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Abstract

A detailed study of symplectic foliations in a symplectic manifold of di-
mension 4 is carried out, proving the analogue of the Baum-Bott formulas
and giving restrictions to the existence of symplectic foliations with no
singular points.
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1 Introduction

Let (M,ω) be a symplectic manifold of dimension 2n. Let L be a complex
line bundle over M . A (codimension one) symplectic foliation [3] with normal
bundle L is given by some α ∈ C∞(T ∗M ⊗ L) satisfying the integrability
condition α∧dα = 0. The associated distribution Kx = kerα(x) ⊂ TxM must
satisfy that Kx is a symplectic subspace of the tangent space. Moreover the
singular set

S = {x ∈M |α(x) = 0}

must be a union of symplectic submanifolds ofM , all of them of (real) codimen-
sion 4 or more, and intersecting transversely along symplectic submanifolds.

Alternatively, a symplectic foliation can be defined as a (possibly singular)
foliation (i.e., a locally integrable distribution Kx of real codimension 2, for x
in an open dense subset M − S of M) whose leaves are symplectic and whose
singular locus S is a union of symplectic submanifolds of real codimension 4
or more, intersecting transversely along symplectic submanifolds. A point in
M − S is called a regular point. Let U be a neighborhood of a regular point.
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Then the leaves of the foliation in U can be described as the level sets of a
differentiable function f : U → C, so that Kx = ker df(x) in U . We may
take a cover {Ui} of M − S. Then in the overlap region Ui ∩ Uj the functions
fi and fj compare as fi = φij ◦ fj , where φij is a smooth map from C to
C. So dfi = dφij(fj(x))dfj , where dφij ∈ GL(2,R) and it is constant along
leaves. Such (dφij) define a cocycle and hence a cohomology class in H1(M −
S,GL(2,R)). Since S has codimension 4 or more, this group is isomorphic
to H1(M,GL(2,R)), so there is a line bundle L over M determined by the
foliation, named the normal bundle associated to it. The 1-forms dfi glue
together to a well-defined L-valued 1-form in M − S. After multiplying by a
suitable smooth function (vanishing to infinite order in S if necessary), we get
a 1-form α ∈ C∞(T ∗M ⊗ L) which defines the foliation, i.e., kerα(x) ⊂ TxM
is the subspace Kx.

A chart φ : U ⊂ M → Cn will be called adapted at the point x ∈
U if (φ∗)xω = ω0, where ω0 is the standard symplectic form in Cn. This
means that φ satisfies the Darboux condition just at the point x. Most of the
foliations constructed following the method in [3] (e.g., Kupka foliations) have
singularities of the following kinds:

1. isolated points where there are adapted charts (z1, . . . , zn) such that
α = z1dz1 + · · ·+ zndzn, i.e., the leaves are the level sets of the function
f = z2

1 + · · ·+ z2
n.

2. a union of smooth symplectic submanifolds such that each point of them
has an adapted chart (z1, . . . , zn) where α is written as η(z1, . . . , zn) for
a holomorphic 1-form η.

This happens because the symplectic foliations, in [3] are constructed by
restricting a holomorphic foliation in CPN to M ⊂ CPN under some asymp-
totically holomorphic embedding (see [10] for definitions). So it is reasonable
to treat with:

Definition 1.1 Let (M,ω) be a symplectic manifold of dimension 2n. A holo-
morphically modeled symplectic foliation F is a foliation such that given any
point x ∈ M , there exists an adapted chart φ : U → Cn such that φ∗(F) is a
holomorphic foliation.

This implies, in particular, that the leaves of the foliation are symplectic and
the singular set is symplectic whenever is smooth or stratified.

We are going to study only holomorphically modeled symplectic foliations
from now on, since the singularities of generic symplectic foliations can have
very complicated topology.
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Suppose that M is a symplectic manifold of dimension 4. Then the singu-
lar set S is a collection of finitely many points. At any of the singular points
there is, at least, one preferred trivialization in which the foliation is equal to
a holomorphic foliation. This will be called holomorphic trivialization of F
at the singular point (but it is not holomorphic in any sense, since M is not
assumed to have an integrable complex structure). This means that φ∗(F) is
given by a holomorphic vector field

v(z, w) = F (z, w)
∂

∂z
+G(z, w)

∂

∂w
,

i.e., {v, Jv} generate φ∗(F)x for all x off the singular set. The 1-form

G(z, w)dz − F (z, w)dw

generates the foliation. This does not mean that α is necessarily holomorphic,
since changing α by an element of GL(2,R) does not change the foliation.
For instance, consider the symplectic Lefschetz pencils of [4]: these have two
kinds of singular points, over which the holomorphic trivializations give either
α = z1dz1 + z2dz2 or α = z2dz1 − z1dz2.

