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This reply is not a ‘comment on comments’ but rather a ‘selective echo’ that resonates with some ideas and ques-
tions raised by the commentators [1-9]. We would like to thank all of them. All the individual comments and ideas
come together as a symphony of thought, and each individual part changes the way the multidimensional brain is
understood. The comments include many deep thoughts and inspiring questions and deserve a close reading.

The flight from independence and uniformity. Kirkova [1] has emphasized that many classical results about measure
concentration assume either uniform probability distribution (with respect to the Lebesgue measure in space or the
rotationally invariant measures on spheres [10,11]), or independence (‘product measures’ [12]), or both. In classical
machine learning theory, data are typically assumed to be i.i.d. samples. On the contrary, in real life data samples are
neither i.i.d. nor uniformly distributed.

A similar comment about the difference between the theoretical random distributions and “extremely non-random”
real distributions has been received from Geoffrey Hinton (personal communication to ANG). The obvious gap be-
tween the current theory and practice is a problem, indeed, and the machine learning theory should be revised to
deal with non-independent and extremely non-uniformly distributed data. Kirkova with Sanguineti proposed their ap-
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proach to this problem in a very recent publication [13]. Our first two stochastic separation theorems used the classical
assumptions about either uniformity of distributions (uniform distribution in balls) or independence (product distri-
butions in cubes) [14]. After addressing these basic cases we started our ‘flight from independence and uniformity’
in the paper “Augmented Artificial Intelligence: a Conceptual Framework™ [15] and developed this work further in
[16,17].

The intermediate conclusion is as follows. Stochastic separation theorems do not need hypotheses about indepen-
dence and uniform distribution of data (as well as any other hypothesis about special distributions like the Gaussian
one). The main condition we used instead of these simplifications is: sets of small volume should not have a high
probability (further specifications on what ‘small’ and ‘large’ mean here can be found, for example in Theorem 1,
Definition 3, and Theorem 6 from [17], Theorem 7 and Sec. 6 “Quasiorthogonal sets and Fisher separability of not
i.i.d. data” in [16]). In particular, instead of uniform or Gaussian distributions, general log-concave distributions can
be used, and this is just an example. Fisher separability of random points holds for more general distributions that
satisfy the SmAC (SMeared Absolute Continuity) condition (see [17], Definition 3 or [16], Definition 4). Donoho and
Tanner [18] observed ‘surprising’ universality of linear separation in numerical experiments with high-dimensional
random datasets. They proved this property for Gaussian distributions and formulated the problem to determine a
general definition of distributions with such separability. We now know that explicit and useful Fisher’s separability
is also typical, and the general definitions of distributions with such properties are understood much better now.

The qualitative essence of these definitions is always the same: small volume sets should not have a high prob-
ability. If such sets exist then an additional challenge arises: extract the sets of small volume and relatively large
probability from the data space. The remaining part will satisfy the stochastic separation theorems with Fisher’s sepa-
rability, while the extracted set will have effectively lower dimension and can be approximated by the low-dimensional
continua [19-21]. The extracted low-dimensional subsets can have complex topology and analysis of this topology
is important for many modern applications like single-cell omics in bioinformatics [23]. Here we reveal a special
complementarity principle [22]: the data space is split into a low volume (low dimensional) subset, which requires
nonlinear methods for data approximation and analysis, and a high dimensional subset, where the linear methods
(Fisher discriminants) work well.

Following the Kiirkovd comment [1] and papers [13,15-17], we invite all readers to join the flight from indepen-
dence and uniformity. This is a call for revisiting the existing general machine learning theory to bring it closer to real
life problems.

Linear algebra vs topology. Tozzi and Peters [2] used the Borsuk—Ulam Theorem (BUT) to explain the blessing of
dimensionality. In the topological form (proven by Fet) [24] BUT is: For every continuous involution a +— a* (a™* = a)
of a sphere S™ and every continuous map f : S"™ — R" there exists a point x € S" such that f(x) = f(x*). The most
well-known form of BUT uses the central symmetry a > —a instead of a general continuous involution. The gluing of
opposite points is interpreted by Tozzi as a decrease in information in topological sense. Reversely, the dimensionality
increase ‘unglues’ points, and information increases. In more detail, this point of view is presented and illustrated with
applications in the review paper [25]. It is necessary to add that for a continuous map f : S” — R” ‘almost every’
point is glued with another point (just imagine a projection of a 2D sphere on a plane). We should stress, however,
that the volume/probability concentration arguments with concentration of the volume near equator are invariant with
respect to any orthogonal transformation that preserves the whitened distribution with unit covariance matrix. This
property will be destroyed by a typical homeomorphism. On the contrary, the BUT in the topological form and other
topological statements are invariant with respect to any homeomorphism. Both arguments, topological and linear,
are important, but further work is needed to clarify the relations between them (at least, for us). Another intriguing
problem with interplay of linear algebra and topology is the definition of ‘intrinsic dimension’ of data. Real data never
are i.i.d. sample from a regular and fixed distribution. There are correlations between data points, the distribution
(assuming that it exists) can change over time, there may exist a hidden “concept drift” and many other complications.
We proposed to use the Fisher separability property for definition of intrinsic dimension of data: it is the dimension
of a sphere having the same separability properties for i.i.d. samples from a uniform distribution (the ‘equivalent
sphere’) [16]. This concept was developed further and tested on biological data [26]. Zinovyev et al. [26] showed how
the suggested approach can be used to explore the structure of the data types that are generally considered hard to
analyze (mutation and single cell RNA-Seq data). We expect further interesting and useful discoveries at the boundary
between topology and geometry of data.
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Communication between neuroscience and Artificial Intelligence (Al). Varona [3] discussed relations between machine
learning and brain studies, from their common roots to a long period of divergence followed by the modern trend
towards convergence. The “bidirectional communication between machine learning and neuroscience” is an important
way to enrich both disciplines. Problems arising in the ontogeny of the brain and in machine learning can be similar.
Both in the brain and in machine learning, re-training large ensembles of neurons is in fact impossible to realize
in many real-life situations/applications. The robust low-dimensional neural dynamics in high dimensional brains
is important for understanding implementation of cognitive functions (see, for example, [28]). However, there is
a difference in this similarity. We agree with Varona that Al is far from incorporating all highly heterogeneous,
dynamically robust, and error-handling elements of real brain. Further bi-directional exchange of ideas and methods
between Al and neuroscience is needed.

