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1. Introduction

Let C be a (2n + 1)-dimensional manifold. C is called almost contact
if its tangent bundle admits a reduction to U(n) × R. As an example, any
oriented real hypersurface in an almost complex manifold is almost contact.
A (cooriented) contact structure in C is a 1-form α such that α ∧ (dα)n is
non-zero all over the manifold. C is a contact manifold if it admits such a
contact structure. This implies that ξ = kerα is a symplectic bundle with
symplectic form given by the restriction of dα to ξ. In particular, ξ admits an
almost complex structure and therefore the manifold C is almost contact.

The almost contact condition is the only known homotopical restriction
for an odd dimensional manifold to be contact. The following conjecture has
remained unproved for 20 years.

Conjecture 1.1. An almost contact manifold always admits a contact struc-
ture.

The problem was fully understood in the 3-dimensional case by Martinet
[16]. Moreover, it has been only recently shown that some classical almost
contact manifolds, as the high dimensional tori, admit a contact structure [4].
Geiges and Thomas have pursued the study of some high dimensional almost
contact manifolds [8, 9], but a general program to answer Conjecture 1.1 is
still lacking.

In this article we propose a geometrization of the almost contact condition
in order to understand better this conjecture. More specifically, we shall call
a (2n + 1)-dimensional manifold C quasi-contact if it admits a closed 2-form
ω such that ωn is a non-zero 2n-form all over the manifold. The following
lemma is just an application of Gromov’s h-principle.
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Lemma 1.2. Given an almost contact manifold C and given γ ∈ H2(C,R),
there exists a quasi-contact structure ω in C such that [ω] = γ.

Proof. If C is almost contact then C×R is almost complex. We understand C
as the hypersurface C×{1} ⊂ C×R. A 2-form τ is called a compatible almost
symplectic form in an almost complex manifold (M,J) if τ(p) is symplectic
for any point p ∈M and τ(·, J ·) is a Riemmanian metric in M (but note that
τ might be not closed). It is well know that, once we fix an almost complex
structure, the space of compatible almost symplectic forms is non-empty and
contractible. So given an almost complex structure J in C ×R, we pick up an
almost symplectic structure λ.

Recall now the following Gromov’s theorem

Theorem 1.3. Let M be an open symplectic manifold. Let τ0 be an almost
symplectic 2-form and let a ∈ H2(M,R). There exists a family of almost-
symplectic forms τt on M such that τ0 = τ and τ1 is a symplectic form which
represents the class a. �

For a proof, see Theorem 7.34 in [15]. Using this result we can find a
homotopy going from λ to a symplectic structure ω in C ×R representing the
class π∗(γ), where π : C × R → C. Now, it is very simple to check that the
restriction of ω to C×{1} gives a quasi-contact structure in C in the homology
class γ. �

Once we have a quasi-contact structure in an almost contact manifold
C, it is possible to adapt the techniques carried out in [12] to develop an
asymptotically CR geometry . This will be the topic of Section 3. The first
main result that we shall prove is

Theorem 1.4. Given a (2n + 1)-dimensional quasi-contact manifold (C,ω)
such that [ω] admits a lift to an element of H2(C; Z) and a class β ∈ H2(C; Z),
then for k large enough there exists a quasi-contact submanifold N which is
Poincaré dual to k[ω] + β. Moreover, the natural inclusion i : N → C induces
isomorphisms in homology (resp. homotopy) groups up to order n− 2 and an
epimorphism in order n− 1.

From a topological point of view the most powerful case happens when ω
is exact, which can always be arranged thanks to Lemma 1.2. However, from
a geometrical point of view the choice of a different quasi-contact structure
can be very useful. For instance, it gives submanifolds with non-exact quasi-
contact structures.

Following the ideas of Giroux and Mohsen in the contact case [10, 11], we
give a result about the existence of open book decompositions in quasi-contact
manifolds. For this we need

Definition 1.5. An open book decomposition for (C,ω) consists of the follow-
ing data:
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• A codimension 2 smooth submanifold, called the binding, B ⊂ C.
• A submersion f : C − B → S1 satisfying that for any point p ∈ B,

there exist coordinates (z1, . . . , zn, t) ∈ Cn×R around p such that B is
defined by z1 = 0 and f is the map (z1, . . . , zn, t) 7→ arg(z1).