We want to start a detailed study of the (holomorphically modeled) sym-
plectic foliations for manifolds of dimension 4. In Section 2 we prove the
existence of almost complex structures making the foliation a complex distri-
bution. In Section 3 we define the tangent bundle TF and the normal bundle
NF to the symplectic foliation F , so that we can prove the Baum-Bott formu-
las in Section 5. Section 4 gives formulas relating the tangency number of a
pseudo-holomorphic curve with a symplectic foliation in terms of TF and NF .
Finally, Section 6 initiates the study of the question on the existence of regular
symplectic foliations (those with empty singular set) in four-manifolds. This is
aimed to a (future) possible classification of all regular symplectic foliations in
a four-manifold, extending the classification of regular holomorphic foliations
in complex manifolds given by Brunella [2].

Some of the results that follow may be extended to higher dimensions,
but the classification results that we get in Section 6 are specific to dimension
four. In what follows we will assume that (M,ω) is a symplectic four-manifold
and F is a (holomorphically modeled) symplectic foliation with singular set
S.

2 Adapted almost complex structures

The process of construction of symplectic foliations in [3] goes through choos-
ing an almost complex structure J compatible with the symplectic structure
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ω. Consider the foliation α as an application α : TM → L. Using the almost
complex structure on TM , we decompose α in complex linear and complex
anti-linear parts,

α = α1,0 + α0,1.

When α0,1(x) = 0 the subspace kerα(x) ⊂ TxM is complex. Still when
|α0,1(x)| < |α1,0(x)| the subspace kerα(x) is symplectic.

It is very convenient to have almost complex structures adapted to a
symplectic foliation.

Definition 2.1 Given a symplectic manifold (M,ω) and a symplectic foliation
α on M , we say that an almost complex structure J over M is compatible with
the symplectic foliation if J is compatible with the symplectic structure and if
α0,1 = 0.

Lemma 2.2 Let F be a (holomorphically modeled) symplectic foliation with
singular set S ⊂M on a symplectic four-manifold M . Then we can perturb F
by a C1-small isotopy in a neighborhood of S to a foliation that satisfies the
following: for p ∈ S there are holomorphic trivializations φ : U ⊂ M → Cn

which are also Darboux charts, i.e., φ∗ω0 = ω in U .

Proof. Take an adapted chart at p, φ : U ⊂M → Cn such that φ∗(F) is a holo-
morphic foliation. Then pull-back the symplectic structure of C2 to U ⊂ M .
For a small enough U , we have that φ∗ω0 and ω are arbitrarily close. There-
fore Moser’s trick produces an isotopy taking one of the symplectic structures
to the other one. This gives a diffeomorphism ψ that can be extended to the
whole of M and which is very close to the identity for small U . If now we
consider the foliation ψ∗(F) in M , then we have a small C1-perturbation of
F such that in a neighborhood of p it admits a Darboux chart which makes
the foliation of holomorphic type. �

Henceforth we shall suppose that the foliations we consider satisfy the
conclusion of Lemma 2.2. Any result on a foliation which is invariant by
symplectic isotopies continue to hold for the foliation before the perturbation.

Now we can prove the following basic existence result of adapted almost
complex structures.

Proposition 2.3 Given a symplectic manifold (M,ω) and a symplectic foli-
ation α on it, there is a C1-close symplectically isotopic foliation α′ such that
the set Jα′ of adapted almost complex structures is non-empty and contractible.

Proof. Applying an C1-small isotopy we may suppose that α satisfies the
conclusion of Lemma 2.2. The condition α0,1 = 0 is equivalent to impose that
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kerα(x) be complex for any regular point x ∈ M̂ = M−S of the foliation. We
know that, given a point x ∈M , the set J (x)ω of complex structures in TxM
compatible with the symplectic form ω(x) is non-empty and contractible. This
defines a bundle Jω over M .

