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ABSTRACT

We show that robustness of sorting of neural spikes using the wavelet transform depends strongly on the statistics
of experimental noise and the characteristic time scales of spike waveforms. Incorporating adaptive filtering
of the extracellular potential into the wavelet sorting algorithm we propose a novel method, the Parametric
Wavelet sorting with Advanced Filtering (PWAF), whose classification error approaches the theoretical minimum.
Efficiency of the proposed technique is proved with both simulated and real electrophysiological recordings.
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1. INTRODUCTION

Most of the neurons in the brain communicate by short lasting electrical pulses – action potentials or spikes
that can be recorded extracellularly by a microelectrode.1 When analyzing the cooperative neural behavior or
studying the neural code, spikes thought to be stereotypical events, so not the shape of each spike waveform but
the precise timing of firings of the neurons in a population matters. In general, the extracellular electrode picks
up signals of several neighboring cells, thus first of all the researcher should classify spikes and associate them
with different neurons they originated from (Fig. 1). This problem is called spike sorting or spike separation.2

It is typically assumed that each neuron generates spikes of the same shape and amplitude whereas signals
from different cells have some individual peculiarities, although their signatures can be quite similar. Thus
comparing spike waveforms one can separate them with some degree of reliability. In practice, however, spike
sorting represents a complicated task due to a high level of background noise, variability of the spike waveforms,
frequently non-well pronounced differences between spikes of different neurons, etc. For example in Fig. 1 at
least two different groups of spikes are observable, but a reliable inference needs more careful investigations.

Nowadays techniques of spike sorting proceed through four independent steps: (i) filtering of the extracellularly
recorded potential, (ii) detection of spiking events, (iii) extraction of discriminative features of the selected spike
waveforms, and (iv) delimitation of clusters of spikes in the feature space and association them to different
neurons. Among these, steps i) and iii) are the most challenging.

In the simplest but rather frequently used case the extracellularly recorded potential is High Pass Filtered
(HPF) with the cutoff frequency around 300 Hz followed by the visual inspection of spike waveforms and a
kind of amplitude thresholding (Fig. 1). Such procedure is subjective, complicated, and inefficient (in a typical
experiment one can easily have more than 104 spikes). Another, significantly more powerful technique is Principal
Component Analysis (PCA).2 Here again spike waveforms are filtered (HPF, 300 Hz) and then scale factors of
the first few principal components, so called scores, are used as quantities for representing each spike for sorting.
Recently a novel approach for spike feature extraction has been introduced.3 Within this technique each spike is
represented by coefficients of the Wavelet Transform (WT). This method can be more effective than traditional
PCA.3–6 However, it has several disadvantages originated from the arbitrary choice of the mother wavelet and
difficulties in an automatic selection of the parameters of the WT.
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Figure 1. A typical example of the high-pass filtered extracellular potential recorded from the hippocampus of the rat.
The simplest way to sort spikes (marked by arrows) is the amplitude thresholding. Two dashed lines delimit amplitudes
of spikes belonging to group A and B.

In all abovementioned methods experimental noise is reduced on the first step by a standard filtering that
does not account for the noise statistics nor for the spike signatures. Noise in the extracellular recordings has
different nature spreading from Johnson noise to the variability of the action potential due to physiological
processes, passing through the background activity of distant neurons,7 and electrode micro-movement.8 The
standard techniques, i.e. amplitude thresholding and PCA, have a long history, and well established recipes for
filtering. This is not the case for the WT technique, where a different filtering approach may be superior. As we
further show performance of the WT method can be significantly improved incorporating the filtering step into
the problem of selection of the optimal feature set.

2. INFLUENCE OF THE NOISE STATISTICS ON THE QUALITY OF NEURONAL
SPIKE SEPARATION

To illustrate how the noise statistics affects the spike sorting performance we generated several data sets consisting
of (1000+1000) spikes of two different neurons. The original spike waveforms were selected from electrophys-
iological recordings in the hippocampus. To simulate the effect of the noisy background we mixed a colored
noise (band-pass filtered Poisson process) of the frequency band 700 Hz with the spike waveforms. Finally we
estimated the performance of each spike sorting technique as the error rate, i.e. the ratio of missclassified spikes
to the total number of spikes.

