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Mode transitions and wave propagation in a driven-dissipative Toda-Rayleigh ring
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A circular lattice~ring! of N electronic elements with Toda-type exponential interactions and Rayleigh-type
dissipation is used to illustrate wave formation, propagation, and switching between wave modes. A method-
ology is provided to help controlling modes, thus allowing it to realize any of (N21) different wave modes
~including soliton-type modes! and the switching between them by means of a single control parameter.
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I. INTRODUCTION

Cyclic global behavior, with intermediate jumping o
switching between different modes of operation~in general
of complex form!, is known to occur in various fields o
science and engineering and particularly, in biology, neu
biology, and biochemistry@1#. An example is the versatile
and elegant locomotion of animals with efficient gait switc
ing that has stimulated efforts to mimick it with artificia
walking machines@2–5#. To solve the problem of patter
formation and robust transition among several types of g
the use of oscillatory neural networks with different archite
tures has been purposed@3,6#. In fact, most animal gaits
possess a degree of symmetry and universal features no
from the behavior of rings of coupled oscillators@7–9#. Then
transitions between different gaits can be modeled as s
metry breaking bifurcations, leading to the switch betwe
different activity patterns in a ring@8–10#. In general, in a
ring lattice possessing several operational regimes~multi-
stable modes! switching between them can be achieved w
a suitable resetting of the phases of all units. Different rob
methods to control operational modes have been propo
For instance, in Refs.@6,4# the control of a hexapode robo
by means of patterns generated by reaction-diffusion cell
neural networks is discussed and implemented.

On the other hand, coupled map lattice models have b
used to study complex spatio-temporal systems@11,12#. In
this way, the evolution of ring lattice systems has been c
sidered in Refs.@13–15#, investigating, e.g., spatiotempor
periodic traveling waves and their behavior depending
initial conditions and values of control parameters@13#. The
behavior of fronts near the boundary of parametric instabi
has been investigated in Ref.@14# and a connection betwee
a periodic solution, spatiotemporal intermittency, bifurcati
behavior, and coexisting attractor is studied in@15#, for
coupled sine circle and coupled logistic map lattices.

Using analog circuits is a well-known@16,17# approach in
the study of the behavior of the nonlinear dynamics of rin
made up of coupled oscillators. In this case, we have a
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physical system exhibiting robustness and tolerance to~low!
noise level and a slight parameter mismatch. Yet, a sys
can show diversity in behavior due to noise@18# or due to
detuning of the oscillators of the ring@19#. The dynamics of
a ring of coupled oscillators has been considered in Ref.@20#
for the experimental observation of emergent cyclic behav
associated to a fast periodic rotating wave.

Toda @21# provided exact analytic solutions, includin
solitons, for a one-dimensional~1D! Hamiltonian lattice
~chain! with exponential interactions between the elemen
Subsequently, other~conservative! solitons bearing chains
were proposed to study nonlinear signal evolution and tra
mission. Electronic implementations of such chains are
avoidably dissipative, which may drastically alter the in
tially expected behavior. As dissipation leads to energy l
@22–26#, energy injection is necessary to~steadily! maintain
the evolution of the system. We therefore study here the
of dissipation and controlled energy pumping in the form
tion and sustained propagation of different waves, includ
solitonic waves that are known to propagate in discrete
continuous media@27#. Using as an example, a ring lattic
with Toda-type interaction between units and Rayleigh
ergy dissipation-pumping mechanism@28–30#, we show
how by means of a simple feedback one can stabilize dif
ent activity patterns and achieve robust switching betw
them. This driven-dissipative Toda lattice also allows a
tonomous cyclic behavior when modes continuously repl
each other in a long, global, overall loop.

