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Mode transitions and wave propagation in a driven-dissipative Toda-Rayleigh ring
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A circular lattice(ring) of N electronic elements with Toda-type exponential interactions and Rayleigh-type
dissipation is used to illustrate wave formation, propagation, and switching between wave modes. A method-
ology is provided to help controlling modes, thus allowing it to realize anyNof (L) different wave modes
(including soliton-type modegsand the switching between them by means of a single control parameter.
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I. INTRODUCTION physical system exhibiting robustness and tolerandéoto)
noise level and a slight parameter mismatch. Yet, a system
Cyclic global behavior, with intermediate jumping or can show diversity in behavior due to noigks] or due to
switching between different modes of operati@m general  detuning of the oscillators of the rirfd9]. The dynamics of
of complex form), is known to occur in various fields of a ring of coupled oscillators has been considered in [R€.
science and engineering and particularly, in biology, neurofor the experimental observation of emergent cyclic behavior
biology, and biochemistry1]. An example is the versatile associated to a fast periodic rotating wave.
and elegant locomotion of animals with efficient gait switch-  Toda [21] provided exact analytic solutions, including
ing that has stimulated efforts to mimick it with artificial solitons, for a one-dimensiongllD) Hamiltonian lattice
walking machine§2-5|. To solve the problem of pattern (chain with exponential interactions between the elements.
formation and robust transition among several types of gaitSubsequently, othefconservativg solitons bearing chains
the use of oscillatory neural networks with different architec-were proposed to study nonlinear signal evolution and trans-
tures has been purpos¢d,6]. In fact, most animal gaits mission. Electronic implementations of such chains are un-
possess a degree of symmetry and universal features not favoidably dissipative, which may drastically alter the ini-
from the behavior of rings of coupled oscillatdi®-9]. Then tially expected behavior. As dissipation leads to energy loss
transitions between different gaits can be modeled as synj22-2€, energy injection is necessary (steadily maintain
metry breaking bifurcations, leading to the switch betweerthe evolution of the system. We therefore study here the role
different activity patterns in a ring8—10. In general, in a of dissipation and controlled energy pumping in the forma-
ring lattice possessing several operational regiffreslti-  tion and sustained propagation of different waves, including
stable modesswitching between them can be achieved withsolitonic waves that are known to propagate in discrete or
a suitable resetting of the phases of all units. Different robustontinuous medid27]. Using as an example, a ring lattice
methods to control operational modes have been proposedith Toda-type interaction between units and Rayleigh en-
For instance, in Refg6,4] the control of a hexapode robot ergy dissipation-pumping mechanisf28—30, we show
by means of patterns generated by reaction-diffusion cellulahow by means of a simple feedback one can stabilize differ-
neural networks is discussed and implemented. ent activity patterns and achieve robust switching between
On the other hand, coupled map lattice models have beethem. This driven-dissipative Toda lattice also allows au-
used to study complex spatio-temporal systdds12. In  tonomous cyclic behavior when modes continuously replace
this way, the evolution of ring lattice systems has been coneach other in a long, global, overall loop.
sidered in Refs[13-15, investigating, e.g., spatiotemporal  Hirota and Suzukj22] described the first implementation
periodic traveling waves and their behavior depending orof an electrical circuit of the Toda lattice. However, their
initial conditions and values of control parametgt8]. The  implementation was not valid for high amplitude waves. Re-
behavior of fronts near the boundary of parametric instabilitycently, Singer and Oppenheif23] proposed a different cir-
has been investigated in R¢14] and a connection between cuit using junction diodes to model the exponential nonlin-
a periodic solution, spatiotemporal intermittency, bifurcationearity and double capacitors to obtain appropriate time
behavior, and coexisting attractor is studied [itb], for  derivatives for modeling the original, conservative Toda lat-
coupled sine circle and coupled logistic map lattices. tice. The resulting circuit was accurate enough to study dif-
Using analog circuits is a well-knowi6,17 approach in  ferent soliton effects such as soliton overtaking and colli-
the study of the behavior of the nonlinear dynamics of ringssions. Based on previous resuli23,29, in Ref. [30] we
made up of coupled oscillators. In this case, we have a truproposed an alternative electrical circuit for the investigation
of waves and space-time patterns in a Toda-Rayleigh lattice,
including dissipative effects and energy input mechanisms.
*Email address: edelrio@aero.upm.es We have shown that, unlike to the Hamiltonian case, the
"Email address: velarde@fluidos.pluri.ucm.es initial conditions lose relevance and the energy input-
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to the average voltag¥. In the first case, the resistoRg
connect in parallel tdR,, effectively reducing their resis-
tance. In the second case, we add a global coupling with a
feedback loop via the amplifier to the voltage adders, and
finally to the nonlinear resistors. Due to the high value of
Rg, this global coupling does not affect directly the evolu-
tion of the circuit, but instead controls the behavior of the
ring via feedback.
From the current-voltagel {V) relation for a double ca-
-- pacitor(DC) [31] and Kirchhoff’s laws, the equation govern-
ing the evolution of the circuit i$23,30
FIG. 1. Block scheme of the Toda-Rayleigh lattice. Each node
(dashed bokincludes three main blocks: a double capadiid€), a d2Vn 5 5
nonlinear resistofits resistance is a nonlinear function of the volt- e =w,Ryd ¢c= @ RadIn—=lns 1+ o= la=1g), (1)
age applied to its terminglsand a voltage adder that shifts the
voltage at the nonlinear resistor by a common voltige R, is an
additional stabilizing high-value resistor. Resist&s are used to
obtain the averaged voltagé. The circuit at the right, including
switch S high capacitanc€, external battery/.,;, and amplifier
with variable coefficienk, controls the evolution of the ring auto-
matically via a global feedback.