A quasi-contact structure ω of the form ω = dα is called an exact quasi-
contact structure. An exact quasi-contact manifold is then a pair (C, dα),
where the primitive α is understood as fixed. A transverse field for an exact
quasi-contact manifold is a vector field X ∈ Γ(TM) such that iX(p)α(p) > 0
whenever α(p) 6= 0.

We aim to prove the following main theorem

Theorem 1.6. Let (C, dα) be an exact quasi-contact manifold. Then there
exists an open book decomposition f : C − B → S1 for C. The fiber f−1(θ)
over any θ ∈ S1 is an open manifold with the homotopy type of an (n + 1)-
dimensional CW-complex. Moreover there exists a perturbation α′ of α with
dα′ = dα and a transverse vector field X for (C, dα′) such that df(X) is non-
zero everywhere off the binding.

Here we will have to perturb α, but we will not perturb the quasi-contact
structure dα, which may be considered fixed.

This existence of open books for general odd dimensional manifolds is a
well-known result [20, 14, 19] (in fact, getting a slightly stronger control on
the topology of the leaves). This theorem can be considered as another proof
of this fact in a special case. The advantage here is that the existence of the
transverse vector field provides some extra control. Moreover, the geometry
of the map is controlled in various different ways. This provides a framework
that will be discussed in Section 5.

2. Quasi-contact manifolds

Let C be a smooth closed (2n + 1)-dimensional manifold endowed with
a 2-form ω ∈ Ω2(C) such that ωn 6= 0 at every point of C. The non-
degeneracy condition implies that at every point p ∈ C we may find a basis
{e1, e2, . . . , e2n, e2n+1} of TpC such that ωp is written as

ωp = e∗1 ∧ e∗2 + · · ·+ e∗2n−1 ∧ e∗2n,
where {e∗1, . . . , e∗2n+1} is the dual basis. This defines a 1-dimensional distribu-
tion H of TC where Hp is the ray spanned by e2n+1. More intrinsically, ω is
a map T ∗C →

∧2n+1(T ∗C), where µ =
∧2n+1(T ∗C) is a real line bundle over

C, i.e., ω is a section of

(T ∗C)∗ ⊗ µ = TC ⊗ µ,
that is, a µ-valued vector field. After projectivization, ω defines H. Otherwise
said, such distribution H is defined as the kernel of ω. Locally, H = 〈X〉,
where X is a vector field such that iXω = 0.
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We say that ω is orientable (oriented) if H is orientable (oriented). Also
we say that it is coorientable (cooriented) if the 2n-plane bundle defined as
D = TC/H is orientable (oriented). Note that if C is orientable, then the
notion of ω being orientable coincides with ω being coorientable.

Let g be a Riemannian metric on C. This defines a metric in H and
a 2n-dimensional distribution D = H⊥ ⊂ TC. As a 2n-plane bundle, such
D is isomorphic to TC/H. In this case, at any point p, we can choose an
orthonormal basis {e1, . . . , e2n, e2n+1} such that ω = e∗1 ∧ e∗2 + . . . e∗2n−1 ∧ e∗2n.
Note that this gives a reduction of the structure group of C to U(n)× R.

An ω-compatible almost-complex structure J is an endomorphism J :
TC → TC such that J |H ≡ 0, D = im J ⊂ TC is a codimension 1 distribution
and J |D is a ω|D-compatible almost complex structure. Obviously there is
a decomposition TC = D ⊕ H and ω|D is a symplectic structure on the
bundle D. This defines a metric in D by the usual formula g(u, v) = ω(u, Jv).
Alternatively, a metric g is compatible with ω if, setting D = H⊥, g|D and
ω|D define an ω-compatible almost-complex structure J . For a metric g, there
is a local Reeb vector field, defined up to sign, as a unitary vector field in H.

As an example, we can think of a (cooriented) contact manifold (C,α). In
this case ω = dα, D = kerα, H = ker dα. We have a global Reeb vector field
defined by the condition α(R) = 1.