For any point x in M̂ we define J (x)α as the set of compatible complex
structures in TxM which preserve the complex structure in Kx = kerα(x). If
we denote by Ux the symplectic complement of Kx, it is easy to show that
J (x)α = Jω,Kx × Jω,Ux where Jω,Kx and Jω,Ux denote the set of compatible
almost complex structures on Kx and Ux, respectively, with respect to the
symplectic form ω. Therefore J (x)α is contractible. We denote by Jα the
bundle over M̂ constructed with fibers J (x)α.

Using Lemma 2.2 we can suppose that around any critical point x ∈ S
there are holomorphic trivializations such that the charts are of Darboux type.
Therefore there is a neighborhood Ui of each point xi ∈ S, with a preferred
section Ji : Ui → (Jα)|Ui

. Now we have a section J of the bundle Jα defined
over the union of the Ui. Recalling that for any point x ∈ M̂ the fiber Jα(x) is
contractible we extend J to a global section that we still denote by the same
symbol. This almost complex structure satisfies the needed properties.

We have shown the non-emptiness of the space. To show the contractibility
we only need to fix an almost complex structure and to define a deformation
from any other one to the fixed one. One starts to deform at the critical points
and then extends the deformation all over the manifold. �

3 Bundles associated to a foliation

In the open submanifold M̂ = M−S, we can always define a bundle associated
to the foliation as

TF = {v ∈ TxM : v ∈ kerα(x), x ∈ M̂},

which we call the tangent bundle to the foliation. An adapted almost complex
structure, constructed using Proposition 2.3, proves that TF is a complex
line bundle over M̂ . Now recall that TF is topologically fixed by c1(TF ) ∈
H2(M̂ ; Z). Finally S has codimension four (it is a set of points) so we have a
canonical isomorphism

H2(M ; Z)
∼=→ H2(M̂,Z).

So c1(TF ) can be understood as a class of H2(M ; Z) canonically associated to
a bundle, still denoted by TF , which is a topological extension of TF to all of
M . There is a natural map

TF → TM
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which is an injection over the open submanifold M̂ . Actually, this map is
defined over M̂ but may be changed by multiplication by non-zero complex
valued smooth functions. Multiplying by a smooth function vanishing to infi-
nite order at the critical points, it is not difficult to see that we may extend
the map to all of M , in such a way that it is differentiable.

Fixing a compatible almost complex structure, the dual normal bundle is
defined over M̂ as

N ∗F = {γ ∈ (T ∗xM)1,0 : TF ,x ⊂ ker γ, x ∈ M̂}.

This is again a complex line bundle and so admits an extension to M satisfying
that there is a natural map

(T ∗M)1,0 → N ∗F ,

which is a surjection over M̂ .
Taking the complex duals we can define the cotangent bundle and the

normal bundle to the foliation T ∗F , NF . Finally,

Lemma 3.1 We have that

KM = T ∗F ⊗N ∗F ,

where KM is the canonical bundle associated to the symplectic manifold.

Proof. Let us start with a regular point x ∈ M̂ . Given any φ ∈ (KM )x =
(T ∗xM)1,0 ∧ (T ∗xM)1,0, contraction with φ defines a morphism φ : TF → N ∗F .
So the contraction map yields an isomorphism from KM to Hom(TF ,N ∗F ) ∼=
T ∗F ⊗N ∗F . This isomorphism is defined in M̂ , but again it canonically extends
to M because S has codimension 4. �

Remark 3.2 The definition of all the precedent bundles does not depend on
the choice of almost complex structure, thanks to Proposition 2.3. Note more-
over that c1(TF ) and c1(NF ) do not change with the small isotopies of Lemma
2.2, so they are well defined for any (holomorphically modeled) symplectic fo-
liation F .

4 Tangencies between pseudoholomorphic curves and
foliations

We recall the following result of McDuff
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Proposition 4.1 (see [8]) Given two pseudoholomorphic curves C1, C2 in a
symplectic four-manifold intersecting at a point x. If the intersection is trans-
verse then the intersection number is +1. If the intersection is not transverse,
but the two curves do not have a common component, then the intersection
number is a finite positive number.