wherew§~ 10P (rad/sy is a constant depending on the struc-
ture of the double capacitol,,, 15, andlg are currents,
respectively, through the nonlinear resistor and the two linear
resistors in the node (Fig. 1). |1, is the current through the
junction diode withl-V characteristics:

dissipation balance helps t¢steadily maintain a well- Inzlsex;{ M) 2
defined finite number of different oscillatory solutions. t

Namely, the Toda-Rayleigh ring possessiis-(1) different
nonlinear oscillatory modes or wavesghereN is the number
of units in the ring and two nonoscillatory rotational modes.
Furthermore, by monitoring a common external voltage, w
were able to switch between modes in the circuit allowing
selection of waves including solitary wavg30]. Here we
significantly extend our previous study, focusing now atten-

tion on mode generation, control, and switching mechalhree zeros and positive slope at the origin, hence having a

nisms. region with negative differential resistance, to provide en-
Section Il provides details of the electronic implementa-€r9Y Pumping and dissipation. A recent monograph by one of
tion of the driven-dissipative Toda-Rayleigh ring. In Sec. IIl, the author$27] treats a similar problem. Further, for numeri-

the stability regions of theN+1 modes is provided. We C@l simulations we approximatg, as

where the constantls, andV, depend on the choice of the

diode. Depending on the position of the switch, the volt‘fige
Lan be zerdthe common point is groundgar may vary.
The current through the nonlinear resistblock NR in Fig.
1), I, is a nonlinear function of the applied voltagé
=V,—V,. The functionl,, is symmetric and cubiclike with

show that the characteristic function of the nonlinear resistor 3

of the units determines the branches in parameter space cor- I (V)= 33l max(vz_vz)v 3)
. . . nr ~ 3 ’

responding to stable wave modes. By tuning a single param- 2V

eter we can select any mode. Analytical results are compared
with the experimental data showing fairly good agreementwvhere constantsy,,, andV are, respectively, the current at
between the theory and computer experiments. Section Ivhe extreme and the coordinate of zero of the functignin
deals with controlled feedback-induced transitions betweep experimental setup, we us¥=1.45V and |

. ) . max
wave modes. When parameter values are changed, the latticg; g wA. Note that the voltage applied to the nonlinear re-

successively visits different wave modes in a global lonGgisior is a linear combination of the time derivative of the

cycle. Finally in Sec. V, we summarize the results obtained, ,iaqe at the nod and the “shift” voltageV.. [30]:
and discuss the relation between the various possible osciY- g & 9eVen (301
latory modes in a given ring with arbitrary number of units. 1 dv
n
V= ——- ar Vgp. (4)
w Rdccl
II. DISSIPATIVE TODA-RAYLEIGH LATTICE AND ITS v

ANALOG CIRCUIT IMPLEMENTATION In our analytical calculations, we use dimensionless quanti-

Figure 1 shows a block diagram for the Toda-Rayleighties denoted by lower case letters:

ring. Referenc¢30] provides detailed description of all com-

ponents. To the circuit in Ref30], we have added resistors Vi i | ¢ /'madect ®)
. ~ . Un=—=—, = y =w = .

