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A simple (two-neuron) neural network model with two delays is considered. Firstly, the linear stability
of the model is studied and the bifurcation set is drawn in the appropriate parameter plane. Then a
group of conditions to guarantee the global existence of periodic solutions is given. Finally, numerical
simulations are performed to illustrate the analytical results found and comments are given about their
possible neurobiological significance.
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1 Introduction

Periodic oscillations and periodic sequences of neu-
ral action potentials are of fundamental importance
for a variety of brain and body functions. The ques-
tions how neural networks can sustain periodic ac-
tivity for a long time lapse and what makes them
fail under certain conditions are of vital impor-
tance. Local excitatory connections are, generally,
synchronizing but distant ones produce phase shifts
between neurons due to the finite axonal conduction
time. As this delay in transmission grows larger, the
synchronous mode, phase locked oscillations, looses
stability and the result is phase-shift between neu-
rons and the appearance of traveling phase waves
in the network or long lasting transient oscillations
and eventual amplification of stimuli. Delays of a
few milliseconds, much smaller than the system time
scale can destabilize otherwise apparently robust os-
cillations [1, 2, 3, 4].

Delays may occur due to the persistence of the

postsynaptic potential, which causes the presynap-
tic oscillations to be felt long after a neuron has
fired. Synaptic persistence can lead to synchroniza-
tion e.g. for large neuron clusters with inhibitory
coupling [5]. On the other hand it has also been
shown that in, say, a pair of mutually coupled oscil-
lators, a delay may result in the destabilisation of
synchrony for inhibitory coupling [6]. Furthermore,
in a chain of oscillators with local excitatory cou-
pling and long-range inhibitory coupling delay can
produce traveling waves if the long-range connec-
tions are strong enough to cause a destabilization
of synchrony [7].

Delays have been shown to play a significant role
in the dynamics of models incorporating synaptic
interactions with synaptic feedback and conduction
delay. Recurrent synaptic feedback is common in
the vertebrate neurons system [8]. Take two neu-
rons. Then, assume that neuron “1” fires action
potentials which travel down its axon. This axon
branches and one branch excites neuron “2”. The
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synapses of the latter in turn impinge the former
and either excite or inhibit it. Recurrent inhibition
has been the more commonly observed. It occurs in
spinal motoneurons, in pyramidal cells of the hip-
pocampus, in the cerebellum, thalamus and neocor-
tex, and in the retina and olfactory bulb. Recurrent
excitation has been postulated as a cause of seizures
in the hippocampus [9, 10, 11, 12].

Since in 1984 Hopfield [13] proposed a simpli-
fied albeit paradigmatic neural network model, in
which each neuron is represented by a linear circuit
consisting of a resistor and a capacitor, connected
to other neurons via nonlinear sigmoidal activation
functions, called transfer functions, there has been
great interest in studying the dynamical properties
of neural networks. The sigmoidal function is the
most common form of a signal function exhibiting
cooperative features e.g. like making all interactions
excitatory. Based on the Hopfield neural network
model it has been argued that the nonlinear sig-
moidal activation functions connecting neurons may
include delays due to the earlier mentioned finite
propagation time or due to finite switching speed in
electronic components in hardware realization [14].
These authors studied the following delayed differ-
ential equations

Ciu̇i (t) = − 1
Ri

ui (t) +
n∑

j=1
Tijfj (uj (t− τj)) , (1)

i = 1, 2, ..., n.

The variable ui (t) represents the voltage on the
input of the i-th neuron. Each neuron is charac-
terized by an input capacitance, Ci, a delay scale,
τi and a corresponding sigmoidal transfer function,
fj . The matrix Tij defines couplings in the net-
work. The resistance at the input of each neuron is

Ri =
(∑

j |Tij |
)−1

. There is a critical value of the
delay above which a symmetrically connected net-
work will oscillate. In general the dynamics of the
system (1) can be very sophisticated and its analyti-
cal investigation quite cumbersome and intractable.
Thus it seems reasonable to start using the simplest
architecture capable to sustain oscillations, i.e. a

ring of neurons connected cyclically [15, 16]

u̇i (t) = −ui
Ti

+ Jii−1fi−1 (ui−1 (t− τi−1)) , (2)
i = 1, 2, ..., n,

further assuming that the time scales of decays are
the same for all neurons, Ti = T . Then it was found
that the delays tend to increase the oscillation pe-
riod and to broad significantly the spectrum of pos-
sible frequencies. When the set of time scales {Ti}
has different values the quantitative analysis of Eqs.
(2) becomes a formidable task.

neuron 1

neuron 2

t
1

t
2

FIG. 1. Sketch of the simplest neural network with dif-
ferent input characteristics and delays in signal propa-
gation. Couplings may be excitatory or inhibitory, that
corresponds to positive/negative signs of parameters a
and b in Eqs. (3).