Recall that once we have fixed an adapted almost complex structure J ,
the leaves F of the foliation are pseudo-holomorphic curves. Given a J-
holomorphic curve C such that C ⊂ M̂ we define for each point x ∈ C the
number I(x,C,F) as the intersection number of the curve and the leaf pass-
ing through x minus 1. This number is different from zero at most at a finite
number of points of C. We define

tang(C,F) =
∑
p∈C

I(p, C,F),

which we will call the tangency number. From Proposition 4.1 this is a finite
non-negative number, whenever C has no component contained in a leaf of
the foliation.

If we fix a (possibly singular) J-holomorphic curve C we can compute its
(virtual) Euler characteristic χ(C) by the adjunction formula

c1(M,ω) · C = C · C + χ(C).

This coincides with the usual Euler characteristic for a smooth C.
We have the following formulas to compute the tangency number of a

J-holomorphic curve.

Lemma 4.2 Suppose that C is a J-holomorphic curve without any component
inside a leaf of the foliation and not touching the singular set S. Then

c1(NF ) · C = χ(C) + tang(C,F),

c1(TF ) · C = C · C − tang(C,F).

Proof. The first and second formulas are equivalent by using Lemma 3.1 and
the adjunction formula. To prove the first one, we note that the formula is
purely homological and so a perturbation of C does not change the result.
So we perturb C in order to make it smooth. To do this we simply observe
that in any small neighborhood U we have that C

⋂
U = {f(x) = 0}, where

f is a function f : U → C. And then Cε = {f(x) = ε} provides a way to
perturb. We do not need to keep the perturbation holomorphic so it is very
easy to globalize it. Moreover the perturbation can also assure that I(x,C,F)
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be always +1, 0 or −1 (the sign can be minus since the perturbed curve may
not be J-holomorphic).

We give the following interpretation to the number tang(C,F). Consider
the bundle HomC(TC, (NF )|C). We define a section φ of this bundle as follows.
For any point x ∈ C we have that TxC, NF ,x and TF ,x are complex subspaces
of TxM . For v ∈ TxC we define φ(v) as the intersection of the affine subspace
v+ TF ,x with NF ,x. If x is a tangency point, then TxC and TF ,x coincide and
we define φ(v) as zero. This is equivalent to say that φ is the restriction to
TxC of the projection TxM → NF ,x along TF ,x.

Such φ is a smooth map whose zeroes correspond to the tangency points.
After perturbing C we can assure that the zeros are simple (the perturbation
makes that TxC is not a complex subspace anymore, but all the objects will
be homotopic to the initial ones). Now we have

〈c1(HomC(TC, (NF )|C), [C]〉 = Z(φ),

where Z(φ) is the number of zeroes of the section φ, counted taking into
account orientations. So Z(φ) coincides with tang(C,F). Now we get

−χ(C) + c1(NF ) · C = tang(C,F).

�

Suppose now that we have a J-holomorphic curve C included in the fo-
liation. The singular points of C are a subset of the singular points of the
foliation. For each singular point p of C we define an index as follows. Let
(U, φ) a holomorphic trivialization of F at p. Let {F = 0} be the (holomor-
phic) equation locally defining C and let v be a vector field locally defining
F . The gradient of F gives a submersion {F = ε} → {F = 0} (which is a
diffeomorphism off p). We lift the field v to {F = ε} to get a field with zeroes
over the preimage of p, which we perturb to get a generic vector field v′. We
define Z(p, C,F) to be the sum of the Poincaré-Hopf indices of the critical
points of v′ appearing near p in {F = ε}.

Again we define

Z(C,F) =
∑

p∈C
⋂
S

Z(p, C,F).

We can show, analogously to the proof of Lemma 4.2 the following

Lemma 4.3 Let C be a J-holomorphic curve included inside the foliation.
Then

c1(NF ) · C = C · C + Z(C,F),

c1(TF ) · C = χ(C)− Z(C,F).

�
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5 Baum-Bott formulas

Let p ∈ M be a singular point of the foliation α. We may write F , for a
certain trivialization, in local coordinates as

v(z, w) = F (z, w)
∂

∂z
+G(z, w)

∂

∂w
. (1)

Let J(z, w) be the jacobian matrix of (F,G). We can consider the following
indices

Det(p,F) = Res0

{
det J(z, w)

FG
dz ∧ dw

}
,

Tr(p,F) = Res0

{
(tr J(z, w))2

FG
dz ∧ dw

}
.

The number Det(p,F) is the multiplicity of the intersection of {F = 0} and
{G = 0} and so it is clearly independent of the choice of holomorphic trivial-
ization.

