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1 Firing probability in selective stratum at ¢t = 0
Before discussing the firing probability, let us mention some useful results.

1.1 Hoeffding’s inequality

Let X;, i = 1, R be random variables with compact support P(X; €
[a,b]) =1, and X = 13" X;. Then

for some ¢ > 0 [1].

1.2 Central Limit Theorem

Let {X;}!; be n independent random variables with zero means and stan-
dard deviations {o;}7" ;. We introduce new random variable:

X — Z?:l Xi (2)
Ym0}
with a certain cdf F),(-). Then, we have [2]:
0 0 > i Pi
|[Fu(X) = ®(X)| < O——2==s, 3)
(i 07)



where @ is the cdf of the standard normal distribution and p; = E[|X;?].
Moreover, the constant, C, is bounded by [3, 4]:

V1043
0.4097 ~ Y05 — o < 0 56, (4)
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Property (3), being a version of the Central Limit Theorem, implies that
empirical averages of independent random variables with zero means and
finite second and third moments are asymptotically normally distributed as
n — oo. If no further assumptions are imposed then the convergence rate is

O(1/v/n).

1.3 Decay of tails of the membrane potential

Employing (3), using a random « (see the main text), and noting that
2 = E[2?|E[w?] = 1/9 and p = E[|z;|*|E[|w;|3] = 1/16, the cumulative
distribution of the membrane potential, v, satisfies
27C 0.945
B (Vao) -0 (Vio)| < 35 7 <
) n \/>,U fv — 16\/7 f
where, as above, F,,(-) is the corrected distribution.
Using inequalities (1), we get the following estimate on the firing prob-
ability to a random stimulus «:

()

Pv > 0) < e /6. (6)

Now by employing this concentration inequality together with (5), we find
the bounds:

Paw < P(v > 0) < pup, (7)

where

Pup = Min {6—92/6’ 1— ®(v/36) + 3%5}

pdw:max{ B(v/36) - 0945}

For high n, these bounds converge to the probability value 1 — ®(1/36),
provided in the main text. We also note the exponential convergence of
Pup(#, ) to zero as a function of . This is a direct consequence of measure
concentration effects.

(8)



2 Conditions of neuronal firing in forward time:
Selection of [

We set the firing threshold small enough, e.g. # = 1. Then, with high
probability, all neurons are active, i.e., d; > 1, and there are no lost stimuli
(Fig. 2(a) in the main text).

For convenience, we denote by h = \/%:I:Z the first stimulus activating
the j-th neuron at ¢t* > 0, i.e., y;(t < t*) =0, y;(t*) > 0. Let us now find
the condition that the neuron keeps “firing” for ¢ > t*.

We decompose w; into vectors parallel and orthogonal to h (by omitting
the index j): w = w) +w,, where w) := q(t)”—hH and (wj, w ) = 0. Then,
Eq. (2¢) from the main text yields:

w, = — alhllyqw,
¢ =allhlly(8* — ).

By construction, at ¢ = t* the neuron fires, i.e., v(t*) = ¢(t*)||h|| > 6. Note
that q(t > t*) > 0, otherwise y = 0 and there is no dynamics. Selecting
B > 6/||h|| we ensure the firing condition y(¢ > t*) > 0. Then, w, (t) — 0
and ¢ — [, which implies:

9)

h
lim w(t)

g 10
1500 PRl (10)

provided in the main text.

Note that the value of 8 should not be too high, since it can diminish the
neuronal selectivity (see below). Choosing 8 = 6/||h|| + €, where 0 < € < 1,
ensures activity of the neuron but it requires knowledge of | k||, inaccessible

a priori. Then, by using ||h||?> ~ N (1, \/%) (directly follows from Section 1

for n high enough) and requiring P(||h||?> > §2) = py, where § € (0,1) is a
lower bound of ||h||, we can set:

0 2(I)_l(psl)
g=—, 0=4/1— ————=.
Bs1 5 ﬁ5n

This guarantees faring of the neuron to the stimulus h in forward time with a
probability no smaller than pg. Note that the higher the neuronal dimension
n, the higher py can be chosen.

(11)



3 Selectivity after learning

We assume that a neuron has learnt an arbitrary stimulus, which we de-

3

note by h € {\/;wl} Then, after learning w = [5’%. We now esti-

mate the probability that the neuron is silent to another arbitrary stimulus

gce {\/%asz} (g # h) given h:
P(y = 0lh).
This can be done in several ways.
3.1 Probability by Hoeffding’s inequality
From (12) we have:
P(y = 0|h) =P ((h,g) < d[|h[||h).
By employing the Hoeffding’s inequality (1) we get
P((h,g) >7) < e " /18,

and hence
P(y = 0|h) > 1 — e "lIPI*0°/18

Now, by recalling ||h||? ~ N(1, \/%) for high enough n, we obtain:

Py =Ply=0)>1—e 7",

2 2, . . . .
where v(n) = 51—5?(1 - 3—5) is an increasing function of n.