Figure 2a shows the error rate as a function of the base noise frequency. The PCA method gives a high
error rate at low frequency noise and then progressively increases performance for high frequency noise. The
wavelet technique (as a representative we use the Wavelet-based Spike Classifier, WSC,3 with qualitative results
extended to other method modifications6) is a better option for sorting spikes contaminated by a low frequency
noise, but it has a strong peak in the range of intermediate noise frequencies. Aiming at seeking for the best
filtering strategy we filtered waveforms varying the cutoff frequency of the LPF, and then we performed spike
classification on the filtered data. Filtering in general reduces the error rate. However, it affects differently the
PCA and WT methods (Fig. 2b). Indeed, the classification error for the WT technique has a minimum at the
filter frequency around 2.2 kHz and then rapidly increases. For PCA the error first gradually decreases up to
2 kHz and then practically stays constant. This suggests that low-pass filtering of spikes is worthless for PCA,
and is essential for the WT methods, where the cutoff frequency should be appropriately selected.

3. THEORETICAL BASES OF THE PROPOSED SPIKE SORTING APPROACH

Let us now consider the problem of wavelet-based spike sorting in details. We start from a data set of (N +M)
spikes of two different neurons contaminated by noise. Denoting the original noise-free spike waveforms as wA(t)
and wB(t), the recorded spikes are:

si(t) = ξi(t) +
{
wA(t), i = 1, 2, ..., N,
wB(t), i = N + 1, ..., N +M,

(1)
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Figure 2. a) Error rate of spike sorting versus base the central frequency of the experimental noise (the noise band
∆f = 700Hz). b) Spike sorting error rate after applying the low-pass filter to the recording.

where ξi are uncorrelated colored noise sources of the experiment that in the first approximation have the same
statistics. In the most general form the continuous WT of the spike waveform si(t) reads:

Wi(a, b) =
1√
a

∫ T

0

si(t)ψa,b(t) dt, (2)

where T is the spike duration (typically 1–3 ms), and ψa,b(t) = ψ( t−b
a ) is a translated and scaled mother wavelet,

with b and a characterizing time localization and scale. Applying the WT for a selected parameter set (a, b) to
the recorded spikes we obtain:

Wi(a, b) = ηi +
{
WA, i = 1, 2, ..., N
WB, i = N + 1, ..., N +M,

(3)

where we denoted

ηi(a, b) =
1√
a

∫ T

0

ξiψa,b dt, (4)

WA,B(a, b) =
1√
a

∫ T

0

wA,Bψa,b dt. (5)

ηi(a, b) represent a kind of measurement noise, and WA,B are the WT coefficients of the corresponding noise-free
spikes.

The coefficients Wi now can be used for sorting. The aim is to separate them blindly into two clusters or
groups with the lowest possible error rate. This has a sense if Wi exhibit a bi-modal distribution, otherwise
when, e.g., the noise is too strong or parameters (a, b) are suboptimal and no bi-modal distribution exists, spike
sorting is meaningless. In our case the sorting is achieved by selecting a threshold Wth ∈ [WA,WB] and assigning
spikes having Wi < Wth to neuron A, while the others to neuron B (Fig. 3).

Let us now assume that the measurement noise is approximately Gaussian9 with the standard deviation σ.
The reason for this assumption arises from the central limit theorem, which, roughly speaking, asserts that a
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Figure 3. (a) Histogram of the distribution of the WT coefficients Wi describing noisy spikes of two neurons. Dashed
curves depict the histograms of single neurons. Classification errors appear in the region of overlapping. (b) The minimal
error rate given by Eq. (9) as a function of the discriminability for several different values of γ.

random variable composed of many independent, arbitrary distributed parts is Gaussian.10 We denote the half
distance between the noise-free spikes in the wavelet space as:

Ŵ =
WB −WA

2
=

1
2
√
a

∫ T

0

(wB − wA)ψa,b dt. (6)