Rg to obtain the voltagé/ averaged over all nodes in the n Vv, | max v Vi

ring and an amplifier that can increase or decrease the volt-
age V4, supplied to the voltage adders. The amplifier canThe rescaled time it /t~651.6 s 1.
connect either to a variable voltage sourtkin Fig. 1) or Equationg1)—(5) give the following equations of motion:
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i}n: i S(e(vnfl_vn)lvt— e(”n_vn+1)/vt) + F(Tl.)n— Ush)

_avn_i81 (6)

S in position 1 = N
(7
>M _\/\/
_ >"' \/\
) Is \ 1 | max
i=——, a= ~0.27, 7=
S ImaxRA

I ——~0.48
andF(x) has three roots at= =1 andx=0. For numerical o -52F
I_~,D -5.6 /\/\
> 60

simulation, we will useF (x) = (3/3/2)(1—x?)x. A dot over
We also measure the average voltage over the nodes as ' I ' T ' T '

1
Un— EvSh)’ S in position 2,

wUC1

a quantity denotes time differentiation with respectto

0.0 0.5 1.0 1.5 20
_ 1 N time [ms]
=N E Un, (8) .
N =1 FIG. 2. Oscilloscope traces of the voltages for each node for the
m=1 mode.
which, in general, is a function of time with small amplitude

variation. Generally an excitation passing through a node increases

(or decreasests voltage by a value depending on the exci-

tation type AV= [Vdt need not to be zejoThus a wave
rotating in the ring continuously increas@s decreases for a
With the switch in position 1(Fig. 1), the currently is ~ Wave running in the opposite directipthe voltage in the
equal to the currenit, [Eq. (7) where we assumB,=Rg],  nodes, which eventually saturates the circuit. The voltage
so the common shift voltage for all nonlinear resistors is g2dders and the high-value resistétg (Fig. 1) remedy this
constant controlled by the voltage of the external battery, Problem, as already discussed in R@0].
To describe the mode evolution and switching between
modes, we plot the average voltage at a nadg =(v) as a
. . . . ) function of the shift voltage ¢, for all allowed modes, map-
In this configuration, the ring6) has (N+ 1) different stable  hing the stable solution branch for each mode. Let us find
modes: N\—1) oscillatory modes, and two nonoscillatory these branches theoretically and then compare the results

rotational modes. The last two correspond(¢tockwise or  ith experimental observations. For a stationary wave rotat-
counterclockwisgrotation of the ring as a whole. We assign ing in the ring with periodT, we have

each mode a mode numberwhich gives wavelength and
wave vector adN/|m| and 27m/N, respectively. All modes
are nonlineafanharmonigoscillations and, hence, nonlinear
waves in the ring. The oscillation amplitude and shape also
depend on the mode. The modes with negative — 1, )
—2,...,—N/2 have the same amplitude as the correspondtience from Eq(6), we obtain
ing modes with positiven=1,2, . .. N/2 (here we assumi

to be even, for odd number of nodes, see Seg.cddrre- —
sponding to waves with the same wavelength but propagat- (v)
ing in opposite directions. For evew, there exists a “spe-
cial” (optica) modem= = N/2. Both signs define the same
oscillatory form with nearest-neighbor units oscillating in an-
tiphase. The two longest wavelength modegth m=+1)

Ill. OPERATIONAL MODES AND JUMPS
BETWEEN THEM

Vsn=KVeyt-

§=t—nm—T. (9)

oa(D)=0(8), N

1 : 1,
= an 2, (Flron—va)y= Z(F(rw (&) —van)e.
(10

For two nonoscillatory modesi=+0 [v(£)=0], Eq. (10)

have the largest amplitude. The amplitude decreases for ifives

creasing mode number. Figure 2 shows sample experimental

traces for all nodes for the mode=1 (in a six-node ring <U—>+O: _ EF(Ush)- (11)
For a long enough ring, thex= =1 modes become soliton - a

solutions (for voltage difference variablgs For two

nonoscillatory modes, we assign mode numbers =0 The analysis of Eq96) and (11) shows that the domain

which have infinite wavelengtfor nonoscillating solutions
Here signs show the direction of ring rotation.