Moving from “brainland” to “flatland” and backwards. Barrio [4] has directed our attention to the intriguing interplay
between the low and high-dimensional worlds, between the high-dimensional brainland (the whole world of brain) and
low-dimensional flatland of small neural ensembles. A flexible walk along the stairs of models of different dimensions
is necessary to understand the brain dynamics. In data analysis, we can find a partial realization of this idea in our
complementarity principle [22]: extraction of a lower dimensional subset for non-linear analysis [19] and application
of simple linear methods to essentially high-dimensional part of data [16]. Some open access software for these
problems is available on github [27].

Jewels of low-dimensional representation in complexity of high dimensional systems. Kreiman [5] analyzed three
forms of the curse of dimensionality and high-dimensional pitfalls in neuroscience: (1) Huge diversity of possible
stimuli and tasks; (2) Huge number of neurons; (3) No adequate tools — most modeling and analysis tools are devel-
oped for small dimensional worlds. Nevertheless, there are many examples in neuroscience, where small dimensional
models explain a large fraction of a cognitive behavior. Most of them are manifestations of the concentration of mea-
sure phenomena. Kreiman attracted attention to the mechanism of removing the curse of dimensionality by projection
on random bases. This approach is based on the Johnson and Lindenstrauss lemma and related topics [29,31,30].
According to this lemma and its probabilistic proof, a set of points in a high-dimensional space can be embedded
into a space of much lower dimension in such a way that ratios of distances between the points are nearly preserved.
The map used for the embedding can even be taken to be a random orthogonal projection. This method of random
projections was used in a recent publication [32] to explain a striking simplicity underlying multi-neuronal data. It is
worth to mention that the Johnson and Lindenstrauss lemma and the method of random projections are based on the
measure concentration phenomena [30]. The ‘brainland’ can turn out to be a small dimensional world after all.

Coupling of stochastic separation theory with nonlinear dynamics techniques. Fortuna [6] proposed to combine the
data analysis methods based on statistical physics of data and advanced experimental based nonlinear dynamics
techniques. He demonstrated the power of dynamical models in neuroscience by three examples: (i) a multi jump
resonance behavior of an ensemble of neurons that explains selectivity, (ii) stochastic resonance in a group of neurons
(when the signal to noise ratio at the output of the neuron ensemble is greater than the input signal to noise ratio), and
(iii) synchronization effect in networks in the brain. The challenge is in effective combination of the stochastic sep-
aration technique and topological data approximation with low-dimensional dynamical models and model reduction
methods.

Models differ from reality. van Leeuwen [7] presented an anti-cybernetic manifesto. He sought to show that the classi-
cal cybernetic understanding of the brain had run its course. According to his comment, cybernetic approach to brain
study is a misleading metaphor. For example, it does not take into account non-local field interaction of neurons. The
brain is actively generating predictions about what will happen and engages in controlled hallucination. The brain,
unlike legacy software, is constantly updating itself. These and other important properties of the brain may deplete
the cybernetic approach and make it useless. Such a serious gap between modern Al and real brain can ruin our hope
for the efficient communication between neuroscience and Al. According to van Leeuwen, we have to modify our
mathematical and computer science approaches so that this communication becomes useful for both parts. What can
we say here? First of all, models always differ from reality. The question is not, however, whether there exist important
properties of the brain that are neglected by a model. They always exist. The question is whether the model reflects
any important aspects of reality. A model is an intelligent device that should perform useful work. Simple models,
ranged from stochastic separation, concept cells, and Hebb’s rule described in our review [17] to direct simulation of
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large networks of relatively simple neurons [34] and rule based models of development neuronal network generating
behavior [35], have not yet exhausted their capabilities. Nevertheless, we are ready to accept the expert opinion of van
Leeuwen and agree that a new conceptual basis of brain modeling is needed. Let us indeed hope that a new theoretical
framework will be eventually developed in neuroscience that will appeal to mathematician and computer scientists,
and there will be a decent place for simple basic models.

Akaki Akakievich and the modern point of view on Concept Cells. Quian Quiroga [8] clarified and commented on
modern ideas about Concept Cells and sparse coding in the form of a revised Lettvin story about grandmothers cells.
He stressed that Concept Cells are not involved in identifying a particular stimulus or concept. They are rather involved
in creating and retrieving associations and can be seen as the “building blocks of episodic memory”. We analyzed basic
dynamical models of such associations [33] (see also [17], Sec. 4. “Encoding and rapid learning of memories by single
neurons”) but this analysis should be extended and compared quantitatively to experimental data. The professional
and clearly presented explanation of the basic concepts in Quian Quiroga’s commentary is a very useful addition to
our review, and we are happy to recommend this commentary to all readers.

“Happiness is when you are understood”. The beautiful text of Kreinovich [9] does not need comments. It is our
pleasure just to mention that in our internal discussions of the manuscript [17], we have many times quoted Pasternak’s
poetry about the “heresy of unheard-of simplicity”. Kreinovich found the same golden words of Pasternak to describe
the apparent simplicity in a multidimensional brain. This is an example of an amazing intellectual resonance.
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