b shows the data fit by function (2.5) with p0 = 9.57. For further calculations it
is worth noting that p(·) is a strictly increasing function.

3. SYNCHRONIZATION OF HETEROCLINIC CIRCUITS BY LEARNING

Let us now consider two neural networks coupled under the teacher-learner architecture shown
in Fig. 1. In what follows we will keep the previously used notation for the teacher network, whereas
the network state of the learner will be denoted by y(t) satisfying the same Eq. (2.1) but using
the couplings γi(t) as counterparts of αi (Fig. 1). The local couplings α in the teacher network are
sampled from uniform distribution.

3.1. Learning Rule

At t = 0 the couplings γ(0) are taken arbitrary from uniform distribution (0 < γi < 1, i = 1, 2, 3)
and in general γ(0) �= α. Thus, at the beginning the learner exhibits WLC dynamics with arbitrary
dominant periods different from those in the teacher. Then the purpose of learning is to synchronize
oscillations in the learner with the teacher.

Definition 1. By phase synchronization by learning we will understand a situation where indepen-
dently on the initial conditions x(0), y(0), and γ(0), after some transient the following condition
is satisfied:

|φx(t) − φy(t)| < M, (3.1)

where φx and φy are the oscillatory phases in the teacher and in the learner, respectively, and M
is a constant. In other words, after a transient the phase difference between network states remains
bounded.

Since the teacher network cannot change the learner state y(t) directly, but through the coupling
strengths γ(t) only, during the learning we expect:

lim
t→∞

‖〈γ〉Ty(t) − α‖2 = 0, (3.2)

where

〈γ〉T (t) =
1
T

∫ t

t−T
γ(s) dt

denotes the time averaging operator over period T . If condition (3.2) is satisfied, then in both
networks we should observe after learning the same oscillations with some phase shift. Thus, the
fulfillment of (3.2) ensures (3.1). In numerical simulations the learning will be deemed finished if
‖〈γ〉Ty(t) − α‖2 falls below the tolerance value 0 < δ 	 1 for some t.

As mentioned above, the synaptic strengths γ(t) are changed according to the teacher dynamics.
For learning we will employ a Hebb-like rule, i.e., the strength of synaptic couplings will be
modulated according to the difference between activities in the learner and in the teacher. First,
we introduce a functional:

g(u) = u(t)
1
τ

∫ t

t−τ
u(s) ds, (3.3)

where τ � 0 is the memory length. The function g(xi) represents the cumulative activity of the
i-th neuron in the teacher network. For τ → 0, (3.3) is reduced to g = u2(t) and we get no memory
effect. Similarly, for τ → ∞ we obtain g = ûu(t), where û is the mean value of u, and again we
accumulate no information on the previous states of u(t). Nevertheless, for intermediate values
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of τ , g gathers the neuronal activity over the time scale τ during up-state (i.e., high activity) of
the neuron.

Now we can introduce the learning rule:

γ̇i = εf(γi)[g(xi) − g(yi)], i = 1, 2, 3, (3.4)

where ε > 0 is the learning rate; the function f(γi) = γi(1− γi) restricts the possible values of γi to
the interval (0, 1), required for WLC dynamics. The second term, E(xi, yi) = g(xi) − g(yi), is the
error function described as teacher forcing based on the classical delta rule [20].

3.2. Behavior of the Learner

Further on we will assume that the learning rate is small enough, ε 	 1. At this limit the
coupling strengths in the learner are slow functions of time γi = γi(εt). Therefore, on time scales
proportional to 1/ε the state variable, y(t), follows the standard dynamics of a heteroclinic circuit
(Fig. 2).

The Definition 3.1 allows for a nonzero phase shift between x(t) and y(t). Thus, in general the
error function E(xi, yi) can oscillate even as t → ∞. Therefore, under learning we expect

lim
t→∞

〈E(xi, yi)〉T (t) = 0,

where T is the oscillation period. Thus, it is natural to apply an averaging method to Eqs. (3.4)
governing the learning dynamics.