(branch —oc<vy<—v* corresponds to the stabfe=—0
mode (counterclockwise rotatignwhile v* <v <o corre-
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of Ty Substituting Eq.(15) into Eq. (16), exchanging integration
F\ (“\ W and summation, and using E@.3), we obtain
F(wyp) =F(Wgp). (17)
E 0 up dn
A \ } \ The time derivative of Hamiltoniafl5) can also be written
as
Wan
2 T
0 ] 2 O NE(Wop) (Wt 9 ( q) Tw | (g
—= W) (W pt v
time [ms] dt o) ° N/T- T

FIG. 3. \oltage at the nonlinear resistoWocw=7v(£) — v where q(t) (_EN (0=q=N) is the ngmber of n.ode§ hgvmg
for the m=1 mode (solid line) and step function approximation W=W,, at timety. In the step function approximatiov,
(dashed ling The wave form is identical to that shown in Fig. 2 for IS @ continuous(smooth function of time. Hence, voltage
voltagesV, (V4=1.03 V). jumps of (rv,—vg) (betweerw,, andwgy,) occur synchro-

nously in the ring. The number of units jumping “up” at a
sponds to the stable= +0 mode. Here@™* is the coordinate time t exactly corresponds to the number of units jumping
of the maximum of the functiofr. The intermediate domain “down” at this same time, hencq is a constant. From Eg.

—v*<vg<v* is unstable. (18), we obtain

To obtain the dependence @f),, (wherem is the mode
numbej on v, for an oscillatory mode, we approximate it T_“p: q (19)
by a piecewise linear function. Namely, E40) involves the T N

voltage derivativez}(g) which we approximate by a step
function oscillating between two constant values. Experi-
mental observations support this approximatigfig. 3).
Then for a stationary mode with mode numimar Eg. (10) (v)m F(Wup) (20
gives

Finally, from Eqgs.(12), (17), and(19) it follows that

wherew,,, is a positive root of the equation

D= | 2F (W +| 1 2 Fwgn|, (12
mnal T up T dn/ |» sth+qwup
F(wyp +F “—N—a =0, (21
where T is the oscillation periodwhich depends on the
mode numbem), T,, denotes the time interval when the satisfying the inequalities
voltage applied to the nonlinear resistars= v (€) —vgp, iS WS W W
maximal(Fig. 3), andw,, andwy, are(dimensionlessmaxi- - up =T
mum and minimum voltages at the nonlinear resistor still to (N=q)w_ —No (N—q)w, —No
be determined. Since the voltage on a node is a bounded DW= sh W< DW= sh (22)

function of time, [ jvdé=0 and q q

The valuesw.. are found from the condition$’(w_)=0,

E)(Wdﬁvsh):O- (13) F’(w_)<0 andF(w,.)=F(w_). The integerg in Eqg. (21
T corresponds to the mode number:

I%QN-+ Wt 1-
T upT Us

The energy is | m, m=0 03
“IN+m, m<o. @3
2 Un-17"Un 2 ) .
H= +'svtex U—t +avg,|, (14 The general solution of Eq$20) and (21) is
. S I — 1
which corresponds to the dissipationless Hamiltonid&n ( <v>m=a<b(vsh,m), (24

=0). Its time derivative is

dH where ® is a function only of the shift voltage and mode
EZE F(T0n—0sh)Up- (15 number, thus defining the stable branches on the plane

({(v),vgn. Figure 4 shows the stable branchés for the
six-node ring. We can plot the stable branchesbofusing
either the analytical expression for the functiBrisee Eg.
TdH (3)] or '_[he experimentally measur¢d/ characteristi¢30].