Hirota and Suzuki@22# described the first implementatio
of an electrical circuit of the Toda lattice. However, the
implementation was not valid for high amplitude waves. R
cently, Singer and Oppenheim@23# proposed a different cir-
cuit using junction diodes to model the exponential nonl
earity and double capacitors to obtain appropriate ti
derivatives for modeling the original, conservative Toda l
tice. The resulting circuit was accurate enough to study
ferent soliton effects such as soliton overtaking and co
sions. Based on previous results@23,29#, in Ref. @30# we
proposed an alternative electrical circuit for the investigat
of waves and space-time patterns in a Toda-Rayleigh latt
including dissipative effects and energy input mechanis
We have shown that, unlike to the Hamiltonian case,
initial conditions lose relevance and the energy inp
©2003 The American Physical Society08-1



s.

s.
w
ing

n
ha

ta
II,

to
c

am
ar
en

ee
t
n
ed
sc
ts

igh
-
s
e
vo
a

-
th a
nd
of
u-
he

-

c-

ear

e

g a
n-
of

i-

t

e-
he

nti-

:

d

lt-
e

-

del RÍO et al. PHYSICAL REVIEW E 67, 056208 ~2003!
dissipation balance helps to~steadily! maintain a well-
defined finite number of different oscillatory solution
Namely, the Toda-Rayleigh ring possesses (N21) different
nonlinear oscillatory modes or waves~whereN is the number
of units in the ring! and two nonoscillatory rotational mode
Furthermore, by monitoring a common external voltage,
were able to switch between modes in the circuit allow
selection of waves including solitary waves@30#. Here we
significantly extend our previous study, focusing now atte
tion on mode generation, control, and switching mec
nisms.

Section II provides details of the electronic implemen
tion of the driven-dissipative Toda-Rayleigh ring. In Sec. I
the stability regions of theN11 modes is provided. We
show that the characteristic function of the nonlinear resis
of the units determines the branches in parameter space
responding to stable wave modes. By tuning a single par
eter we can select any mode. Analytical results are comp
with the experimental data showing fairly good agreem
between the theory and computer experiments. Section
deals with controlled feedback-induced transitions betw
wave modes. When parameter values are changed, the la
successively visits different wave modes in a global lo
cycle. Finally in Sec. V, we summarize the results obtain
and discuss the relation between the various possible o
latory modes in a given ring with arbitrary number of uni

II. DISSIPATIVE TODA-RAYLEIGH LATTICE AND ITS
ANALOG CIRCUIT IMPLEMENTATION

Figure 1 shows a block diagram for the Toda-Rayle
ring. Reference@30# provides detailed description of all com
ponents. To the circuit in Ref.@30#, we have added resistor
RB to obtain the voltageV̂ averaged over all nodes in th
ring and an amplifier that can increase or decrease the
age Vsh supplied to the voltage adders. The amplifier c
connect either to a variable voltage source (Vext in Fig. 1! or

FIG. 1. Block scheme of the Toda-Rayleigh lattice. Each no
~dashed box! includes three main blocks: a double capacitor~DC!, a
nonlinear resistor~its resistance is a nonlinear function of the vo
age applied to its terminals!, and a voltage adder that shifts th
voltage at the nonlinear resistor by a common voltageVsh. RA is an
additional stabilizing high-value resistor. ResistorsRB are used to

obtain the averaged voltageV̂. The circuit at the right, including
switch S, high capacitanceC, external batteryVext , and amplifier
with variable coefficientk, controls the evolution of the ring auto
matically via a global feedback.
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to the average voltageV̂. In the first case, the resistorsRB
connect in parallel toRA , effectively reducing their resis
tance. In the second case, we add a global coupling wi
feedback loop via the amplifier to the voltage adders, a
finally to the nonlinear resistors. Due to the high value
RB , this global coupling does not affect directly the evol
tion of the circuit, but instead controls the behavior of t
ring via feedback.

From the current-voltage (I -V) relation for a double ca-
pacitor~DC! @31# and Kirchhoff’s laws, the equation govern
ing the evolution of the circuit is@23,30#

d2Vn

dt2
5vv

2RdcI dc5vv
2Rdc~ I n2I n111I nr2I A2I B!, ~1!

wherevv
2'106 (rad/s)2 is a constant depending on the stru

ture of the double capacitor.I nr , I A , and I B are currents,
respectively, through the nonlinear resistor and the two lin
resistors in the noden ~Fig. 1!. I n is the current through the
junction diode withI -V characteristics:

I n5I sexpS Vn212Vn

Vt
D , ~2!

where the constantsI s and Vt depend on the choice of th
diode. Depending on the position of the switch, the voltageV̂
can be zero~the common point is grounded! or may vary.
The current through the nonlinear resistor~block NR in Fig.
1!, I nr , is a nonlinear function of the applied voltageV
5Vn2Va . The functionI nr is symmetric and cubiclike with
three zeros and positive slope at the origin, hence havin
region with negative differential resistance, to provide e
ergy pumping and dissipation. A recent monograph by one
the authors@27# treats a similar problem. Further, for numer
cal simulations we approximateI nr as