In the simplest case of two non-identical neurons,
n = 2, we can write (Fig. 1)

u̇1 (t) = −µ1u1 (t) + aF (u2 (t− τ2)) ,
u̇2 (t) = −µ2u2 (t) + bG (u1 (t− τ1)) ,

(3)

where the parameters a, and b account for the cou-
pling strength between neurons. Their values may
be different and their signs account for excitatory
or inhibitory type of synapses, i.e., according to
whether the coupling increases or decreases the po-
tential of the postsynaptic neuron as a response to
an activation of the presynaptic neuron. For the
system (3) with identical delays in signal propaga-
tion, τ1 = τ2, it has been shown that under certain
conditions the delay induces a Hopf bifurcation and
hence a new genuine, specific oscillatory state [17].
The asymptotic stability of the bifurcated periodic
solution has also been studied. A Hopf bifurcation
occurs when the sum of the two delays is allowed
to vary and passes through a sequence of critical
values. Wei and Ruan [18] applied the normal form
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theory and the center manifold theorem to deter-
mine the stability and direction of the Hopf bifur-
cation. By using the S1- equivariant degree theory
[19] it was assessed the global existence of periodic
solutions [20]. The study was limited to the case
τ1 = mτ2 (or τ2 = mτ1), where m is an integer.
Recently, considering τ = τ1 + τ2 as a bifurcation
parameter and using the theory of cyclic systems
[21, 22] slowly oscillating periodic solutions in Eqs.
(3) have been found [23].

Here we further extend the study of the dynamics
of Eqs. (3), assuming that both constants µ1 and µ2

are positive, the time delays τ1 and τ2 are both non-
negative, the restriction τ1 = mτ2 (or τ2 = mτ1)
is not imposed, and F and G are bounded C2-
functions. We shall apply the S1–equivariant degree
theory [19] to study the global existence of periodic
solutions, using the composite coupling parameter

ν = −abF ′ (0) G′ (0) (4)

as a bifurcation parameter. A positive sign of ν
corresponds to excitatory-inhibitory coupling when
one neuron excites the other and the latter in turn
sends inhibitory feedback to the former. A negative
sign of ν describes couplings of the same type, hence
either excitatory-excitatory or inhibitory-inhibitory.
In Section 2, we transform Eqs. (3) into a form that
has a single delay parameter. We show that the ori-
gin is a fixed point, which we call base state. Then
we study the stability of this base state and we con-
sider the existence of bifurcations when the delay
changes value. Besides, we give the bifurcation di-
agram in the (µ1µ2, ν) plane, to show the stability
properties of the fixed point. Section 3 is devoted
to the investigation of the global existence of peri-
odic solutions. In Section 4, we provide a numerical
simulation to illustrate the analytical results found.
In Section 5 we summarize the general results ob-
tained and point out their possible neurobiological
significance.

2 Local stability analysis

For convenience, let us introduce new variables
x (t) = u1 (t− τ1), y (t) = u2 (t) and the global de-
lay in the neuron circuit τ = τ1 + τ2 (Fig. 1). The

variable x (t) can be considered as the delayed input
to the first neuron. Then Eqs. (3) can be rewritten
in the form

ẋ (t) = −µ1x (t) + aF (y (t− τ)) ,
ẏ (t) = −µ2y (t) + bG (x (t)) ,

(5)

hence reducing the problem to a single delay param-
eter. Further we shall consider Eqs. (5) together
with the following assumptions:

(H1) F, G ∈ C2 and xF (x) > 0, xG(x) > 0 for x 6= 0.

The conditions (H1) ensure that the origin 0 = (0, 0)
is a fixed point of Eqs. (5), called here the base
state.