Without loose of generality we can set Ŵ ≡WB = −WA. Then the distribution of Wi reads:

h =
M√
2πσ

(
γe−

(W+Ŵ )2

2σ2 + e−
(W−Ŵ )2

2σ2

)
, (7)

where γ = N/M is the ratio of the numbers of spikes emitted by the neurons. Then the minimum of the total
number of missclassified spikes is attained for:

Wth =
σ2

2Ŵ
ln γ. (8)

Note that the optimal threshold value in general (γ �= 1) does not correspond to the position of the minimum in
the histogram. Finally, the theoretical minimum of the error rate is given by:

Rmin =
γ erfc

(
∆ + lnγ

4∆

)
+ erfc

(
∆ − ln γ

4∆

)
2(1 + γ)

, (9)

where erfc is the complimentary error function, and ∆ = Ŵ/
√

2σ is the discriminability coefficient. Accordingly,
the error rate is a two parametric function of γ and ∆ that decays with an increase of ∆ (Fig. 3b). The ratio of
the spike numbers, γ, is fixed by the experiment, hence we are left to play only with the discriminability ∆.

Let us now explore the ways to improve the discriminability. Selecting appropriately (a, b) we can maximize
Ŵ , that for a constant σ increases ∆. However, as we show further scaling parameter a affects nontrivially the
noise standard deviation, σ, and consequently ∆.
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The experimental noise ξ(t) of a limited frequency band Ωnoise can be presented as a sum of harmonics:

ξi =
∑

Ωnoise

A(ωk) cos(ωkt+ φki), (10)

where ωk and φki are the frequency and random phase of the corresponding harmonic, and A(ω) defines the noise
power spectrum. Using the Haar wavelet advocated for spike sorting6 we obtain the WT of the experimental
noise (10):

ηi = − 4√
a

∑
k

A(ωk)
ωk

sinφki sin2 aωk

4
. (11)

Note, that the statistical properties of η do not depend on the localization parameter b. Then the standard
deviation of the measurement noise reads:

σ2(a,Ωnoise) =
8
a

∑
k

A2(ωk)
ω2

k

sin4 aωk

4
. (12)

Thus the discriminability may depend nontrivially on: the parameters (a, b), spike waveforms, and the spectral
characteristics of the experimental noise. A natural way to change the noise spectrum is to filter the signal.
Denoting by fc the cutoff frequency of the filter we finally reduce the problem of the optimal spike sorting to
seaking the parameter set (a, b, fc) maximizing the discriminability. Note that our problem statement is more
general than the conventional methods relaying on a search of the best parameter set of the WT only. Including
spike filtering in the problem of spike sorting we account for the specific noise of the individual experiment and
potentially may provide the best possible spike classification. Besides, up to date known methods of the WT
parameter selection3, 5, 6 are based on the empirical analysis of the experimental distribution of coefficients of the
WT, whereas our method is parametric.

4. SPIKE SORTING WITH THE PWAF TECHNIQUE

In the experimental conditions we have no a priory knowledge neither on the noise-free spikes nor on the spectrum
of the experimental noise. To estimate them and optimally sort spikes we propose the following algorithm
consisting of 5 steps:

1. Estimate the noise-free spike waveforms. Applying a conventional algorithm, e.g. PCA, we find peaks of
the distribution of spike features and average spikes waveforms in a vicinity of each peak thus estimating wA,B.

2. Estimate the spectrum of the experimental noise P (ω). In the simplest case, the spectrum of the whole
extracellular signal can be considered as an approximation of P (ω).

3. Find an optimal parameter set (a∗, b∗, f∗
c ) maximizing the discriminability. For a given (a, b, fc): i) filter

signal representing the waveform difference (wB − wA) and evaluate Ŵ ; ii) evaluate A2(ω) = P (ω)H2(ω), [H is
the filter magnitude response] and then σ; iii) evaluate the discriminabilty, Ŵ/

√
2σ. Find maximum of ∆(a, b, fc).