I nr~V!5
3A3I max

2Ṽ3
~Ṽ22V2!V, ~3!

where constantsI max and Ṽ are, respectively, the current a
the extreme and the coordinate of zero of the functionI nr . In
our experimental setup, we useṼ51.45 V and I max
545 mA. Note that the voltage applied to the nonlinear r
sistor is a linear combination of the time derivative of t
voltage at the node,Vn , and the ‘‘shift’’ voltageVsh @30#:

V5
1

vv
2RdcC1

dVn

dt
2Vsh. ~4!

In our analytical calculations, we use dimensionless qua
ties denoted by lower case letters:

vn5
Vn

Ṽn

, i 5
I

I max
, t85vvAI maxRdc

Ṽ
t. ~5!

The rescaled time ist8/t'651.6 s21.
Equations~1!–~5! give the following equations of motion

e

8-2



a

e

s
,

ry

n

r
ls

nd

ga

e
n

r
n

n

ses
ci-

ge

en

nd
sults
tat-

the

MODE TRANSITIONS AND WAVE PROPAGATION IN A . . . PHYSICAL REVIEW E67, 056208 ~2003!
v̈n5 i s~e(vn212vn)/v t2e(vn2vn11)/v t!1F~t v̇n2vsh!

2avn2 i B , ~6!

i B5H avn , S in position 1

aS vn2
1

k
vshD , S in position 2,

~7!

with

i s5
I s

I max
, a5

Ṽ

I maxRA
'0.27, t5

1

vvC1
A I max

ṼRdc

'0.48

andF(x) has three roots atx561 andx50. For numerical
simulation, we will useF(x)5(3A3/2)(12x2)x. A dot over
a quantity denotes time differentiation with respect tot8.

We also measure the average voltage over the nodes

v̄5
1

N (
n51

N

vn , ~8!

which, in general, is a function of time with small amplitud
variation.

III. OPERATIONAL MODES AND JUMPS
BETWEEN THEM

With the switch in position 1~Fig. 1!, the currentI B is
equal to the currentI A @Eq. ~7! where we assumeRA5RB],
so the common shift voltage for all nonlinear resistors i
constant controlled by the voltage of the external battery

Vsh5kVext.

In this configuration, the ring~6! has (N11) different stable
modes: (N21) oscillatory modes, and two nonoscillato
rotational modes. The last two correspond to~clockwise or
counterclockwise! rotation of the ring as a whole. We assig
each mode a mode numberm which gives wavelength and
wave vector asN/umu and 2pm/N, respectively. All modes
are nonlinear~anharmonic! oscillations and, hence, nonlinea
waves in the ring. The oscillation amplitude and shape a
depend on the mode. The modes with negativem521,
22, . . . ,2N/2 have the same amplitude as the correspo
ing modes with positivem51,2, . . . ,N/2 ~here we assumeN
to be even, for odd number of nodes, see Sec. V!, corre-
sponding to waves with the same wavelength but propa
ing in opposite directions. For evenN, there exists a ‘‘spe-
cial’’ ~optical! modem56N/2. Both signs define the sam
oscillatory form with nearest-neighbor units oscillating in a
tiphase. The two longest wavelength modes~with m561)
have the largest amplitude. The amplitude decreases fo
creasing mode number. Figure 2 shows sample experime
traces for all nodes for the modem51 ~in a six-node ring!.
For a long enough ring, them561 modes become solito
solutions ~for voltage difference variables!. For two
nonoscillatory modes, we assign mode numbersm560
which have infinite wavelength~or nonoscillating solutions!.
Here signs show the direction of ring rotation.
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Generally an excitation passing through a node increa
~or decreases! its voltage by a value depending on the ex
tation type (DV5*V̇dt need not to be zero!. Thus a wave
rotating in the ring continuously increases~or decreases for a
wave running in the opposite direction! the voltage in the
nodes, which eventually saturates the circuit. The volta
adders and the high-value resistorsRA ~Fig. 1! remedy this
problem, as already discussed in Ref.@30#.