f ~_dt=0. (16) Moving along a branch for a given mode numlzgfor

In the stationary state, we have

o dt m), we come to a point where E¢R1) has no solution for
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0.06 existence of a single solution, the nonoscillatory mode with
m=0 |2 B 29 m=—0 (“left” rotation ). From Eq.(25), substitutingN=6
j l/{ g [ f f andq=>5 we estimate the shift voltagé,< —1.26 V below
0.03 o N\ fa which there are no stable oscillatory modes, hence indepen-
g f f }/\ / / dently of the initial conditions, the mode= —0 is realized.
Sy k Thus starting fromVy,=—1.8 V we ensure that the mode
= \;f 7;’ f m=—0 (gq=6) is formed in the ring. Then we slowly in-
~ e creaseVy, to large positive values and follow the mode evo-
-0.03 f 7, j y }7 f lution. Figure 4 shows experimental results for two such runs
/ ¥y & ¥ ¥ a with different values oR, . We observe no difference in the
mean current in these two runs, thus confirming the theoret-

-0.06 ical prediction that branch positions and shapes depend only

VhO[V] ! on the properties of the nonlinear resistor, i.e., on the energy
® dissipation-pumping mechanism. Furthermore, the experi-
FIG. 4. Mean current across a nonlinear resigbamm Eq. (10) mental results agree with all the stable branches found for the
(I.y=(V)IRa] Vs the shift voltageV,,. Triangles and squares cor- analytically predictedb.
respond to different experiments witR,=Rg=240 k) and to As mentioned above earlier, fad>3 (in our caseN
Ra=Rg=120 K2, respectively. Solid curves show theoretically =6) several modes can be stable for the same shift voltage
predicted [Eq. (24)] stable branches corresponding to different (Fig. 4). As Vg, increases beyond a critical poifg. (25)]
modes. Arrows show possiblexperimentally observediirections  and the mean value of the current approaches its maximum
of jumps when one mode loses stabiliggnly two arrows are |, .., the initially excited mode becomes unstable, while
shown. some other modes are stable. For example, Vo=
—0.85 V the modem=—0 is unstable, but the two other
the giveng, while for differentq’s solutions exist. At this  modes withm=—1 andm= —2 remain stable. Hence, fur-
bifurcation, the initially excited mode loses stability and atner increase o¥/¢, leads to a jump to either moda= —1
new (stabl¢ mode forms, causing a mode jump. We cangr m=—2 mode. Experimentally we observe both jumps,
estimate the values of the shift voltagd” at which jumps  puyt for a slowly varying shift voltagéor low perturbatioh

-2 -1

occur using Eq(21) and the cubic approximation fe: generally the jump is to a nearest mode, in this case to
m= —1 as shown in Fig. 4. In other words, the nearest mode
N—3q increases in the mode number is the “nearest” in the phase space as
\/§N ’ q well. Subsequently, we jump tm=-2, m=3, m=2, m
vjsmhp: N3 L (25) =1, andm=0. Similar jumps are observed when the shift
9, = q decreases. voltage decreases from 1.8 V t01.8 V.

We have also found experimentally that decreaftpdy
half (from 240 K) to 120 K)) allows jumps only between

, ) the neighboring modes and prohibits jumps to next-nearest
In the same way we can find the zerosd®f which corre- neighbors.

spond to zero average current through the nonlinear resistors. Figure 4 shows hysteresis between neighboring modes.

BN B

Setting(v),=0 in Eq.(20), we get Exciting a mode, say withm=—1 (using an appropriate
value ofvg,), we can jump to the mode witm=—2 by
00 =1— 2_q (26) increasing the shift voltage. To return to time= —1 mode, it
sh N suffices to decrease the shift voltage to a value where the

) _ stable branch fom=—2 ends. Note that jumps “forward”
Accordingly, ® has (N+1) different stable branches znd “hackward” exhibit hysteresis hence occurring at differ-
(N—1 for oscillatory modes &q<N, and two for the ent values of the shift voltage. From E@5) we can esti-
nonoscillatory modes Stable branches intersect the=0  mate the hysteresis gapVq~0.42V close to the experi-

axis at (N —1) points defined by E26). These points uni- mental value(Fig. 4). By successive jumps, we can obtain
formly divide the range between the two extreme poiits  any desired mode.

which correspond to the nonoscillatory modisse Eq(11)].

