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1 Firing probability in selective stratum at t = 0

Before discussing the firing probability, let us mention some useful results.

1.1 Hoeffding’s inequality

Let Xi, i = 1, . . . , n be random variables with compact support P(Xi ∈
[a, b]) = 1, and X̄ = 1

n

∑
Xi. Then

P(X̄ − E[X̄] ≥ t) ≤ e−
2nt2

(b−a)2

P(−X̄ + E[X̄] ≥ t) ≤ e−
2nt2

(b−a)2

(1)

for some t > 0 [1].

1.2 Central Limit Theorem

Let {Xi}ni=1 be n independent random variables with zero means and stan-
dard deviations {σi}ni=1. We introduce new random variable:

X̂ =

∑n
i=1Xi√∑n
i=1 σ

2
i

(2)

with a certain cdf Fn(·). Then, we have [2]:

|Fn(X̂)− Φ(X̂)| ≤ C
∑n

i=1 ρi(∑n
i=1 σ

2
i

)3/2 , (3)
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where Φ is the cdf of the standard normal distribution and ρi = E[|Xi|3].
Moreover, the constant, C, is bounded by [3, 4]:

0.4097 '
√

10 + 3

6
√

2π
≤ C ≤ 0.56. (4)

Property (3), being a version of the Central Limit Theorem, implies that
empirical averages of independent random variables with zero means and
finite second and third moments are asymptotically normally distributed as
n→∞. If no further assumptions are imposed then the convergence rate is
O(1/

√
n).

1.3 Decay of tails of the membrane potential

Employing (3), using a random x (see the main text), and noting that
σ2 = E[x2

i ]E[w2
i ] = 1/9 and ρ = E[|xi|3]E[|wi|3] = 1/16, the cumulative

distribution of the membrane potential, v, satisfies∣∣∣Fn (√3v
)
− Φ

(√
3v
)∣∣∣ ≤ 27C

16
√
n
≤ 0.945√

n
(5)

where, as above, Fn(·) is the corrected distribution.
Using inequalities (1), we get the following estimate on the firing prob-

ability to a random stimulus x:

P(v > θ) < e−θ
2/6. (6)

Now by employing this concentration inequality together with (5), we find
the bounds:

pdw ≤ P(v > θ) ≤ pup, (7)

where

pup = min

{
e−θ

2/6, 1− Φ(
√

3θ) +
0.945√
n

}
,

pdw = max

{
0, 1− Φ(

√
3θ)− 0.945√

n

}
.

(8)

For high n, these bounds converge to the probability value 1− Φ(
√

3θ),
provided in the main text. We also note the exponential convergence of
pup(θ, n) to zero as a function of θ. This is a direct consequence of measure
concentration effects.
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2 Conditions of neuronal firing in forward time:
Selection of βsl

We set the firing threshold small enough, e.g. θ = 1. Then, with high
probability, all neurons are active, i.e., dj ≥ 1, and there are no lost stimuli
(Fig. 2(a) in the main text).

For convenience, we denote by h =
√

3
nxi the first stimulus activating

the j-th neuron at t∗ ≥ 0, i.e., yj(t < t∗) = 0, yj(t
∗) > 0. Let us now find

the condition that the neuron keeps “firing” for t > t∗.
We decompose wj into vectors parallel and orthogonal to h (by omitting

the index j): w = w‖+w⊥, where w‖ := q(t) h
‖h‖ and 〈w‖,w⊥〉 = 0. Then,

Eq. (2c) from the main text yields:

ẇ⊥ =− α‖h‖yqw⊥,
q̇ =α‖h‖y(β2 − q2).

(9)

By construction, at t = t∗ the neuron fires, i.e., v(t∗) = q(t∗)‖h‖ > θ. Note
that q(t ≥ t∗) > 0, otherwise y = 0 and there is no dynamics. Selecting
β > θ/‖h‖ we ensure the firing condition y(t ≥ t∗) > 0. Then, w⊥(t) → 0
and q → β, which implies:

lim
t→∞

w(t) = β
h

‖h‖
, (10)

provided in the main text.
Note that the value of β should not be too high, since it can diminish the

neuronal selectivity (see below). Choosing β = θ/‖h‖+ ε, where 0 < ε� 1,
ensures activity of the neuron but it requires knowledge of ‖h‖, inaccessible
a priori. Then, by using ‖h‖2 ∼ N (1, 2√

5n
) (directly follows from Section 1

for n high enough) and requiring P(‖h‖2 > δ2) = psl, where δ ∈ (0, 1) is a
lower bound of ‖h‖, we can set:

βsl =
θ

δ
, δ =

√
1− 2Φ−1(psl)√

5n
. (11)

This guarantees faring of the neuron to the stimulus h in forward time with a
probability no smaller than psl. Note that the higher the neuronal dimension
n, the higher psl can be chosen.
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3 Selectivity after learning

We assume that a neuron has learnt an arbitrary stimulus, which we de-

note by h ∈
{√

3
nxi

}
. Then, after learning w = β h

‖h‖ . We now esti-

mate the probability that the neuron is silent to another arbitrary stimulus

g ∈ {
√

3
nxi} (g 6= h) given h:

P(y = 0|h). (12)

This can be done in several ways.

3.1 Probability by Hoeffding’s inequality

From (12) we have:

P(y = 0 |h) = P
(
〈h, g〉 ≤ δ‖h‖

∣∣h) . (13)

By employing the Hoeffding’s inequality (1) we get

P(〈h, g〉 ≥ τ) ≤ e−nτ2/18, (14)

and hence
P(y = 0 |h) > 1− e−n‖h‖2δ2/18. (15)

Now, by recalling ‖h‖2 ∼ N (1, 2√
5n

) for high enough n, we obtain:

PH = P(y = 0) > 1− e−γ(n). (16)

where γ(n) = δ2n
18 (1− δ2

45) is an increasing function of n.