To describe the mode evolution and switching betwe
modes, we plot the average voltage at a node^vn&5^v̄& as a
function of the shift voltagevsh for all allowed modes, map-
ping the stable solution branch for each mode. Let us fi
these branches theoretically and then compare the re
with experimental observations. For a stationary wave ro
ing in the ring with periodT, we have

vn~ t !5v~j!, j5t2n
mT

N
. ~9!

Hence from Eq.~6!, we obtain

^v̄&5
1

aN (
n51

N

^F~t v̇n2vsh!&5
1

a
^F„t v̇~j!2vsh…&j .

~10!

For two nonoscillatory modesm560 @ v̇(j)50#, Eq. ~10!
gives

^v̄&6052
1

a
F~vsh!. ~11!

The analysis of Eqs.~6! and ~11! shows that the domain
~branch! 2`,vsh,2v* corresponds to the stablem520
mode~counterclockwise rotation!, while v* ,vsh,` corre-

FIG. 2. Oscilloscope traces of the voltages for each node for
m51 mode.
8-3
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sponds to the stablem510 mode. Herev* is the coordinate
of the maximum of the functionF. The intermediate domain
2v* ,vsh,v* is unstable.

To obtain the dependence of^v̄&m ~wherem is the mode
number! on vsh for an oscillatory mode, we approximate
by a piecewise linear function. Namely, Eq.~10! involves the
voltage derivativev̇(j), which we approximate by a ste
function oscillating between two constant values. Expe
mental observations support this approximation~Fig. 3!.
Then for a stationary mode with mode numberm, Eq. ~10!
gives

^v̄&m5
1

a FTup

T
F~wup!1S 12

Tup

T DF~wdn!G , ~12!

where T is the oscillation period~which depends on the
mode numberm), Tup denotes the time interval when th
voltage applied to the nonlinear resistor,w5t v̇(j)2vsh, is
maximal~Fig. 3!, andwup andwdn are~dimensionless! maxi-
mum and minimum voltages at the nonlinear resistor stil
be determined. Since the voltage on a node is a boun
function of time,*0

Tv̇dj50 and

Tup

T
~wup1vsh!1S 12

Tup

T D ~wdn1vsh!50. ~13!

The energy is

H5(
n

F v̇2

2
1 i sv texpS vn212vn

v t
D1avn

2G , ~14!

which corresponds to the dissipationless HamiltonianF
[0). Its time derivative is

dH

dt
5(

n
F~t v̇n2vsh!v̇n . ~15!

In the stationary state, we have

E
0

TdH

dt
dt50. ~16!

FIG. 3. Voltage at the nonlinear resistor@W}w5t v̇(j)2vsh#
for the m51 mode ~solid line! and step function approximatio
~dashed line!. The wave form is identical to that shown in Fig. 2 fo
voltagesVn (Vsh51.03 V).
05620
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Substituting Eq.~15! into Eq. ~16!, exchanging integration
and summation, and using Eq.~13!, we obtain

F~wup!5F~wdn!. ~17!

The time derivative of Hamiltonian~15! can also be written
as

dH

dt
5NF~wup!~wup1vsh!F q

N
2S 12

q

ND Tup

T2Tup
G , ~18!

where q(t)PN (0<q<N) is the number of nodes havin
w5wup at time t0. In the step function approximation,( v̇n
is a continuous~smooth! function of time. Hence, voltage
jumps of (t v̇n2vsh) ~betweenwup andwdn) occur synchro-
nously in the ring. The number of units jumping ‘‘up’’ at
time t exactly corresponds to the number of units jumpi
‘‘down’’ at this same time, henceq is a constant. From Eq
~18!, we obtain

Tup

T
5

q

N
. ~19!

Finally, from Eqs.~12!, ~17!, and~19! it follows that

^v̄&m5
1

a
F~wup!, ~20!

wherewup is a positive root of the equation

F~wup!1FS Nvsh1qwup

N2q D50, ~21!

satisfying the inequalities

w2,wup,w1 ,

~N2q!w22Nvsh

q
,wup,

~N2q!w12Nvsh

q
. ~22!

The valuesw6 are found from the conditions:F8(w2)50,
F9(w2),0 andF(w1)5F(w2). The integerq in Eq. ~21!
corresponds to the mode number:

q5H m, m>0

N1m, m,0.
~23!