Now suppose dω = 0. In this case we are dealing with a quasi-contact
manifold (C,ω). Then we have a Darboux theorem

Theorem 2.1. Locally at p ∈ C, there exist coordinates (x1, . . . , x2n, x2n+1)
such that ω = dx1 ∧ dx2 + · · ·+ dx2n−1 ∧ dx2n. �

We may write the coordinates as (z1, . . . , zn, t) ∈ Cn ⊕ R, where z1 =
x1 + ix2, . . . , zn = x2n−1 + ix2n, t = x2n+1. The standard quasi-contact model
is Cn⊕R with quasi-contact form ω0 = i

2(dz1∧dz̄1+ . . .+dzn∧dz̄n). Choosing
the product metric g0 = |z1|2 + . . .+ |zn|2 + t2, the associated almost complex
structure J0 is the standard complex structure on the Cn factor and annihilates
the R factor. The associated distribution is the horizontal distribution defined
as Dh = Cn ⊕ {0}.

A chart Ψ : B(p, κ) → Cn × R provided by Theorem 2.1 will be called a
Darboux chart, and it satisfies Ψ∗ω0 = ω. We may assume that at the point
p, the distribution D coincides with Dh and the almost complex structure
J matches the standard almost complex structure J0. Actually, the angle
between Dh and D is O(|(z, t)|). Also the norm of the operator J − J0 is
bounded by O(|(z, t)|). We shall call such Ψ adapted coordinates at p.

The almost complex structure J also acts on the cotangent space T ∗C =
H∗⊕D∗. This produces a decomposition of the complexified cotangent bundle
as

T ∗CC = H∗C ⊕ (D∗)1,0 ⊕ (D∗)0,1,
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where J acts as 0 in H∗C, as i in (D∗)1,0 and as −i in (D∗)0,1. The covariant
derivative along the D-directions ∇D is defined as the composition

Γ(L⊗k) ∇−→ Γ(T ∗C ⊗ L⊗k)→ Γ(D∗ ⊗ L⊗k)

This may be further decomposed as∇D = ∂+∂̄ according to the decomposition
on (1, 0) and (0, 1)-forms.

Consider finally the case of an exact quasi-contact manifold (C, dα). In
this case α defines, whenever it is non-zero, a hyperplane distribution K =
kerα. If α ∧ (dα)n is non-zero at a point p, then Kp ∩ Hp = 0. Therefore
Kp and Dp are isomorphic through orthogonal projection and Kp inherits a
symplectic form dα|Kp . In the case that α ∧ (dα)n = 0 at p, then Hp ⊂ Kp

and Kp is not symplectic.
Note that, for generic α, there is a finite number of points x where α(x) = 0

and there is a codimension 1 submanifold defined by the condition α∧(dα)n =
0.

3. Asymptotically holomorphic theory

Let (C,ω) be a quasi-contact manifold such that the cohomology class
[ω] ∈ H2(C; R) admits a lift to integer cohomology H2(C; Z). Then there is
a hermitian line bundle L → C with c1(L) = [ω]. Put a connection ∇ on L
with curvature F∇ = −iω. This bundle is usually called the prequantum line
bundle. Note that for an exact quasi-contact manifold, the line bundle L is
trivial and hence sections of L are smooth complex valued functions.

We choose an ω-compatible almost-complex structure J and a metric g
on C such that g(u, v) = ω(u, Jv) on D. Let k be an integer. We shall denote
by gk the rescaled metric kg on C. Note that the associated quasi-contact
structure to gk and J is given by the 2-form kω. Therefore the distribution D
is the same for all k. If p ∈ C then take adapted coordinates Ψ : Bg(x, κ) →
Cn × R for (C,ω). Such Ψ satisfies that Ψ∗ω0 = ω and it is an isometry
at x. Then there are adapted coordinates Ψk for the ball Bgk(x, κ) defined
as Ψk = k1/2Ψ. Such coordinates satisfy that |Ψk| ≤ C0, |Ψ−1

k |gk ≤ C0,
|∇rΨ−1

k |gk ≤ Cr in Bgk(x, κ), for constants Cr independent of k. It also
follows that in the chart Ψk the angle between the distribution D and the
horizontal distribution Dh is less than Ck−1/2|(z, t)|, with C > 0 a uniform
constant. Also in this chart, the norm of the map J − J0 is O(k−1/2|(z, t)|).