3.2 Probability by normal distribution

By employing normal distribution, from (12) we get:

P(y = 0lh) = ®(3[|h[[v/n).

Then, we extend it to arbitrary h as above:

P = /0 " o5/ (s, ) ds,

(12)

(13)

(14)

(15)

(16)

(17)

(18)

where k(+; u,0) is the normal pdf with the mean g = 1 and the standard
deviation 0 = —=. Equation (18) corresponds to Eq. (6) in the main text.
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3.3 Comparison of two approaches

The neuronal selectivity is given by [Eq. (7) in the main text] S(n,L) =
PL=1 where P can be taken either from (16) or from (18). Figure 1 shows
the neuronal selectivity estimated by two methods. The lower bound esti-
mated from inequalities (16) (blue curve) is too conservative, while Eq. (18)
matches well the numerical results (see Fig. 3(a) in the main text).
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Figure 1: Two estimates of S (see also Fig. 3(a) in the main text, all
parameter values are the same).

4 Order parameter (3., for concept stratum

A neuron in the concept stratum receives as an input the stimulus h, =
Zle y,;, where k defines the time window (see Eq. 9 in the main text).

4.1 Learning condition

At t = 0, we assume that the neuron detects the first stimulus h; = y,, i.e.,
(w(0), A1) > bcn, which is equivalent to ¢(0) > 6/||h1| in Eq. (9). Thus, to
keep firing we require

90n

[Pl

Pen > (19)



By using Eq. (9) we get that, at the end of the first interval A, w —
Benhi/||h1||. In general, the initial condition for the k-th interval is

) hi_1
wio = lim w(t)~ Bp——. 20
ko= lim (t) =~ B Thad] (20)
This is equivalent to
<hk—17hk>
qr0 = ﬁcn g (21)
k-1l Pl

To meet the firing condition at ¢t = (k — 1)A, we require grg > Ocn/||h1]]
which yields
ecn Hth ecn
Ul Tkl Tl

where we used (y;,y;) = 0 for j # i (see the main text). Thus, given that
« is big enough, the neuron will fire during the whole process of learning.

Once the learning is finished, w = ﬁcnulg—ﬁ”. Then, the neuron is a
concept cell if

Be

(22)

Ocnl|P x|

Ben >
T lyll?

L i=1,2,....K, (23)

which is equivalent to

K 12
B2 iz [yl — (24)
minjeqr, ey {llyall*}

4.2 Estimate of [,

For convenience, let’s denote:

K
§= llyl* M =min{|y;|}. (25)
i=1

We then set Sen = 0en ¥V, where ¥ satisfies [Eq. (24)]:
P(M?¥?% > S) = pen, (26)

where p., is the lower probability bound. This equation ensures that the
concept stratum learns at least K inputs with the probability not smaller
than pey.

For further calculations, we assume that z := ||y||? is exponentially dis-

tributed:
e ™ >0

f2(2) = { 0 otherwise (27)



for some constant A > 0. Then, S follows the Erlang distribution:

)\KSK—le—)\s

fs(s) = K- 5> 0. (28)
To find the distribution of M we write:
Fy(m) = P(min{z;} <m) =1— (1 - F,(m))X, (29)
where F), is the cdf of z. Thus,
Fy(m)=1—e KA m > 0. (30)

We now can assume that S and M are independent and hence f(m,s) =
far(m) fs(s). Then, Eq. (26) yields

pm—/mfggu—mw¢gm»@. (31)
0
By using (28), (30), (31), and operating, we get

00 qulefufa\/ﬁ K\/X
cn = ————— du, = —. 2
po= [ o (32)

We now note that a is a small parameter. Thus, we can approximate
e 40U x5 ¢~%(1 — \/ua) and evaluate the integral (32):

(K +13)
pcnzl_ai(K_l)! . (33)
This equation provides the estimate:
KT(K + %
Bcn = ecn\/x ( 2) (34)

(1 = pen) (K = 1)

We now note that A = 1/E|[z] and assume that all neurons in the selective
stratum have learnt stimuli, i.e.,

2= [(Ballk]| - 6s)b]%, (35)

where b is a binary vector representing neurons activated by the stimulus
h. Thus,
El2] = BRE((|Ik|| - 6)*] E[|1b]*). (36)



Then, we note that ||b||?> ~ B(m,p) and hence E[||b||?] = mp. In the
case that all L stimuli have been learnt, we have p = L~!. Now, we have
E[(||h||—0)?] = 1—25E]||h||]+6%. In the first order approximation E[||hl|] ~

1. Thus, we have
L

~ s21(1 - 5)2m'

Substituting approximation (37) into Eq. (34) we obtain Eq. (10) provided
in the main text.

A (37)
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