Let us interpret the second expression. In local coordinates we have

α = B(z, w)dz −A(z, w)dw,

with A and B defined in a neighborhood U of p = (0, 0) and vanishing simul-
taneously at p. Set

β = f(z, w)
Az +Bw
|A|2 + |B|2

(Ādz + B̄dw),

where f is a cut-off function being 0 in a small neighborhood of the origin and
1 outside a slightly bigger neighborhood V ⊂ U . Remark that

dα = β ∧ α, on U − V. (2)

Putting together the local constructions we find an open covering {Uj}j∈I of
M , (1, 0)-forms αj and (1, 0)-forms βj satisfying (2) in Uj −Vj . We set Vj = ∅
in the case that Uj does not contain a singular point. Moreover we can assure
that Uj

⋂
Vi = ∅.

We have that in the intersections Uj
⋂
Ui

αi = gijαj ,

where {gij} is the cocycle defining NF . We have also

βi ∧ αi =
(
dgij
gij

+ βj

)
∧ αi, i.e.,
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(
dgij
gij

+ βj − βi
)
∧ αi = 0.

Now {dgij

gij
+ βj − βi} is a cocycle of smooth sections of N ∗F (which is a fine

sheaf). Hence it is possible to find γi such that

γj ∧ αj = 0, on Uj

dgij
gij

= βi − βj + γi − γj , on Uj ∩ Ui.

We have dαj = (βj + γj) ∧ αj on Uj − Vj . Moreover we can define the global
closed 2-form

Ω =
1

2πi
d(βj + γj),

on Uj . It represents the first Chern class of NF in De Rham sense.
Now it is easy to check [5] that

Tr(p,F) =
1

(2πi)2

∫
Γ
β ∧ dβ,

for any form β satisfying that dα = β∧α, where Γ is any small 3-sphere around
the origin. This formula shows that Tr(p,F) is well defined independently of
the particular holomorphic trivialization.

Define the global indices

Det(F) =
∑
p∈S

Det(p,F),

Tr(F) =
∑
p∈S

Tr(p,F).

The Baum-Bott formulas are the natural extension of [1] to the case of
symplectic foliations.

Theorem 5.1 Let α be a (holomorphically modeled) symplectic foliation in a
compact symplectic four-manifold, then

Det(F) = c2(M)− c1(TF ) · c1(M) + c2
1(TF ),

Tr(F) = c2
1(M)− 2c1(TF ) · c1(M) + c2

1(TF ).

Proof. The first formula does not depend on the integrability of the topological
distribution associated to α. It is equivalent to

Det(F) = c2(M)− c1(TF ) · c1(NF ) = c2(TM)− c2(TF ⊕NF ), (3)
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since c1(TF ⊕ NF ) = c1(TM), because TF ⊕ NF is isomorphic to TM off
the singular set. To prove (3) we take a vector field of the form (1) in a
neighborhood Uj of each critical point xj . Then we extend this to a global
(differentiable) vector field v of TM with transverse zeroes. In M − ∪Uj , we
have that v is also a section of TF ⊕ NF . Since in Uj − {xj}, v is a section
of TF and the line bundle TF extends over the whole of M , we can modify v
over each Uj to get a section of TF with no zeroes in Uj . This gives a global
section ṽ of TF ⊕ NF which coincides with v off the union of Uj and has no
zeroes inside the Uj ’s. Therefore c2(TM)− c2(TF ⊕NF ) is a sum of the order
of vanishing Det(xj ,F) of v over each critical point xj .

The second equality depends on the integrability and expresses a localiza-
tion property of the first Chern number of the normal bundle NF . To see this
fact, note that this formula is equivalent to

Tr(F) = c2
1(NF ).

To prove this, recall that the closed 2-form Ω represents c1(NF ). Therefore

c1(NF )2 =
∫
M

Ω ∧ Ω.

By (2) we have
Ω ∧ Ω = 0,

outside Vj . Now, we use Stokes theorem to compute∫
Vj

Ω ∧ Ω =
∫
∂Vj

(βj + γj) ∧ (dβj + dγj) = Tr(p,F).

This concludes the proof. �

6 Topological restrictions for the existence of regu-
lar symplectic foliations

A regular symplectic foliation is one that satisfies that the singular set is
S = ∅. We will show in this Section some obstructions for the existence of
regular symplectic foliations in certain classes of symplectic manifolds.