3.2 Probability by normal distribution

By employing normal distribution, from (12) we get:

P(y = 0|h) = Φ(δ‖h‖
√
n). (17)

Then, we extend it to arbitrary h as above:

PN =

∫ ∞
0

Φ(δ
√
ns)κ(s;µ, σ) ds, (18)

where κ(·;µ, σ) is the normal pdf with the mean µ = 1 and the standard
deviation σ = 2√

5n
. Equation (18) corresponds to Eq. (6) in the main text.
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3.3 Comparison of two approaches

The neuronal selectivity is given by [Eq. (7) in the main text] S(n,L) =
PL−1, where P can be taken either from (16) or from (18). Figure 1 shows
the neuronal selectivity estimated by two methods. The lower bound esti-
mated from inequalities (16) (blue curve) is too conservative, while Eq. (18)
matches well the numerical results (see Fig. 3(a) in the main text).

10 1 10 2

neuronal dimension, n

0

0.2

0.4

0.6

0.8

1

se
le

ct
iv

ity
, S

Hoeffding
Normal

Figure 1: Two estimates of S (see also Fig. 3(a) in the main text, all
parameter values are the same).

4 Order parameter βcn for concept stratum

A neuron in the concept stratum receives as an input the stimulus hk =∑k
i=1 yi, where k defines the time window (see Eq. 9 in the main text).

4.1 Learning condition

At t = 0, we assume that the neuron detects the first stimulus h1 = y1, i.e.,
〈w(0),h1〉 > θcn, which is equivalent to q(0) > θ/‖h1‖ in Eq. (9). Thus, to
keep firing we require

βcn >
θcn

‖h1‖
. (19)
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By using Eq. (9) we get that, at the end of the first interval ∆, w →
βcnh1/‖h1‖. In general, the initial condition for the k-th interval is

wk0 = lim
t→(k−1)∆

w(t) ≈ βcn
hk−1

‖hk−1‖
. (20)

This is equivalent to

qk0 = βcn
〈hk−1,hk〉
‖hk−1‖‖hk‖

. (21)

To meet the firing condition at t = (k − 1)∆, we require qk0 > θcn/‖h1‖
which yields

βcn >
θcn

‖h1‖
‖hk‖
‖hk−1‖

>
θcn

‖h1‖
, (22)

where we used 〈yi,yj〉 = 0 for j 6= i (see the main text). Thus, given that
α is big enough, the neuron will fire during the whole process of learning.

Once the learning is finished, w = βcn
hK
‖hK‖ . Then, the neuron is a

concept cell if

βcn >
θcn‖hK‖
‖yi‖2

, i = 1, 2, . . . ,K, (23)

which is equivalent to

β2 > θ2
cn

∑K
i=1 ‖yi‖2

mini∈{1,...,K}{‖yi‖4}
. (24)

4.2 Estimate of βcn

For convenience, let’s denote:

S =
K∑
i=1

‖yi‖2, M = min
i
{‖yi‖2}. (25)

We then set βcn = θcnΨ, where Ψ satisfies [Eq. (24)]:

P(M2Ψ2 > S) = pcn, (26)

where pcn is the lower probability bound. This equation ensures that the
concept stratum learns at least K inputs with the probability not smaller
than pcn.

For further calculations, we assume that z := ‖y‖2 is exponentially dis-
tributed:

fz(z) =

{
λe−λz, z > 0
0 otherwise

(27)
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for some constant λ > 0. Then, S follows the Erlang distribution:

fS(s) =
λKsK−1e−λs

(K − 1)!
, s > 0. (28)

To find the distribution of M we write:

FM (m) = P(min{zi} ≤ m) = 1− (1− Fz(m))K , (29)

where Fz is the cdf of z. Thus,

FM (m) = 1− e−Kλm, m > 0. (30)

We now can assume that S and M are independent and hence f(m, s) =
fM (m)fS(s). Then, Eq. (26) yields

pcn =

∫ ∞
0

fS(s)(1− FM (
√
s/Ψ)) ds. (31)

By using (28), (30), (31), and operating, we get

pcn =

∫ ∞
0

uK−1e−u−a
√
u

(K − 1)!
du, a =

K
√
λ

Ψ
. (32)

We now note that a is a small parameter. Thus, we can approximate
e−u−a

√
u ≈ e−u(1−

√
ua) and evaluate the integral (32):

pcn = 1− a
Γ(K + 1

2)

(K − 1)!
. (33)

This equation provides the estimate:

βcn = θcn

√
λ

KΓ(K + 1
2)

(1− pcn)(K − 1)!
. (34)

We now note that λ = 1/E[z] and assume that all neurons in the selective
stratum have learnt stimuli, i.e.,

z = ‖(βsl‖h‖ − θsl)b‖2, (35)

where b is a binary vector representing neurons activated by the stimulus
h. Thus,

E[z] = β2
slE[(‖h‖ − δ)2]E[‖b‖2]. (36)
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Then, we note that ‖b‖2 ∼ B(m, p) and hence E[‖b‖2] = mp. In the
case that all L stimuli have been learnt, we have p = L−1. Now, we have
E[(‖h‖−δ)2] = 1−2δE[‖h‖]+δ2. In the first order approximation E[‖h‖] ≈
1. Thus, we have

λ ≈ L

β2
sl(1− δ)2m

. (37)

Substituting approximation (37) into Eq. (34) we obtain Eq. (10) provided
in the main text.
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