Definition 3.1. Let Ek be hermitian vector bundles with connections. Let
{τk}k∈Z+ be a sequence of sections of Ek. τk is said to be Cr-asymptotically
holomorphic with positive constants CD, CH if the following inequalities are
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satisfied:

|∇τk|gk + · · ·+ |∇rτk|gk ≤ CH

|τk|gk + |∇Dτk|gk · · ·+ |∇
r
Dτk|gk ≤ CD

|∂̄τk|gk · · ·+ |∇
r−1∂̄τk|gk ≤ CHk

−1/2.

We shall abbreviate by saying that τk is a Cr-A.H.(CD, CH) sequence of sec-
tions.

Here the covariant derivatives above are taken using the connection in-
duced in both T ∗CC and D∗C. We use different constants CD, CH because it is
possible to find Cr-A.H. sequences of sections with interesting transversality
properties for which the constant CD governing the holomorphic directions is
as small as we want, whereas we cannot keep much control on CH .

We are interested in sections transverse to the zero section along the di-
rections of D. We shall use the following concept.

Definition 3.2. Let τ be a section of a hermitian bundle E → C with con-
nection. τ is said to be η-transverse along the directions of D (or just η-
transverse) if at every x ∈ C where |τ(x)| ≤ η, ∇Dτ(x) : Dx → Ex is surjec-
tive and the norm of the smallest right inverse for this map does not exceed
1/η.

Let Ek → C be a sequence of hermitian bundles with connection. A se-
quence of sections τk of Ek is uniformly transverse to zero if there are k0 ∈ N
and η > 0 so that for every k ≥ k0, τk is η-transverse to zero at every x ∈ C.

Now fix a line bundle P over C. One can prove the following

Theorem 3.3. Let (C,ω) be a quasi-contact manifold and let τk be a sequence
of Cr-A.H.(CD, CH) sections of P ⊗ L⊗k (r ≥ 2). Given δ > 0 small enough,
there exist C ′H , k0 and η depending on δ, CD, CH (but not on k), and a sequence
σk of sections of P ⊗ L⊗k satisfying:

(1) σk is Cr-A.H.(δ, C ′H).
(2) For every k ≥ k0, τk + σk is η-transverse to zero.

Sketch of the proof. The proof of the theorem has three steps:
(1) Existence of reference sections.

Definition 3.4. A sequence τk of sections of hermitian bundles Ek
has Cr-mixed Gaussian decay with respect to a point x ∈ C if there
exist positive constants λ > 0, Ca and a polynomial Pr verifying that
for all y ∈M and r ≥ 0,

|∇rDτk(y)|gk ≤ Pr(dk(x, y)) exp(−λdk(x, y)2),

|∇rτk(y)|gk ≤ CaPr(dk(x, y)) exp(−λdk(x, y)2).
Here dk is the distance associated to gk.
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Definition 3.5. A family of reference sections (τ ref
k,x)k∈N,x∈C , is a fam-

ily of Cr-A.H.(CD, CH) sections of Ek such that:
(a) τ ref

k,x has Cr-mixed Gaussian decay with respect to x (the constant
Ca being independent of x).

(b) There are positive constants c, κ so that |τ ref
k,x| ≥ c in Bgk(x, κ).

Lemma 3.6. Let (C,ω) be a quasi-contact manifold. Then there exist
families of reference sections for the sequence of bundles P ⊗ L⊗k.

Proof. First let us suppose that P is trivial. Choose adapted coor-
dinates (z1, . . . , zn, t) ∈ Cn ⊕ R around x. Such coordinates Ψk are
actually defined in a ball Bgk(x, k1/2). The standard quasi-contact
model for Cn ⊕ R is given by the horizontal distribution Dh and the
standard complex structure J0 and symplectic form ω0. Since the
curvature of L⊗k is kω = Ψ∗kω0, we can choose a (unitary) triv-
ialization of the bundle such that the connection form d + A0 has
A0 = 1

4

∑n
i=1(zidz̄i − z̄idzi). Then as in [5] the section e−|(z,t)|

2/4 =
e−t

2/4e−|z|
2/4 is holomorphic in this standard model. This implies the

Cr-A.H. condition when we use the distribution D and the almost com-
plex structure J (recall that the angle between D and Dh is bounded
by Ck−1/2|(z, t)|). Now this section is multiplied by a cut-off function
with support in a ball of radius k1/6 and extended by zero. This gives
rise to a Cr-A.H. sequence of sections τ ref

k,x with Gaussian decay with
respect to x.