2.1 Role of the global delay τ

Figure 2 illustrates the results of the following the-
orem

Theorem 2.1 (i) If ν < −µ1µ2 the base state (0,0)
of Eqs. (5) is unstable for all τ > 0. (ii) If
−µ1µ2 < ν 6 µ1µ2 the base state (0,0) is abso-
lutely stable, hence stability is ensured whatever the
value of the delay τ . (iii) If ν > µ1µ2, there ex-
ists a value of τ = τ̂0 > 0, such that the base state
(0,0) is asymptotically stable when τ ∈ [0, τ̂0), and
unstable for τ > τ̂0. Moreover, there exists an infi-
nite sequence of values of the time delay parameter,
τ̂0 < τ̂1 < ... < τ̂j < ..., such that the system (5) un-
dergoes a Hopf bifurcation at the origin (0,0) when
τ = τ̂j , j = 0, 1, 2, ..., i.e. at every value of the above
given sequence of time delay values.

The linearization of Eqs. (5) around (0,0) yields

ẋ (t) = −µ1x (t) + aF ′ (0) y (t− τ) ,
ẏ (t) = −µ2y (t) + bG′ (0) x (t) ,

(6)

whose characteristic equation is

λ2 + (µ1 + µ2)λ + µ1µ2 + ν e−λτ = 0. (7)

Lemma 2.1 In the absence of delay, τ = 0, all
solutions of Eq. (7) have negative real parts when
ν > −µ1µ2, and Eq. (7) has a positive solution
when ν < −µ1µ2.
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FIG. 2. Bifurcation diagram for the system (5). A). The
solid straight lines ν = ±µ1µ2 divide the right half plane
(µ1µ2, ν) in three regions, D1, D2, and D3 with quali-
tatively different behavior of trajectories in a vicinity of
the base state (0, 0) of the system. B). In the region D3

the local stability of the fixed point depends on the value
of the total delay. The value of the delay τ̂0 > 0 is such
that the straight line τ1 + τ2 = τ̂0 divides the first quad-
rant of (τ1, τ2)-plane in two regions, D1

3 and D2
3. The

origin (0, 0) is asymptotically stable in D1
3, and unstable

in D2
3. For points (τ1, τ2) close to the line τ1 + τ2 = τ̂j

Eq. (3) has a periodic solution.

Indeed, for τ = 0 the roots of Eq. (7) are

λ1,2 = −(µ1 + µ2)
2

±
√

(µ1 + µ2)
2

4
− (µ1µ2 + ν),

and Lemma 2.1 follows. ¥
Let us now assume that iω (ω > 0) is a root of

Eq. (7) with nonzero delay, τ 6= 0, then we have

ω2 − µ1µ2 = ν cosωτ,
(µ1 + µ2) ω = ν sinωτ,

(8)

which implies

ω4 +
(
µ2

1 + µ2
2

)
ω2 + µ2

1µ
2
2 − ν2 = 0. (9)

Solving Eq. (9) we obtain

ω2
± =

−µ2
1 − µ2

2 ±
√(

µ2
1 − µ2

2

)2 + 4ν2

2
.

Accordingly, ω2
+ is real and non-vanishing when

|ν| > µ1µ2. Otherwise is meaningless. Also the
value ω2− is meaningless. Thus we have the follow-
ing results:

Lemma 2.2 (i) If |ν| > µ1µ2, then Eq. (7) has
a pair of purely imaginary roots, ±iω0, when τ =
τ̂j = 1

ω0
[τ0 + 2πj], j = 0, 1, 2, ... with

ω0 = 1√
2

[
−µ2

1 − µ2
2 +

√(
µ2

1 − µ2
2

)2 + 4ν2

] 1
2

τ̂0 =





1
ω0

arcsin
(

(µ1+µ2) ω0

ν

)
, if ν > M∗

1
ω0

[
π − arcsin

(
(µ1+µ2) ω0

ν

)]
, if |ν| < M∗

1
ω0

[
2π + arcsin

(
(µ1+µ2) ω0

ν

)]
, if ν 6 −M∗

M∗ =
√

µ1µ2(µ1 + µ2)
(10)

(ii) If −µ1µ2 < ν 6 µ1µ2, then for τ > 0 all roots
of Eq. (7) have negative real parts.