From Eg.(25), the length(interval in vg) of each stable IV. MODE ROTATION AND MODE CONTROL

branch is 14/3, and is independent ®f. The jumps between

modes require overlapping of stable branches for bifurcating \We now use to modulate the shift voltagéhe switch in
values ofvg,. Then Eq.(25) gives the minimal number of position 2 (Fig. 1) and the second possibility in Eq7)].
nodes in the rindN>3 to have successful jumps. The more Kirchhoff’s laws give an additional equation governing the

nodes in the ring, the denser the branche®of evolution of the shift voltage:
To check these theoretical predictions, we studied the in- -
fluence of the shift voltag¥, on the evolution of the ring, To0 =Ko —vgp, (27)

focusing particularly on the mode formation and stability.
For a large enough, negative shift voltage theory predicts theshere
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:w,,C Ry llmadec The rhs of Eq.(34) is linked to the local slope of the-V
Y,

N characteristics of the nonlinear resistor, where it crosses zero
(V=V). From Eq.(32), we have

T2

andk is the gain of the amplifiefFig. 1). In our experiments,

7,~6.9X 10° for C=530 uF. Thus the capacito€ makes k* = L
; ; illati ' dlnr(v)
the evolution ofvg, slow relative to node oscillations N
«1/75). Averaging Eqs(6) over the ring, we find dv V=¥

N ) _ a For the parameter values used in our experimemg (
Z Frun—vsh) =280+ L osh. (28) =120 K)) and thel -V characteristics of the nonlinear resis-
n=1 tor [30], we findk* ~0.08. From the behavior of the optical

. . . mode, we experimentally estimate the valuekdfby tuning
The right hand sidérhs) of Eq. (28) includes a sum over all k while the origin remains stable. The result in this case is

nodes, which complicates the analytical investigation of thq(*%0 09, close to the theoretical value. The other steady
dynamics. Below we derive the approximate equations USIn%tates, if they exist, are unstable for all parameter values.

results go”.‘ the precedwt\)glj section . Thus if the origin is stable, it is globally stable. Hence, after
Introducing new variables a transient and corresponding mode jumps the optical mode
1t _ 1t m=N/2=3 is excited withvg;=0, (F)=0.
X(t)= _J v(s)ds, y(t)= _J ve(s)ds (29 For a high amplifier gairk>k*, all steady state@nclud-
Tt Tt ing the origin are unstable. Each mode is metastalaian
exist only for some time, although long enough relative to
and using Eqgs(10), (24), (27), and(28), we get the oscillation periofdue to the continuous increase or de-
crease of the shift voltage. Thus the ring can choose a par-
ticular mode, say, only temporarily since the change of the
shift voltage leads to a bifurcation when the corresponding
stable branch of the functio®(y,l) (solid lines in Fig. 4
1 ends, with a subsequent jump to another branch correspond-
y= T—(kx—y). (30 ing to another mode. According to E@1), the valuey (and,
2 respectively, the shift voltage,) increases if®(y,m)
In Egs.(30), y is a slow variable relative to the time scale of >ay/k _and dec_reases otherW|s_e. Hence, the r_lumber_ of
modes involved in the mode rotation when modes in the ring

X Eor each fixed value of (T?Hm:) in the 3D phase s.pace successively replace each other depends on the ratdkof
(x,x,y), we have a fast Hamiltonian planar system with one

o and on the properties of the functieh. The change of di-
steady statécentej at[1/2ap(y,m)+(a/k),0]. For afinitt ontion for instance from growth to decreasegf, happens
75, the slow motion along axis is accompanied by the fast

: at a jump when the new mode appearing in the ring has a
oscillatory motion on X,x). Applying the averaging method value of® lower thanay/k (below the nullcling. Figure 5
[32], we obtain for the slow motion, shows two experimental runs for different values of the am-
plifier gaink. In the region above the straight lingaulicline)

(I =(Vsn/(Rak), we have motion to the right and below
to the left. The jumps fronrm=3 tom=2 in the upper panel
and fromm=2 to m=1 in the lower panel, labeled and
Depending on the ratia/k and the properties ab, Eq.(31) ending at pointa, lead to a change in circulation direction
has up to seven steady statdsr N=6). The origin {f  since they take the current below the nuliclines for each run.
=0) is always a steady state, which is stable for small amThe next change of circulation direction occurs at the jumps