A symplectic Lefschetz fibration of genus g is a map f : M → S to a
Riemann surface S such that there are only a finite number of critical points
xi around each of which there are adapted charts (z, w) where f = zw, the
fibers are smooth symplectic surfaces off the critical points and the generic
fiber is a connected genus g surface.
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Lemma 6.1 Let M be a symplectic manifold admitting a rational or elliptic
Lefschetz fibration over a Riemann surface. Then c2

1(M) ≤ c2(M). Moreover
if the fibration does not have singular fibers then c2

1(M) = c2(M).

Proof. First we do the rational case, i.e., the case of a symplectic Lefschetz
fibration of genus g = 0. Suppose that F is a singular fiber (a fiber containing
some of the critical points). By the local model, F is a complex curve with
nodes. Therefore F = C1 ∪ · · · ∪ Cr, for some smooth complex curves Ci
meeting transversely. Since there is a retraction from the general fiber S2 to
F , we have that F is simply connected. Therefore the graph determined by
the Ci is a tree. Thus we may suppose that C1 ·C2 = 1 and C1 ·Ci = 0, i > 2.
Then

0 = C1 · (C1 + C2 + · · ·+ Cr) = C2
1 + 1.

So there is a (−1)-symplectic sphere contained in a fiber that we may blow
down. We continue the process until we get a ruled surface, for which c2

1(M) =
c2(M). To conclude one needs only to observe that a blow up makes c2

1 decrease
and c2 increase (strictly).

Now consider the elliptic case, i.e., a symplectic Lefschetz fibration of
genus g = 1. Let F = C1∪· · ·∪Cr be a singular fiber. If there is a component,
say C1 which is a torus, then π1(T2) ∼= π1(C1) and the other components form
a tree from which we find a (−1)-sphere to blow down as above. If there is a
component C1 which is a nodal rational curve, then π1(T2) � π1(C1) and the
other components cannot form a cycle, and we find a (−1)-sphere. Finally if
all the curves Ci are rational and smooth and there is a cycle, say C1, . . . , Cs,
then s = r or else we find a (−1)-sphere. We get C2

i = −2 and hence the
curve has χ(F ) = s. This implies that the number χ(M) = c2(M) equals the
number of critical points.

On the other hand, for a fiber as above, c1(M)·Ci = C2
i +χ(Ci) = −2+2 =

0. Also c1(M) · F ′ = 0 for a regular fiber. The remainder of the homology
is obtained by a section of the fibration, rim tori (tori which map to a circle)
and (−2)-spheres which are obtained by gluing two vanishing (−1)-discs. Tori
of self-intersection zero and (−2)-spheres have zero intersection with c1(M).
Therefore c1(M) is a multiple of the fiber class and thus c1(M)2 = 0. �

Now we give a topological restriction for the existence of a regular sym-
plectic foliation. This can be combined with Lemma 6.1 to obtain restrictions
on the possible four-manifolds admitting regular foliations. We need to use
the following result.

Theorem 6.2 ([11], [6] Thm 10.1.15) Suppose that (M,ω) is a symplectic
manifold with b+2 (M) > 1 and SWM (K) 6= 0 for a given K ∈ CM . Assume



Vicente Muñoz and Francisco Presas 13

furthermore that the class c = 1
2(K− c1(M,ω)) is nonzero in H2(X,Z). Then

for a generic compatible almost-complex structure J on M , the class PD(c) ∈
H2(M,Z) can be represented by a pseudo-holomorphic manifold. �

Theorem 6.3 Let F be a regular foliation over a symplectic manifold such
that b+2 (M) > 1, c1(M,ω) + 2c1(T ∗F ) is a Seiberg-Witten basic class and
c1(T ∗F ) 6= 0. Then c2

1(M) ≥ 2c2(M).

Proof. The class c1(T ∗F ) satisfies the hypothesis of Theorem 6.2. The only
problem arises with the genericity of the adapted almost-complex structure.
Let us suppose for a moment that J is generic. Then Theorem 6.2 says that
there is a pseudo-holomorphic curve S that represents the dual class of c1(T ∗F ).
As F is a regular foliation, obviously S does not pass through any critical
point. The curve is a sum of irreducible components S =

∑
mjSj (c.f. [8]).