The general solution of Eqs.~20! and ~21! is

^v̄&m5
1

a
F~vsh,m!, ~24!

where F is a function only of the shift voltage and mod
number, thus defining the stable branches on the pl
(^v̄&,vsh). Figure 4 shows the stable branchesF, for the
six-node ring. We can plot the stable branches ofF, using
either the analytical expression for the functionF @see Eq.
~3!# or the experimentally measuredI -V characteristic@30#.

Moving along a branch for a given mode numberq ~or
m), we come to a point where Eq.~21! has no solution for
8-4
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MODE TRANSITIONS AND WAVE PROPAGATION IN A . . . PHYSICAL REVIEW E67, 056208 ~2003!
the givenq, while for different q8s solutions exist. At this
bifurcation, the initially excited mode loses stability and
new ~stable! mode forms, causing a mode jump. We c
estimate the values of the shift voltagevsh

jmp at which jumps
occur using Eq.~21! and the cubic approximation toF:

vsh
jmp55

N23q

A3N
, q increases

N23q

A3N
1

1

A3
, q decreases.

~25!

In the same way we can find the zeros ofF, which corre-
spond to zero average current through the nonlinear resis
Setting^v̄&m50 in Eq. ~20!, we get

vsh
0 512

2q

N
. ~26!

Accordingly, F has (N11) different stable branche
(N21 for oscillatory modes 0,q,N, and two for the
nonoscillatory modes!. Stable branches intersect thev50
axis at (N21) points defined by Eq.~26!. These points uni-
formly divide the range between the two extreme points61
which correspond to the nonoscillatory modes@see Eq.~11!#.
From Eq. ~25!, the length~interval in vsh) of each stable
branch is 1/A3, and is independent ofN. The jumps between
modes require overlapping of stable branches for bifurca
values ofvsh. Then Eq.~25! gives the minimal number o
nodes in the ringN.3 to have successful jumps. The mo
nodes in the ring, the denser the branches ofF.

To check these theoretical predictions, we studied the
fluence of the shift voltageVsh on the evolution of the ring,
focusing particularly on the mode formation and stabili
For a large enough, negative shift voltage theory predicts

FIG. 4. Mean current across a nonlinear resistor@from Eq. ~10!

^I nr&5^V̄&/RA] vs the shift voltageVsh. Triangles and squares co
respond to different experiments withRA5RB5240 kV and to
RA5RB5120 kV, respectively. Solid curves show theoretica
predicted @Eq. ~24!# stable branches corresponding to differe
modes. Arrows show possible~experimentally observed! directions
of jumps when one mode loses stability~only two arrows are
shown!.
05620
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existence of a single solution, the nonoscillatory mode w
m520 ~‘‘left’’ rotation !. From Eq.~25!, substitutingN56
andq55 we estimate the shift voltageVsh&21.26 V below
which there are no stable oscillatory modes, hence indep
dently of the initial conditions, the modem520 is realized.
Thus starting fromVsh521.8 V we ensure that the mod
m520 (q56) is formed in the ring. Then we slowly in
creaseVsh to large positive values and follow the mode ev
lution. Figure 4 shows experimental results for two such ru
with different values ofRA . We observe no difference in th
mean current in these two runs, thus confirming the theo
ical prediction that branch positions and shapes depend
on the properties of the nonlinear resistor, i.e., on the ene
dissipation-pumping mechanism. Furthermore, the exp
mental results agree with all the stable branches found for
analytically predictedF.

As mentioned above earlier, forN.3 ~in our caseN
56) several modes can be stable for the same shift volt
~Fig. 4!. As Vsh increases beyond a critical point@Eq. ~25!#
and the mean value of the current approaches its maxim
I max, the initially excited mode becomes unstable, wh
some other modes are stable. For example, forVsh*
20.85 V the modem520 is unstable, but the two othe
modes withm521 andm522 remain stable. Hence, fur
ther increase ofVsh leads to a jump to either modem521
or m522 mode. Experimentally we observe both jump
but for a slowly varying shift voltage~or low perturbation!
generally the jump is to a nearest mode, in this case
m521 as shown in Fig. 4. In other words, the nearest mo
in the mode number is the ‘‘nearest’’ in the phase space
well. Subsequently, we jump tom522, m53, m52, m
51, andm50. Similar jumps are observed when the sh
voltage decreases from 1.8 V to21.8 V.