Indeed, from the discussion above follows that
when |ν| > µ1µ2 the only positive root of Eq. (9)
is ω0. Now let τ = τ̂j be such that τ̂0ω0 ∈ (0, π)
when ν > 0, and τ̂0ω0 ∈ (π, 2π) when ν < 0. Then
(τ̂j , ω0) is a solution of the Eq. (8) for j = 0, 1, ...
Hence iω0 is a root of the Eq. (7) with τ = τ̂j ,
j = 0, 1, ... and the statement (i) follows.
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On the other hand, Eq. (7) has no purely imag-
inary root when |ν| 6 µ1µ2. Hence λ = 0 is not a
root of Eq. (7) when ν 6= −µ1µ2. Therefore, Eq.
(7) has no roots appearing on the imaginary axis
when −µ1µ2 < ν 6 µ1µ2. By applying Corollary
2.4 from the work by Ruan and Wei [24] and the
above given Lemma 2.1 the statement (ii) follows.
¥

Now let us consider the behavior of the roots of
Eq. (7) near the values τ̂j . To do this we assume
that

λ (τ) = α (τ) + iω(τ), (11)

is a solution of Eq. (7) satisfying α(τ̂j) = 0 and
ω(τ̂j) = ω0.

Lemma 2.3 α′ (τ̂j) is positive. Furthermore, we
have: (i) if ν > µ1µ2 , then all roots of Eq. (7)
have negative real parts when τ ∈ [0, τ̂0), and for
τ > τ̂0 Eq. (7) has at least one root with positive
real part. (ii) if ν < −µ1µ2, for all τ > 0 , Eq. (7)
has at least one root with positive real part.

Indeed, substituting λ (τ) into Eq. (7) and taking
the derivative with respect to τ , we obtain

(
dλ(τ)

dτ

)−1
∣∣∣∣
τ=τj

= (µ1+µ2)+i2ω0

(µ1+µ2)ω2
0+i(ω3

0−µ1µ2ω0) + i
ω0

,

which implies that

Re
(

dλ (τ̂j)
dτ

)−1

=
ω2

0

∆
[
µ2

1 + µ2
2 + 2ω2

0

]
> 0,

with ∆ = (µ1 + µ2)
2 ω4

0 +ω2
0

(
ω2

0 − µ1µ2

)2. Now we
have

sign
[

dα(τ̂j)
dτ

]
= sign

[
dReλ(τ̂j)

dτ

]
=

sign
[
Redλ(τ̂j)

dτ

]
= sign

[
Re

(
dλ(τ̂j)

dτ

)−1
]

> 0.

Applying again Corollary 2.4 from the Ref. [24], and
the above given Lemma 2.1 and 2.2, the statements
(i) and (ii) follow. ¥

Finally, applying Lemmas 2.2 and 2.3 and the
Hopf bifurcation theorem for retarded functional
differential equations ([25], pp. 331-333), then The-
orem 2.1 follows. ¥

2.2 Role of the composite coupling pa-
rameter ν

Ruan and Wei [20] have studied Eq. (7) for ν >
0, which corresponds to couplings between neurons
of different types (excitatory-inhibitory). Here we
shall allow ν < 0 hence considering couplings of the
same type (and recall τ1 need not be equal to mτ2).
Then the following conclusions hold:

Lemma 2.4 (i) Let ω+
j ∈

(
2(j−1)π

τ , (2j−1)π
τ

)
, and

ω−j ∈
(

(2j−1)π
τ , (4j−1)π

2τ

)
j = 1, 2, ... be the roots

of the equation (µ1+µ2)ω
ω2−µ1µ2

= tanωτ , and ν+
j =

(µ1+µ2)ω+
j

sinω+
j τ

> 0, ν−j =
(µ1+µ2)ω−j

sinω−j τ
< 0, then Eq.

(7), with ν = ν±j , has a pair of purely imagi-
nary roots, ±iω±j , which are both simple. (ii) Let
λ = α (ν) + iω (ν) be a root of Eq. (7) satisfy-
ing α(ν±j ) = 0, ω(ν±j ) = ±iω±j , then α′(ν+

j ) > 0
and α′(ν−j ) < 0. (iii) Let ν0 = min{ν+

j }, then for
ν ∈ (−µ1µ2, ν0) all roots of Eq. (7) have negative
real parts and when ν /∈ [−µ1µ2 , ν0] Eq. (7) has at
least one root with positive real part.

To prove the statements (i) and (ii) it is sufficient
to use Lemmas 2.1 and 2.3 from the work Ruan
and Wei [20]. To prove (iii) we notice that at ν =
−µ1µ2 Eq. (7) has the root λ = 0. Thus with λ (ν)
being a root of Eq. (7) satisfying λ (−µ1µ2) = 0, we
substitute it into Eq. (7) and taking the derivative
with respect to ν we obtain

dλ (ν)
dν

= − e−λ(ν)τ

2λ (ν) + µ1 + µ2 − νe−λττ
,

and hence

dλ (−µ1µ2)
dν

= − 1
µ1 + µ2 + µ1µ2τ

< 0.