By Theorem 5.1 the inequality that we are proving is equivalent to c2
1(T ∗F ) ≥ 0.

We just need to prove that c1(T ∗F ) ·Sj ≥ 0 for all j. If we prove that Sj ·Sj ≥ 0
we are done because, by Proposition 4.1, we have that Si · Sj ≥ 0 if i 6= j.

Suppose that Sj · Sj < 0, then Sj cannot be contained in the foliation
because its self-intersection would be zero. So we apply Lemma 4.2 to obtain

c1(T ∗F ) · Sj = −Sj · Sj + tang(Sj ,F) > 0.

Now if J is not generic, then recall that what we need is smoothness in
the associated moduli of pseudo-holomorphic curves. This smoothness can be
obtained by a more restrictive perturbation given by Lemma 6.4 below. Cer-
tainly we only obtain smoothness for the moduli spaces of pseudo-holomorphic
curves before compactifying them, but this is enough to develop the Taubes’
formalism and conclude the proof. �

Lemma 6.4 Given a symplectic four-manifold (M,ω) and a regular symplec-
tic distribution on it. Fix a compatible almost complex structure J on M .
Then, for an arbitrary C∞-close to the identity isotopy of the symplectic fo-
liation and a C∞-small change of the compatible almost-complex structure,
the moduli spaces of pseudo-holomorphic curves associated to the manifold are
smooth and of the expected dimension.

Proof. Following notations and ideas of [9] we want to prove that the space
of maps of Riemann surfaces of fixed genus and complex structure with an
image in a fixed homology class in M which are J-holomorphic is smooth. In
the definition we assume implicitly that a curve in the moduli is simple, i.e.,
it is not a branched covering over an intermediate curve. If this does not hold
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then we cannot have smoothness, but in this case the method of [7] can be
used to get an orbifold structure). Nonetheless, for the clarity of exposition
we will restrict ourselves to the case of simple curves.

We use suitable Sobolev completions so that all the spaces we are working
with are endowed with a structure of Banach manifold. We denote by X
the space of all the maps of the fixed Riemann surface Σ to M in the given
homology class. We denote by J the space of almost complex structures on
M which are compatible with respect to some distribution φ∗(F), for F the
given symplectic foliation and φ a diffeomorphism close to the identity. Over
X × J we define a bundle E whose fiber at a point (u, J) is

E(u,J) = Γ(Λ0,1T ∗Σ⊗J u∗TM).

Given a point (u, J) ∈ X × J , the operator ∂̄u defines a section of E . So
we have a map F : X × J → E . For fixed J , the zeros of this section give
the moduli of pseudo-holomorphic curves. So to have smoothness we need the
surjectivity of the differential of F at the zeroes

DF(u, J) : Γ(u∗TM)× TJ → Γ(Λ0,1T ∗Σ⊗J u∗TM)

whenever the curve is simple. In this case, the zeroes of F are a smooth Banach
manifold and by Smale-Sard-Bertini theorem the moduli space is smooth for
a generic choice J ∈ J .

Following the proof of Proposition 3.4.1 in [9], we only need to get a
generic perturbation at an injective point of the image of the curve u. This
is because the obstruction to be surjective is measured by a function η (see
[9]) which is a solution of a laplacian. Therefore the obstruction is globally
zero if it is zero in a small neighborhood of a point (Aronszajn’s theorem).
But now, for a given point x ∈M the space J generates all the possible local
perturbations of the almost complex structure as in [9]. Given a point x ∈M ,
in [9] the authors use an element Y ∈ TJJω to show that the obstruction to
the surjectivity η is zero at x. In our case, we choose an element Y ′ ∈ TJJ
such that Y (u(x)) = Y ′(u(x)) (and keeping the condition that Y and Y ′ are
very concentrated near x so that there is no effect from points far from x).
This is enough to get that η is zero. �

Very likely, more results in the lines of Theorem 6.3 can be obtained,
which may allow to mimic the classification results of Brunella [2] for regular
symplectic foliations on four-manifolds.



Vicente Muñoz and Francisco Presas 15

Acknowledgments

We would like to thank Omegar Calvo for interesting discussions on the the-
ory of holomorphic foliations. Also we are grateful to András Stipsicz and
Jaume Amorós for useful comments on the topic of elliptic surfaces. This
work has been partially supported by project BFM2000-0024 from Ministerio
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