We have also found experimentally that decreasingRA by
half ~from 240 kV to 120 kV) allows jumps only between
the neighboring modes and prohibits jumps to next-nea
neighbors.

Figure 4 shows hysteresis between neighboring mod
Exciting a mode, say withm521 ~using an appropriate
value of vsh), we can jump to the mode withm522 by
increasing the shift voltage. To return to them521 mode, it
suffices to decrease the shift voltage to a value where
stable branch form522 ends. Note that jumps ‘‘forward’’
and ‘‘backward’’ exhibit hysteresis hence occurring at diffe
ent values of the shift voltage. From Eq.~25! we can esti-
mate the hysteresis gapDVsh'0.42V close to the experi-
mental value~Fig. 4!. By successive jumps, we can obta
any desired mode.

IV. MODE ROTATION AND MODE CONTROL

We now usev̄ to modulate the shift voltage@the switch in
position 2 ~Fig. 1! and the second possibility in Eq.~7!#.
Kirchhoff’s laws give an additional equation governing th
evolution of the shift voltage:

t2v̇sh5kv̄2vsh, ~27!

where

t

8-5
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t25
vnCRB

N
AI maxRdc

Ṽ

andk is the gain of the amplifier~Fig. 1!. In our experiments,
t2'6.93103 for C5530 mF. Thus the capacitorC makes
the evolution ofvsh slow relative to node oscillations (v̇sh
}1/t2). Averaging Eqs.~6! over the ring, we find

v̈̄5
1

N (
n51

N

F~t v̇n2vsh!22av̄1
a

k
vsh. ~28!

The right hand side~rhs! of Eq. ~28! includes a sum over al
nodes, which complicates the analytical investigation of
dynamics. Below we derive the approximate equations us
results from the preceding section forF.

Introducing new variables

x~ t !5
1

TEt2T

t

v̄~s!ds, y~ t !5
1

TEt2T

t

vsh~s!ds ~29!

and using Eqs.~10!, ~24!, ~27!, and~28!, we get

ẍ12ax5F~y,m!1
a

k
y,

ẏ5
1

t2
~kx2y!. ~30!

In Eqs.~30!, y is a slow variable relative to the time scale
x. For each fixed value ofy (t2→`) in the 3D phase spac
(x,ẋ,y), we have a fast Hamiltonian planar system with o
steady state~center! at @1/2ap(y,m)1(a/k),0#. For a finite
t2, the slow motion alongy axis is accompanied by the fa
oscillatory motion on (x,ẋ). Applying the averaging method
@32#, we obtain for the slow motion,

ẏ5
k

2at2
FF~y,m!2

a

k
yG . ~31!

Depending on the ratioa/k and the properties ofF, Eq. ~31!
has up to seven steady states~for N56). The origin (y
50) is always a steady state, which is stable for small a
plifier gain:

k,k* 5a/F8~0,N/2!. ~32!

To calculateF8(0,N/2), we use Eqs.~20! and ~24!:

F8~y,m!5
dF~wup!

dwup

dwup

dvsh
. ~33!

Evaluating the derivative at the origin, we obtain

F8S 0,
N

2 D52
dF

dwup
U

wup51

. ~34!
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The rhs of Eq.~34! is linked to the local slope of theI -V
characteristics of the nonlinear resistor, where it crosses
(V5Ṽ). From Eq.~32!, we have

k* 5
1

RA

dInr~V!

dV U
V5Ṽ

.

For the parameter values used in our experimentsRA
5120 kV) and theI -V characteristics of the nonlinear resi
tor @30#, we findk* '0.08. From the behavior of the optica
mode, we experimentally estimate the value ofk* by tuning
k while the origin remains stable. The result in this case
k* '0.09, close to the theoretical value. The other stea
states, if they exist, are unstable for all parameter valu
Thus if the origin is stable, it is globally stable. Hence, af
a transient and corresponding mode jumps the optical m
m5N/253 is excited withvsh50, ^F&50.