This implies that Eq. (7) has a positive real
root when ν < −µ1µ2 and close enough to
−µ1µ2. On the other hand, we know that
ν−j < −µ1µ2, α′(ν−j ) < 0 and Eq. (7) has no
roots appearing on the imaginary axis when ν /∈{
−µ1µ2 , ν−j , ν+

j

}
j=1,...

. Thus Eq. (7) has at least

one root with positive real part when ν < −µ1µ2.
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Since ν0 = min
j>1

{ν+
j } and α′(ν+

j ) > 0, together with

the roots of the Eq. (7) with ν = 0 satisfying
Reλ1,2 < 0, we also have that all roots of Eq. (7)
have negative real parts when ν ∈ (−µ1µ2 , ν0), and
Eq. (7) has at least one root with positive real part
when ν > ν0. This completes the proof. ¥

Then using Lemma 2.4, we have the following
theorem.

Theorem 2.2 For Eqs. (5), under the hypothe-
sis (H1) and fixed τ > 0 we have: (i) the fixed
point in the origin is asymptotically stable if ν ∈
(−µ1µ2, ν0), and unstable if ν /∈ [−µ1µ2, ν0], (ii)
the system (5) undergoes a Hopf bifurcation of the
base state (0,0) when the coupling parameter crosses
the sequence of values ν = ν±j , j = 1, 2...

3 Global existence of periodic
solutions

Let us now investigate the global existence of peri-
odic solutions of the system (5). We introduce the
oscillation period p and regard ν as the bifurcation
parameter. To proceed further let us make the fol-
lowing assumptions about properties of the transfer
functions F and G:

(H2) There exists a constant L > 0 such that
|F (x)| 6 L and |G (x)| 6 L for all x ∈ R.

From the above given Lemma 2.4 we have
lim

j→∞
ω±j = ∞, where we assume that ω+

j+1 > ω+
j

and ω−j+1 > ω−j for j > 1. Then there exist integers
j1 and j2 such that 2π

ω+
j1

6 τ , 2π
ω+

j

> τ for j < j1, and
2π
ω−j2

6 τ , 2π
ω−j

> τ for j < j2.

Theorem 3.1 Assuming that the hypotheses (H1)
and (H2) are satisfied, and either (b, F ′(0), G′(0))
or (a, F ′(0), G′(0)) is fixed, we have:
(i) for ν > ν+

j1
, the system (5) has at least one pe-

riodic solution.
(ii) if F (x) and G (x) are both monotonically in-
creasing functions, and xF ′′(x) < 0, xG′′(x) < 0
for x 6= 0, then for ν < ν−j2, the system (5) has at
least one periodic solution.

To prove (i) let us assume that ν > ν+
j1

and take
ν̄ > ν to be fixed. Suffices to use Theorem 3.3 from
the Ref. [27], which is based on the S1-equivariant
degree theory [19].

Regarding ν and p as parameters we have that
(0, ν, p) is the only stationary solution of Eqs. (5).
The corresponding characteristic function

∆(0,ν,p) (λ) = λ2+(µ1 + µ2) λ+µ1µ2+νe−λτ , (12)

is continuous in (ν, p, λ) ∈ R×R+×C. Thus we can
apply the above mentioned Theorem 3.3 by Wu [27].
In particular, (0, ν+

j , 2π
ω+

j

) and (0, ν−j , 2π
ω−j

) are cen-

ters. In fact, the set of centers is countable and can

be expressed as
{

(0, ν±j , 2π
ω±j

); j = 1, 2, ...

}
. Then,

(0, ν+
j , 2π

ω+
j

) and (0, ν−j , 2π
ω−j

) are all isolated points

due to the definition of ν±j .
The above given Lemma 2.4 ensures that there

exist ε > 0, δ > 0 and a smooth curve λ :(
ν+

j − δ , ν+
j + δ

)
→ C such that ∆ (λ (ν)) = 0,∣∣∣λ (ν)− iω+

j

∣∣∣ < ε for all ν ∈
[
ν+

j − δ , ν+
j + δ

]
, and

λ
(
ν+

j

)
= iω+

j , d
dν Reλ (ν)

∣∣
ν=v+

j
> 0.