4. Filter spikes with f∗
c and calculate Wi(a∗, b∗).

5. Sort spikes accordingly to the coefficients Wi.

Note that the proposed method can be very efficient for big data sets∗, and the algorithm allows the use of
more than one feature set for sorting†. It allows essential improving of sorting results if standard techniques show
bi-modal distributions of spike features. In the case when more than two neurons are presented, the method
gives an opportunity to improve resolution between any two overlapped clouds of points in the feature space of
standard approaches.

To test the algorithm we employ simulated data sets differ by noise statistics and spike waveforms. Figure 4
shows an example of application of the algorithm to the data set #1. The PCA method has strong overlapping

∗Steps 1–3 do not depend on the number of spikes and the WT of the whole data set is evaluated only once.
†At step 3 we can obtain more than one extrema, and then perform step 4 for all of them this way describing each

spike with more than one feature (wavelet coefficient) and can use them together for spike sorting at step 5.
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Figure 4. Sorting of data set #1. a) Discriminability, ∆, vs the cutoff frequency of a LPF. For the maximal ∆ = 2.39
the theoretical minimum of the error rate is 0.3%. Inset shows superposed experimental spike waveforms and noise free
spikes (white). b) Distributions of spike features for different methods: PCA, WSC and PWAF.

Data Set PCA WSC PWAF
Simulated #1 5.5% 4.5% 0.7%
Simulated #2 28.0% 5.5% 1.7%
Experim. #1 11.1% 7.0% 3.4%
Experim. #2 12.2% 10.1% 6.8%

Table 1. Error rate for spike sorting by different algorithms with simulated and experimental data sets.

of the spikes of two neurons and resulting error rate at 5.5%. The WSC-approach gives a bit better classification
achieving 4.5% error (Fig. 4). The PWAF method is much superior with the error rate at 0.7%, which is quite
close to the theoretical minimum. This confirms our hypothesis that an intelligent filtering is essential for wavelet
methods. Note, that unlike the commonly used approach to filtering we consider the filter’s cutoff frequency as
the most important parameter being tuned individually for each extracellular signal within the PWAF-technique.
We performed the same procedure for another data set (Table 1) that has been selected to exhibit differences
between noise free spikes at small time scales. This is a case when the wavelet technique has an advantage over
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the PCA method. Indeed PWAF provides much better classification than PCA and WSC.

We now test our method on real measurements. Extracellular recordings were made using tetrode electrodes
whose design permits recording of the same neuron by two electrode tips (for details see11). In exceptional
cases two channels besides a considerable activity of many different neurons can show simultaneous, sufficiently
profound spikes belonging to one neuron. Among many experimental recordings we have selected two data sets
where these conditions were satisfied. For these data sets relating voltage traces of the two channels we manually
sort spikes with a good fidelity. Then using this information we estimate the error rate of the automatic methods.
Table 1 summarizes the results showing that the PWAF method again is superior.

5. CONCLUSIONS

Spike separation is a basic prerequisite for analyzing of the cooperative neural behavior and neural code when
registering extracellularly. Current extracellular experiments provide recordings of multi-unitary activity, where
several neurons nearby to the electrode tip produce short lasting electrical pulses, spikes, of different amplitudes
and shapes. Consequently, extracting useful information from these measurements relies on the ability of sepa-
rating the recorded firing events into groups or clusters. Ideally each cluster should contain all spikes emitted by
only one neuron. Errors occur when spikes belonging to different neurons are grouped together (false positive) or
when some spikes emitted by a single neuron are not included into the group (false negative). The performance
of the spike sorting procedure defines the final quality and reliability of any bio-physical results obtained upon
the analysis of spike timings. However, the quality of the spike separation by a human operator is significantly
below the estimated optimum. Besides, amount of the data generated by modern experimental setups is really
huge, thus there is a big demand for automatic separation techniques. In this work we have shown that the
performance of the WT method can be significantly improved incorporating the filtering step into the problem
of selection of the optimal feature set. We have presented a novel parametric method for sorting of neural
spikes (Parametric Wavelet sorting with Advanced Filtering – PWAF). The method includes spike filtering in
the problem of an optimal parameter selection. Testing the method on simulated and real measurements we
have demonstrated its advantage.
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