At the first approximation we can write γi(t) = zi(t) + εΦi(t, zi), where Φi is an oscillatory
function and zi(t) satisfies:

żi = εf(zi)(Gi(α) − Gi(z)). (3.5)

The terms Gi in the r.h.s. of (3.5) refer to the time averaging of the corresponding terms in (3.4):

Gi(α) =
1

T (α)

∫ T (α)

0
g(xi) dt, Gi(z) =

1
T (z)

∫ T (z)

0
g(yi) dt, (3.6)

where T (α) and T (z) are the periods of oscillations in the teacher and in the learner networks,
respectively. We note that T (α) =

∑3
i=1 p(αi) is a constant set by α, while T (z) =

∑3
i=1 p(zi) is

changed slowly in time. Under synchronization conditions we expect T (z) → T (α) as t → ∞.

3.2.1. Synchronization failure under learning without memory

To obtain the dynamics of γi, we have to calculate integrals (3.6). Due to their similarity we will
provide calculations for the first integral only. Let us now assume that either τ = 0 or τ → ∞ and
hence g(xi) = x2

i or g(xi) = x̂ixi, respectively. In the latter case the time averaging (3.6) produces
Gi(α) = x̂2

i , whereas in the former one we get Gi(α) = 〈x2
i 〉. Then, taking into account that the

activity of each neuron dominates in the network during the period p(αi), we can estimate

Gi(α) =

{
c0Ri(α) if τ = 0
c∞R2

i (α) if τ → ∞,

where Ri = p(αi)/
∑

p(αi), and c0,∞ are some constants of order unity.

Thus, for τ = 0 the dynamical system (3.5) describing the time evolution of the coupling
strengths can be written as

żi = ε̂f(zi) (Ri(α) − Ri(z)) , (3.7)

where ε̂ = εc0 is the rescaled learning rate. The system (3.7) has:
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• Several simple equilibria. Namely, eight combinations of

(z̄1, z̄2, z̄3) where z̄i ∈ {0, 1} (3.8)

and one or two equilibria

(0, z̄∗2 , 0), (0, 0, z̄∗3), where z̄∗2,3 = p−1(2p0R2,3(α)/(1 − R2,3(α))), (3.9)

the first of them exists if p(α2) − p(α1) > p(α3) − p(α2);

• A one dimensional equilibrium manifold:

p(αi)
p(z̄i)

= r, i = 1, 2, 3, r ∈ (0, rmax), (3.10)

where r is a parameter and rmax = max{p(αi)}/p0.

One can show that equilibria (3.8) have the following eigenvalues:

λi = ε̂f ′(z̄i) (Ri(α) − Ri(z̄))

and they are either saddles or unstable nodes. A similar analysis leads to the conclusion that
equilibria (3.9) are saddles.

The manifold (3.10) has the eigenvalues

λ1 = 0, λ2,3 = − ε̂r(a ±
√

a2 − 4c)
2

∑
p(αi)

,

where

a =
3∑

i=1

f(z̄i)p′(z̄i)(1 − Ri(α)) > 0, c =
∑

i�=j �=k

Ri(α)f(z̄j)p′(z̄j)f(z̄k)p′(z̄k) > 0.

Therefore, the manifold is stable and, depending on the initial conditions, the learning process
can converge to one of the points in this manifold. Thus, after learning in general the ratio of the
dominant periods in the teacher and learner is r �= 1, while the phase synchronization occurs in the
case r = 1 only, i.e., almost never.

Fig. 3. Synchronization failure under learning with no memory (τ = 0, α = (0.2, 0.6, 0.8)). (a) Time evolution
of the coupling strengths. The coupling coefficients γi(t) converge (in terms of means) to some values different
from the couplings in the teacher αi (shown by dashed lines). (b) An epoch of oscillations in the teacher and

learner networks after the learning process has converged (for t > 3 × 104). No synchronization is observed.
(c) Evolution of the ratios ri(t) = p(αi)/p(γi(t)), where p(·) is given by (2.5). All ratios converge (in terms of
means) to the same value r = 1.05.