Let Ωε =
{

(u, p) : 0 < u < ε,

∣∣∣∣p− 2π
ω+

j

∣∣∣∣ < ε

}
.

Accordingly, if
∣∣∣ν − ν+

j

∣∣∣ 6 δ and (u, p) ∈ ∂Ωε such

that ∆ (0, ν, p)
(
u + i2π

p

)
= 0, then ν = ν+

j , u = 0

and p = 2π
ω+

j

. Theorem 3.3 by Wu [27] can also be

applied for m = 1. Moreover, if we put

H±
m(0, ν+

j ,
2π

ω+
j

)(u, p) = ∆
(
0, ν+

j ± δ, p
)

(u + im
2π

p
),

then m = 1 and we have

γm

(
0, ν+

j , 2π
ω+

j

)
= degB

(
H−

m

(
0, ν+

j , 2π
ω+

j

)
, Ωε

)
−

degB

(
H+

m

(
0, ν+

j , 2π
ω+

j

)
, Ωε

)
= −1.

Using once more Theorem 3.3 from the Ref.
[27] we can conclude that the connected compo-

nent C

(
0, ν+

j , 2π
ω+

j

)
through

(
0, ν+

j , 2π
ω+

j

)
in Σ is

nonempty, where Σ = cl{(x, ν, p), x is a p-periodic
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solution of Eqs. (5)}. Using the same argument as
above, we can show that the first crossing number

of each center
(

0, ν+
j , 2π

ω+
j

)
is always −1.

On the other hand, if ν = 0, from the assumption
(H1) either a = 0 or b = 0. Without loss of generality
let us consider a = 0. Then Eqs. (5) become

ẋ (t) = −µ1x (t)
ẏ (t) = −µ2y (t) + bG (x (t)) .

(13)

For any initial conditions (x0, y0) ∈ R2, the solution
of the system (13) passing through (x0, y0) satis-
fies lim

t→∞x(t, x0, y0) = 0, lim
t→∞ y(t, x0, y0) = 0 hence

decays to the fixed point in the origin. Thus Eqs.
(5) with ν = 0 have no periodic solution. This im-
plies that no center (0, ν−j , 2π

ω−j
) exists in the con-

nected component C(0, ν+
j , 2π

ω+
j

). Therefore, we can

exclude alternative (ii) of Theorem 3.3 in the Ref.

[27]. Thus we conclude that C

(
0, ν+

j , 2π
ω+

j

)
is un-

bounded.
Let us now prove that the periodic solutions of

Eqs. (5) are uniformly bounded for ν ∈ (0, ν̄]. We
assume that (b, F ′(0), G′(0)) are fixed, and M >

max
{

1, L
µ

(
ν̄
|ν| + |b|

)}
is a constant, where µ =

min {µ1, µ2}. Now introducing the distance to the
trajectory from the origin, r (t) =

√
x2 (t) + y2 (t),

and calculating its derivative along the solutions of
Eqs. (5), we get

ṙ (t) = 1
r(t) [−µ1x

2(t)− µ2y
2(t)

+ax(t)F (y(t− τ)) + by(t)G(x(t))]

6 1
r(t)

[−µ r2 (t) + L (|a| |x (t)|+ |b| |y (t)|)] .

If there is a t0 > 0 such that r (t0) = A > M , then
we have

ṙ(t0) 6 1
A

[−µA2 + AL (|a|+ |b|)]

6
[
−µA + L

(
ν̄

|bF ′(0) G′(0)| + |b|
)]

< 0.

Hence if (x (t) , y (t)) is a periodic solution of Eqs.
(5), then either r (t) < M or r (t) > M for all t. In
the later case from the discussion above it follows
that ṙ (t) < 0 for all t, at variance with the fact that

(x(t), y(t)) is periodic in time. Therefore, for each
periodic solution of Eqs. (5), r (t) < M for all t.
When (a, F ′(0), G′(0)) are held fixed, the proof is
the same as above.

Let us now show that the period, p, of a periodic

solution of Eqs. (5) with ν ∈ [0, ν̄] on C

(
0, ν+

j1
, 2π

ω+
j

)

is uniformly bounded. In fact Eqs. (5) have no τ -
periodic solution. Otherwise, if Eqs. (5) have a
τ -periodic solution, say (x(t), y(t)), then it satisfies
the ordinary differential equations

ẋ (t) = −µ1x (t) + aF (y (t)) ∆ P (x, y) ,

ẏ (t) = −µ2y (t) + bG (x (t)) ∆ Q (x, y) ,
(14)

which means that the system (14) has a periodic
solution. On the other hand, on the (x, y)-plane we
have

∂P (x, y)
∂x

+
∂Q (x, y)

∂y
= − (µ1 + µ2) < 0.