Z| -

. a
X+2ax=d(y,m)+ Ey,

_k
_2a’7'2

y (31)

a
(I)(y,m)—Ey :

plifier gain: B ending at poinb. Thus we go clockwise in a loop through
the ring visiting different branches by “jumping” between
k<k*=al/®’'(0N/2). (32 modes. In Fig. &), for k=0.38 the loop does not include
modesm= *1, while these modes are included in the loop
To calculated’(0,N/2), we use Eqs(20) and(24): for k=1 [Fig. 5b)], as theory predicts.
Figure 6 illustrates the behavior of a simulated ring with
) dF(wyp) dw, higher number of nodesN(=8 andN=20). Note that sev-
@' (y,m)= dTup dogy’ (33 eral branches coincide for the two rinfse return to this in
Sec. V.
Evaluating the derivative at the origin, we obtain We call the mode transition a jump. Actually the transient

is finite, but very short compared to the lifetime of any mode.

N dF Figure 7 shows a transitiota jump from m=2 to m=1.
o’ 0@) = awe (34 We calculated the mean currefit,) by averaging the cur-
UPlw =1 rent through the first node over a time equal to the interval
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0.06 2

(@ m=10 -1 2 +3 2 1 0 —_ (a
008 r Y AWA Yl = 0o
— 0.02 / / / / E
5 0 b < 40
ud J QAL ) )L E
-0.04 M /BV v /v -0 0 ; 1I0 15
time [ms]
-2 -1 0 i 2 2
v, [V 5 (b)
0.06 R 0
® m=+0 -1 2 43 1 0
ANANAN S ] _ 2
— 0.02 / % / / A 240—\
E /- / 3
= 7% a/ MReT: 2|o 2|5 30
-0.02 B / / 7 / time [ms]
v/ /S VW W 2
S ©
-2 -1 0 1 2 - 0
Va V] =
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FIG. 5. Mode rotation; closed loops show experimentally ob- g 40 —
tained paths among quasistable branche® dtompare to Fig. # =
for two different values ok: (a) k=0.38, three modes in the loop; =+ 0 ] ]
(b) k=1, five modes in the loop. Straight lines with slopeR}) ~* 30 35 40 45
are nullclines. time [ms]

) FIG. 7. Dynamical transition between modes=2 andm=1,
between successive zeros ©f(t). Strictly speaking, such as the shift voltage ¢, passes a criticabifurcation point. In each
averaging gives the mean value of the current only for gart, we show the voltage at the nonlinear resistor in the first node
steady (establishel oscillatory state[Figs. 7a) and 4c)],  (w,=rv,—vg) (upper curvg and the mean currefiower curve.

and is meaningless for the transidiftig. 7(b)] where the  (a) m=2 mode before jump(b) transient, andc) newm= 1 mode
procedure gives a curve linking the two stationary oscillatoryafter jump(compare to Fig. %

states. However, the intermediate panel can be used to esti-
mate the duration of the transition. The transition from

0.06 =2 tom=1 takes about 10 ms or eight oscillation periods of
v v the m=1 mode. Hence it is very fast relative to the several
second time scale for the shift voltage to make a loop, and
even to the time interval between jum(tgpically more than
g 0.3 9.
0
;\:é V. DISCUSSION
We have investigated, both experimentally and theoreti-
cally, a Toda-Rayleigh ring wittN (N=6 in experiments
0,06 t identical nonlinear nodes, with exponential Toda-type inter-
T2 0 2 action between nodes and Rayleigh-type dissipation-energy

A pumping mechanisnicubic nonlinearity with three regions

h such that the middle one has a negative slope and the other

FIG. 6. Mode rotation and loop&umerical experimentsthe ~ two have positive slopgs

thicker solid line corresponds to an 8-node ring and the thinner In contrast to the original dissipationless Toda chain, our
curve to a 20-node ring. The black dot indicates the starting pointing has a well-defined number of stable wayegluding
for both runs. The straight nulicline splits the plane into regionssoliton like) which are selected by the energy balance condi-
with oppositeVg,. Small arrows mark three branches that are thetion: (N—1) nonlinear oscillatory modegvaves and two
same for the both ring&ee text Arrows on the branches show the nonoscillatory ones. Oscillatory modes have different pro-
direction of motion. The amplifier gaik=0.6 is higher than the files and time scales. Each mode can be excited in the ring
critical value for both experiments. over some interval of shift voltagé-ig. 4). The analytical