For a high amplifier gain,k.k* , all steady states~includ-
ing the origin! are unstable. Each mode is metastable~can
exist only for some time, although long enough relative
the oscillation period! due to the continuous increase or d
crease of the shift voltage. Thus the ring can choose a
ticular mode, sayl, only temporarily since the change of th
shift voltage leads to a bifurcation when the correspond
stable branch of the functionF(y,l ) ~solid lines in Fig. 4!
ends, with a subsequent jump to another branch corresp
ing to another mode. According to Eq.~31!, the valuey ~and,
respectively, the shift voltagevsh) increases ifF(y,m)
.ay/k and decreases otherwise. Hence, the number
modes involved in the mode rotation when modes in the r
successively replace each other depends on the ratio ofa/k
and on the properties of the functionF. The change of di-
rection, for instance from growth to decrease ofvsh, happens
at a jump when the new mode appearing in the ring ha
value ofF lower thanay/k ~below the nullcline!. Figure 5
shows two experimental runs for different values of the a
plifier gaink. In the region above the straight lines~nullcline!
^I nr&5^Vsh&/(RAk), we have motion to the right and below
to the left. The jumps fromm53 to m52 in the upper pane
and fromm52 to m51 in the lower panel, labeledA and
ending at pointa, lead to a change in circulation directio
since they take the current below the nullclines for each r
The next change of circulation direction occurs at the jum
B ending at pointb. Thus we go clockwise in a loop throug
the ring visiting different branches by ‘‘jumping’’ betwee
modes. In Fig. 5~a!, for k50.38 the loop does not includ
modesm561, while these modes are included in the lo
for k51 @Fig. 5~b!#, as theory predicts.

Figure 6 illustrates the behavior of a simulated ring w
higher number of nodes (N58 andN520). Note that sev-
eral branches coincide for the two rings~we return to this in
Sec. V!.

We call the mode transition a jump. Actually the transie
is finite, but very short compared to the lifetime of any mod
Figure 7 shows a transition~a jump! from m52 to m51.
We calculated the mean current^I nr& by averaging the cur-
rent through the first node over a time equal to the inter
8-6
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between successive zeros ofv̇1(t). Strictly speaking, such
averaging gives the mean value of the current only fo
steady~established! oscillatory state@Figs. 7~a! and 7~c!#,
and is meaningless for the transient@Fig. 7~b!# where the
procedure gives a curve linking the two stationary oscillat
states. However, the intermediate panel can be used to

FIG. 5. Mode rotation; closed loops show experimentally o
tained paths among quasistable branches ofF ~compare to Fig. 4!
for two different values ofk: ~a! k50.38, three modes in the loop
~b! k51, five modes in the loop. Straight lines with slope (kRA)21

are nullclines.

FIG. 6. Mode rotation and loops~numerical experiments!; the
thicker solid line corresponds to an 8-node ring and the thin
curve to a 20-node ring. The black dot indicates the starting p
for both runs. The straight nullcline splits the plane into regio

with oppositeV̇sh. Small arrows mark three branches that are
same for the both rings~see text!. Arrows on the branches show th
direction of motion. The amplifier gaink50.6 is higher than the
critical value for both experiments.
05620
a

y
sti-
mate the duration of the transition. The transition fromm
52 to m51 takes about 10 ms or eight oscillation periods
the m51 mode. Hence it is very fast relative to the seve
second time scale for the shift voltage to make a loop, a
even to the time interval between jumps~typically more than
0.3 s!.

V. DISCUSSION

We have investigated, both experimentally and theor
cally, a Toda-Rayleigh ring withN (N56 in experiments!
identical nonlinear nodes, with exponential Toda-type int
action between nodes and Rayleigh-type dissipation-ene
pumping mechanism~cubic nonlinearity with three region
such that the middle one has a negative slope and the o
two have positive slopes!.