Hence, due to Bendixson’s criterion [26] we can
conclude that the system (14) has no periodic so-
lution. Accordingly, the system (5) has no τ

n -
periodic solution for any n > 1. By appropri-
ately choosing νj1 we get that there exists κ > 1
such that τ

κ+1 < 2π
ω+

j1

< τ
κ . This shows that in or-

der for C

(
0, ν+

j1
, 2π

ω+
j1

)
to be unbounded, its pro-

jection onto the ν-space must be unbounded. As
mentioned above, Eqs. (5) with ν = 0 have no
periodic solution. Consequently, the projection of

C

(
0, ν+

j1
, 2π

ω+
j1

)
onto the ν-space must include the

interval [ν0, ν̄] with 0 < ν0 6 ν+
j1

. This shows that
for each ν > ν+

j1
, Eqs. (5) have a periodic solution

with the period in
(

τ
κ+1 , τ

κ

)
. Note that, under the

conditions (ii), Eqs. (5) have only one fixed point
(0,0) for ν > −µ1µ2, and altogether just three fixed
points: (0,0), (x1, y1) and (x2, y2) when ν < −µ1µ2.
The coordinates of these fixed points can be found
from

xi = a
µ1

F
(

b
µ2

G (xi)
)

, yi = b
µ2

G (xi) ,

i = 1, 2.

(15)
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-3 -2

Fig. 3. Bifurcation diagram of Eqs. (16). A). (ν, τ)-plane divided by two solid lines corresponding to pitchfork and first
Hopf bifurcations. Dashed straight line shows asymptotic behavior and dash-dot line corresponds to a Hopf bifurcation
of the (0, 0) fixed point in the negative region of the composite coupling parameter. Insets showing trajectories on
the (u1, u2)-plane for all three regions where obtained for τ1 = 7.5, τ2 = 2.5, α1 = 0.6, and ν = −0.9, 0.2, and
0.9, respectively. B). Maxima of stationary motions on the (u1, u2)-plane (amplitudes) as functions of the composite
coupling parameter ν. At ν ≈ 0.53 Hopf bifurcation occurs, hence for ν > 0.53 nonzero oscillations can be observed.
The amplitude of the first unit is lower than the amplitude of the second one.

This implies that at ν = −µ1µ2 a supercritical
pitchfork bifurcation occurs. Besides, xF ′′ (x) <
0 and xG′′ (x) < 0, for x 6= 0, guarantee that
abF ′ (yi) G′ (xi) < µ1µ2, i = 1, 2. Hence the charac-
teristic equation associated with the linearization of
Eqs. (5) around either of the fixed points, (xi, yi),
is

λ2 + (µ1 + µ2) λ + µ1µ2 − abF ′ (xi) G′ (yi) e−λτ = 0,
i = 1, 2,

and it has no purely imaginary roots.
The remainder of the proof of (ii) is similar to

that of (i), hence we omit it. ¥

4 Computer simulations

To illustrate the analytical results found let us con-
sider the following particular case of Eqs. (5)

u̇1 (t) = − 1
T1

u1 (t) + α1 tanh (u2 (t− τ2))
u̇2 (t) = − 1

T2
u2 (t) + α2 tanh (u1 (t− τ1)) .

(16)

Related models have been studied in the literature
[17, 18, 20, 28, 29, 30, 31].

In the numerical integration we set T1 = 0.5 and
T2 = 6, hence we consider neurons with strongly
different input properties. As the bifurcation char-
acteristics of Eqs. (16) depend on the composite
coupling parameter ν = −α1α2 only, we fix α1 = 0.6
and then use α2 as free parameter. The hypotheses
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(H1) and (H2) on the properties of the transfer func-
tions in Eqs. (16) are satisfied. Then from Theorem
2.1, follow a number of consequences:

(i) the base state (0,0) is unstable for all delay
values τ = τ1 + τ2 > 0 if T1T2ν < −1. Besides
the fixed point at the origin there exist two other
stable fixed points. Thus the system (16) is bistable
and the final state of the system depends on initial
conditions. Since ν < 0, the two parameters α1 and
α2 have the same sign (in our case positive). Such a
possibility can be realized in the network only with
identical type of coupling (inhibitory-inhibitory or
excitatory-excitatory).