056208-7



del RIO et al. PHYSICAL REVIEW E 67, 056208 (2003

expression for stable branches of aN{1) different re- : : 5:1 5:2
gimes of operation of the circuit agrees with the experimen- NG R
tal observations. We have studied transitions between wave
modes and proposed a suitable method to select modes inde-
pendently of the initial conditions by varying a single param-
eter, i.e., the shift voltage. Moreover, by feedbacking the
average voltage of the ring we have produced cyclic behav-
ior, when different wave modes replace each other in the
(periodig loop. The number of modes visited in the cycle is
chosen by changing the gain of the feedback circuit. Accord-
ingly, our ring may be used, for instance, as a gait choosing
tool for artificial locomotion. We have derived a simplified
model that describes well the mode rotation.

Although our experiments use a rather short ring, the re-

sults may be applied to rings with an arbitrary number of £ g pescription of possible phase configurations, each case

nodes. Suppose that a stationary wave has been excited in tR8apeledN:m, whereN is the number of nodes in the ring and

ring. Due to the geometry, several nodes may have the samg the mode number. Arrows join units wittunequal nearest

oscillation phase. Assume that for mode numbgrnodes  phases making clusters. Dotted lines join units with the same phase.

(n+An) andn have the same phase. From [9), we have  (a) Basic configurations in rings with prime numbers of notesy

An(mT/N)=]T, or the first three are shown(b) Complex configurations that include
clusters of small “rings”(two cases foN=6 and 8 are shown

N
An=j—, (35 ) )
m #1. Accordingly, we can writtN=pN’ andm=pm’. Equa-
tions (35) and (36) imply j=m’, An=N’, and|m’|<(N’
whereN/|m| denotes the wavelength that must be less than, 1)/2. Hencem’ take?syafl possible values aIIo|Weli in( aring

or equal to the 'ef‘g‘h Of the ring af?d more than or equal Quith N’ nodes and we can “split” the ring intp symmetri-
two nodes, and is an integer, which corresponds to the I L
g . . cally distributed clusters of smaller “rings” witiN" nodes.
minimal number of lagging periods between nodesnd : . . X :
(n+An). Thus we have restrictions on the integarand] Each such ring behaves like & ring. Oscillatory modes in
' ' each cluster will be the same as the corresponding modes in
N+ 1 the N’ ring. Figure &b) shows examples for 6: &2 and
1s|j|<|m|<T. (36)  An=3); for 6:3 (p=3 and An=2); for 8:2 (p=2 and
An=4); and for 8:4 p=4 andAn=2). Thus we obtain
For all mode numbers and ring lengths, there exists at lea$fN—1) oscillatory modes for a ring of any length. Moreover,
one degenerate possibilitAn=N, and consequentlyj  the stable branches for modes in thering inherit the
=m. In this case, all nodes in the ring have different phasegPranches of all modes of the’ ring (Fig. 6 with N=8 and
WhenN is a prime numberj=m is the only solution satis- N=20) because E¢21) [and, accordingly, Eq(24)] is in-
fying Eqs.(35) and(36). Figure &a) illustrates this case for Variant under the transformatioh(,m’) —(pN’,pm’). For
N=2, 3, and 5, labeling different possibilities by two indices €x@mple, in Fig. 6 two rings wittN=8 andN=20 inherit
N:m. Node (1+]) is closest in phase to nodese.g., for ~Pranches from aring with” =4 nodes p=2 and 5, respec-
N=5 in the configuratios:2, thenearest in phase nodes are tively). Consequently, there are three branciedicated by
the next-nearest neighbors. Thus for rings with a prime numsmall arrows corresponding to the oscillatory modes of a
ber of nodes, we have\(— 1) oscillatory modes of this type. ng with four nodes that also belong to both long rings.

If An=N is not a prime number and and m have no
common factors, the fractioN/m is irreducible, and again
j=m. Figure 8b) for 6:1, 8:1, and 8:3 shows such configu-
rations. In the latter case, nearest phases have third neigh- Two authors(V.A.M. and W.E) acknowledge the Minis-
bors. try of Science and Technology of Spain for financial support.

Let us consider the cagen<<N, which is realized when This research was supported by the same Ministry under
N/m is reducible, i.e.N and m have a common factop Grant Nos. PB 96-599 and BFM2001-3723.
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