In contrast to the original dissipationless Toda chain, o
ring has a well-defined number of stable waves~including
soliton like! which are selected by the energy balance con
tion: (N21) nonlinear oscillatory modes~waves! and two
nonoscillatory ones. Oscillatory modes have different p
files and time scales. Each mode can be excited in the
over some interval of shift voltage~Fig. 4!. The analytical

-

r
t

s

e

FIG. 7. Dynamical transition between modesm52 andm51,
as the shift voltagevsh passes a critical~bifurcation! point. In each
part, we show the voltage at the nonlinear resistor in the first n

(w15t v̇12vsh) ~upper curve!, and the mean current~lower curve!.
~a! m52 mode before jump,~b! transient, and~c! newm51 mode
after jump~compare to Fig. 4!.
8-7
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expression for stable branches of all (N11) different re-
gimes of operation of the circuit agrees with the experim
tal observations. We have studied transitions between w
modes and proposed a suitable method to select modes
pendently of the initial conditions by varying a single para
eter, i.e., the shift voltage. Moreover, by feedbacking
average voltage of the ring we have produced cyclic beh
ior, when different wave modes replace each other in
~periodic! loop. The number of modes visited in the cycle
chosen by changing the gain of the feedback circuit. Acco
ingly, our ring may be used, for instance, as a gait choos
tool for artificial locomotion. We have derived a simplifie
model that describes well the mode rotation.

Although our experiments use a rather short ring, the
sults may be applied to rings with an arbitrary number
nodes. Suppose that a stationary wave has been excited
ring. Due to the geometry, several nodes may have the s
oscillation phase. Assume that for mode numberm, nodes
(n1Dn) andn have the same phase. From Eq.~9!, we have
Dn(mT/N)5 jT, or

Dn5 j
N

m
, ~35!

whereN/umu denotes the wavelength that must be less th
or equal to the length of the ring and more than or equa
two nodes, andj is an integer, which corresponds to th
minimal number of lagging periods between nodesn and
(n1Dn). Thus we have restrictions on the integersm and j,

1<u j u<umu,
N11

2
. ~36!

For all mode numbers and ring lengths, there exists at l
one degenerate possibility,Dn5N, and consequently,j
5m. In this case, all nodes in the ring have different phas
WhenN is a prime number,j 5m is the only solution satis-
fying Eqs.~35! and ~36!. Figure 8~a! illustrates this case fo
N52, 3, and 5, labeling different possibilities by two indic
N:m. Node (n1 j ) is closest in phase to nodesn, e.g., for
N55 in the configuration5:2, thenearest in phase nodes a
the next-nearest neighbors. Thus for rings with a prime nu
ber of nodes, we have (N21) oscillatory modes of this type

If Dn5N is not a prime number andN and m have no
common factors, the fractionN/m is irreducible, and again
j 5m. Figure 8~b! for 6:1, 8:1, and 8:3 shows such config
rations. In the latter case, nearest phases have third ne
bors.

Let us consider the caseDn,N, which is realized when
N/m is reducible, i.e.,N and m have a common factorp
J
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Þ1. Accordingly, we can writeN5pN8 andm5pm8. Equa-
tions ~35! and ~36! imply j 5m8, Dn5N8, and um8u,(N8
11)/2. Hence,m8 takes all possible values allowed in a rin
with N8 nodes and we can ‘‘split’’ the ring intop symmetri-
cally distributed clusters of smaller ‘‘rings’’ withN8 nodes.
Each such ring behaves like anN8 ring. Oscillatory modes in
each cluster will be the same as the corresponding mode
the N8 ring. Figure 8~b! shows examples for 6:2 (p52 and
Dn53); for 6:3 (p53 and Dn52); for 8:2 (p52 and
Dn54); and for 8:4 (p54 and Dn52). Thus we obtain
(N21) oscillatory modes for a ring of any length. Moreove
the stable branches for modes in theN ring inherit the
branches of all modes of theN8 ring ~Fig. 6 with N58 and
N520) because Eq.~21! @and, accordingly, Eq.~24!# is in-
variant under the transformation (N8,m8)→(pN8,pm8). For
example, in Fig. 6 two rings withN58 andN520 inherit
branches from a ring withN854 nodes (p52 and 5, respec-
tively!. Consequently, there are three branches~indicated by
small arrows! corresponding to the oscillatory modes of
ring with four nodes that also belong to both long rings.
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FIG. 8. Description of possible phase configurations, each c
is labeledN:m, whereN is the number of nodes in the ring andm
is the mode number. Arrows join units with~unequal! nearest
phases making clusters. Dotted lines join units with the same ph
~a! Basic configurations in rings with prime numbers of nodes~only
the first three are shown!. ~b! Complex configurations that includ
clusters of small ‘‘rings’’~two cases forN56 and 8 are shown!.
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