(ii) If −1 < νT1T2 6 1 then the origin is ab-
solutely stable (whatever the value of τ). At ν =
−1/T1T2 = −1/3 a supercritical pitchfork bifurca-
tion occurs.

(iii) If νT1T2 > 1, then there exists τ̂0 > 0
such that the origin is asymptotically stable when
τ ∈ [0, τ̂0), and unstable when τ̂ > τ0. The sys-
tem (16) undergoes a Hopf bifurcation at the origin
when τ = τ̂j , j = 0, 1, 2, ... The value τ̂0 is calculated
using Eq. (10). Applying the above given Theorem
3.1 we have that, for ν > ν+

j1
the system (16) has

at least one periodic solution. This coincides with
the results about the Hopf bifurcation at τ = τ̂j .
Moreover, the system (16) has at least one periodic
solution for negative values of the composite cou-
pling parameter ν < ν−j2 . Note, for ν < −ν∗ due to
the pitchfork bifurcation the base state is unstable
(the characteristic equation has one positive root)
and thus the periodic solution born at the Hopf bi-
furcation at ν = ν−j2 is hyperbolic (unstable).

Figure 3 summarizes the results. All insets have
been obtained by integration of Eqs. (16) with
τ1 = 7.5, and τ2 = 2.5 using three significantly dif-
ferent values of ν. For ν < −ν∗ = −1/3, depend-
ing on the initial conditions, trajectories tend to ei-
ther the fixed point with positive values of voltages
or to the fixed point with negative voltage values
while the base state (0,0) is unstable (left inset in
Fig. 3A). In this region there also exists a sequence
of Hopf bifurcations (the first one is shown by the
dash-dot line). However, as mentioned above, the
limit cycle born at the first bifurcation is unstable
and cannot be observed experimentally. In the mid-

dle region the origin is the only fixed point attrac-
tor (middle inset in Fig. 3A). Increasing further the
value of ν the origin becomes unstable and a stable
limit cycle appears (right inset in Fig. 3A). Figure
3B shows the amplitudes of stationary oscillations
as a function of parameter ν. The increase of ν leads
to higher oscillation amplitude and to steeper oscil-
lations. Due to the difference in the decay charac-
teristics (T1 and T2) the amplitude of oscillations in
the first neuron is lower than in the second one. We
have numerically obtained that the periodic orbit
born due to the Hopf bifurcation is, indeed, stable.

5 Conclusions

Delays occur both in the signal transmission be-
tween neurons or electronic-model-neurons due to
finite propagation velocity of action potentials (ax-
onal delay), non-negligible time of a signal from a
neuron to reach the receiving state of a postsynaptic
neuron, and due to finite switching speed. An im-
portant issue is how delays change the stability of
neural network states, steady or oscillatory, caus-
ing further oscillations and hence inducing delay-
controlled periodic behavior. Furthermore, even
for a simple two-neuron system delays may induce
chaotic evolution. In this paper we have considered
a simple two-neuron network model with delays in
signal propagation between neurons. We have intro-
duced appropriate variables to transform the model
originally with two delayed variables (τ1 and τ2 de-
note the delays) into a system having a single de-
layed variable (τ = τ1 + τ2, τ1 need not be equal
to mτ2). We have studied the stability of its base
state. By studying the distribution of the roots of
the characteristic equation of the linearized system
around the base state we have obtained the bifurca-
tion diagram of the system. Then we have studied
the global existence of periodic solutions in terms
of the overall coupling, ν, and delay parameters of
the problem. We show that the Eqs. (3) have a
periodic solution not only when the composite cou-
pling parameter ν > 0 is large enough but also when
ν < 0 is large enough in absolute value. Numerical
simulations support the analytical results found.
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The modest results found may, however, be of
interest in the understanding of how does a neu-
ron integrate the tens of thousands of synaptic in-
puts received in its dendritic tree coming from other
neurons. It is known that back propagation signals
along dendrites regulate the arrival of such inputs
into the soma (a chemical reactor) and hence delays
seems to play a significant role in the integration
process before a single overall response is given by
the neuron. Changes in excitatory connections be-
tween neurons are believed to mediate most forms
of neural learning and memory. The problem is in-
deed complex as at any given time, tens or hundreds
of synapses are firing at a rate of tens or hundreds
of times per second all across the dendritic tree.
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