Figure 3 illustrates a typical example of synchronization failure. The mean values of the couplings
in the learner, 〈γ〉Ty(t), converge in time (Fig. 3a). However, the synchronization condition (3.2)
is violated and hence the learner fails to synchronize its oscillations with the teacher (Fig. 3b).
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We cross-checked numerically that the learning process indeed converges to the manifold (3.10).
Figure 3c shows the time evolution of the ratios of periods ri(t) = p(αi)/p(γi(t)). As expected,
ri(t) → rlim �= 1, which confirms convergence to the manifold and synchronization failure.

For τ → ∞ the manifold (3.10) persists and it is stable. Thus, at this limit again we will observe
the effect of synchronization failure similar to that shown in Fig. 3.

3.2.2. Impact of memory on synchronization: Learning resonance

The equilibrium manifold (3.10) prevents synchronization of oscillations in the absence of
memory in the learner. As we will show below, an appropriate selection of the memory length
leads to synchronization of the learner with the teacher’s activity.

Let us consider the case τ ∈ (0,∞). Then, using (3.3) and (3.6), we obtain

Gi(α, τ) =
1

τT

∫ τ

0

∫ t0+T

t0

xi(t)xi(t − s) dtds, (3.11)

where T is the oscillation period and the internal integral represents the autoconvolution of xi(t).
To get insight on Eq. (3.11), let us approximate xi(t) by a sequence of square pulses:

xi(t) =

{
1, if t ∈ [t0 + nT, t0 + nT + p(αi)], n = 0, 1, . . .

0, otherwise

where p(αi) is the dominant period, an increasing function of the coupling strength (Fig. 2). Then,
after simple but tedious calculations we obtain:

Gi(α, τ) =
mR2

i (α)
m + τ̃

+
1

m + τ̃

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ̃ (Ri(α) − τ̃ /2) if 0 � τ̃ < min(Ri(α), 1 − Ri(α))
R2

i (α)/2 if Ri(α) � τ̃ < 1 − Ri(α)
(1−Ri(α))2

2 + (2Ri(α) − 1)τ̃ if 1 − Ri(α) � τ̃ < Ri(α)
(1−Ri(α))2+(Ri(α)+τ̃)2

2 − τ̃ if max(Ri(α), 1 − Ri(α)) � τ̃ < 1

where τ̃ = mod T (τ)/T and m = �τ/T .
On the one hand, since p(αi) > p0 > 0 (Fig. 2) for τ < min(p0, T − p0) we obtain Gi(α, τ) =

Ri(α) − τ̃
2 . In this expression the second term produces negligible correction relative to the case

τ = 0 assuming that the ratio r is close but not equal to 1. In other words, we should observe
the effect of synchronization failure similar to Fig. 3 for nonzero but small enough values of the
memory constant τ . On the other hand, at τ � T (i.e., m → ∞) we get Gi(α, τ) = R2

i (α), and
again synchronization cannot be achieved as discussed in Section 3.2.1.

Nevertheless, in the intermediate range of τ , Gi(α, τ) significantly deviates from the two cases
considered above. For example, selecting α and τ such that max(Ri(α)) < τ < 1−max(Ri(α)), we
get the following condition on an equilibrium point of (3.5) (compare it to (3.10)):

p(z̄i)2∑
p(z̄i)

=
p(αi)2∑

p(αi)
. (3.12)

The only solution of (3.12) is z̄i = αi, i = 1, 2, 3, which satisfies the synchronization condition (3.2).
Thus, we should observe synchronization of the learner network with the teacher.

Figure 4 shows a representative example of the synchronization process for an intermediate value
of the memory length (τ = 18). In contrast to the previous case (Fig. 3), now the couplings in the
learner γ(t) do converge to their counterparts in the teacher (Fig. 4a). Thus, we observe phase
synchronization as expected (Fig. 4B). We note that after learning oscillations in the teacher and
learner exhibit nonzero phase shift (in Fig. 4c they are almost in antiphase).

Then, to study how the memory length impacts synchronization, we performed a Monte Carlo
test. For different values of the memory constant τ taken in the range [0, 100], we selected 20 sets of
the coupling strengths for the teacher, α, and initial conditions (x(0), y(0), and γ(0)) from uniform
distribution. For each set we numerically integrated the network equations up to Tmax = 2.5 × 105
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Fig. 4. Representative example of synchronization by learning (memory constant τ = 18). (a) Coupling
strengths γ(t) in the learner converge to those in the teacher, α = (0.2, 0.6, 0.8). Compare to Fig. 3a. (b)
Phase difference between oscillations in the teacher and learner. (c) An epoch of oscillations in the teacher
and learner after synchronization.

and evaluated the coupling discrepancy D = ‖〈γ〉Ty(Tmax) − α‖2. Then we calculated over the
Monte Carlo pool the mean discrepancy D(τ) and the confidence interval D̃(τ) = 1.96s/

√
n, where

s is the standard deviation. Finally, we estimated the learning performance as

L = 1 − 2D.

Thus, the learning performance is equal to one for zero discrepancy and it is zero for D = 0.5 (i.e.,
for by chance discrepancy).

Figure 5 shows the results. As it has been predicted above, we observe significant discrepancy
between couplings in the teacher and learner for small and large values of the memory constant,
which leads to poor learning performance. In the intermediate range, around τ = 18, the discrepancy
reaches its minimum (below the tolerance used in calculations) and the learning performance rises
up to practically 100%. Thus, the learning is effective for appropriate values of the memory constant
only, i.e., we observe a learning resonance.

Fig. 5. Learning resonance. Learning performance vs memory length, τ (in logarithmic scale). Gray channel
shows 95% confidence interval.

4. CONCLUSIONS

In this work we have proposed a model for learning heteroclinic circuits in neural networks. The
model is composed of a teacher and a learner networks. At the beginning both networks implement
winnerless competition dynamics through wandering around heteroclinic circuits with arbitrary
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dominant periods. Then the purpose of learning is to synchronize oscillations in the learner with
the teacher by tuning the coupling strengths in the learner.

The information transfer between the networks is implemented through a learning rule that
changes local couplings in the learner according to the dynamics of the teacher. Thus, no direct
influence of the teacher to the state variables of the learner exists. Instead, the learner just
“observes” the teacher and tunes itself to replicate the teacher structure. Such a mechanism of
synchronization differs significantly from much more common models of synchronization based on
couplings among state variables describing the system dynamics [16].

The learning rule proposed in our model includes an integral operator, which implements
a memory effect during the learning. Then a memory time constant, τ , plays a crucial role
in the learning performance. We have shown that in the absence of memory (τ = 0) or with
“overloaded” memory (τ → ∞) the process of learning converges to a point in a stable one-
parametric manifold. This manifold does not ensure synchronization. Only one point in the manifold
warrants the synchronization of oscillations in the learner. Since the limit point depends on the
initial conditions, we always get some nonzero mismatch. Therefore, the learner practically always
exhibits synchronization failure.

Nevertheless, for intermediate values of τ the manifold can be destroyed and only a single
equilibrium point survives. We have shown that this equilibrium point corresponds to phase
synchronization of the learner with the teacher. Then we studied the impact of the memory
length into synchronization and quantified the learning performance. We observed a phenomenon
of learning resonance: the learning performance reaches its optimum value for intermediate values
of the memory constant, whereas it quickly falls down if the constant moves to higher or lower
values.
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