If P is not a trivial bundle, then we take a trivialization of P and
multiply it by τ ref

k,x. This gives reference sections for P ⊗ L⊗k. �
(2) Local estimated transversality result. Reference sections are used to

turn the estimated transversality problem for Cr-A.H. sections into
the corresponding one for Cr-A.H. functions. The amount of transver-
sality that one can obtain can be expressed in terms of the size of the
perturbation δ.

Proposition 3.7. (Proposition 4.4 in [13]) Let B be the unit ball in
Cn and let f : B × [0, 1] → Cm be a complex valued function. Let
0 < δ < 1/2 be a constant and let σ = δ(log(δ−1))−p, where p is a
suitable fixed integer depending only on the dimensions n,m. Assume
that ft = f(·, t) satisfies the following bounds over B × [0, 1]:

|ft| ≤ 1, |∂̄ft| ≤ σ, |∇∂̄ft| ≤ σ.

Then there exists a smooth curve w : [0, 1] → Cm such that |w| < δ
and the function ft − w(t) is σ-transverse to zero over a smaller ball
9
10B. Moreover, if |∂ft/∂t| < 1 and |∂(∇ft)/∂t| < 1, we can choose
w such that |diw/dti| < Φi(δ), for all i ∈ N, djw/dtj(0) = 0 and
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djw/dtj(1) = 0 for all j ∈ N, where Φi if a function depending only in
the dimensions n,m. �

In this proposition the outcome is σ-transversality with respect to
the horizontal distribution Dh. The bound on |dw/dt| implies say,
0.9σ-transversality with respect to D, once k is large enough.

(3) Globalization process. The globalization process is a standard proce-
dure that allows to perturb an arbitrary sequence of Cr-A.H. sections
to obtain uniform transversality (for every k bigger than some k0). It
only relies on the existence of local perturbations by sequences of Cr-
A.H. sections with Cr-mixed Gaussian decay for which the amount of
local uniform transversality that can be obtained is that of Proposition
3.7 (see for example Proposition 4.2 in [12]).

�
Observe that for the sequence of bundles P⊗L⊗k, we only need the version

of Lemma 3.7 with m = 1, i.e., for maps of the form Cn ⊕ R→ C.
In general, the results of Theorem 3.3 can be also obtained for sequences

of hermitian bundles Ek, as long as we have reference frames. These are
local frames τk,j made of Cr-A.H. sections with Cr-mixed Gaussian decay,
so that over some gk-ball of constant radius they can be compared with a
unitary frame. I.e., if fk,j is a unitary frame and τk,i =

∑
j aij,kfk,j then

the matrix (aij,k) and its inverse (and its derivatives) are bounded uniformly
independent of k. The sequence E⊗L⊗k, where E is any hermitian bundle with
connection, admits reference frames (just by multiplying reference sections
with local unitary frames).

In order to prove Theorem 1.6 we will need the following estimated transver-
sality result. The statement is as follows:

Theorem 3.8. Let (C,ω) be a quasi-contact manifold, p1, . . . , pr ∈ C fixed
points in C and a constant λ > 0. Given δ > 0 small enough (compared to
λ), there exist CR, CH , C ′H , k0 and η depending on δ (C ′H , η independent of λ
; CD, CH depending on λ), and a sequence σk of sections of L⊗k satisfying:

(1) σk is Cr-A.H.(CD, CH).
(2) For k ≥ k0, σk is η-transverse to zero.
(3) σk(pj) = 0 and for any point x ∈ Bgk(pj , λ) satisfying σk(x) 6= 0, we

have that
∣∣∣d σk(x)
|σk(x)|

∣∣∣ ≥ 1/2.
(4) σk is Cr-A.H.(δ, C ′H) on the open set C −

⋃
j Bgk(pj , λ).

The correct understanding of the result is as follows. Property (3) can
be obtained on a finite number of balls of gk-radius arbitrarily big without
altering the transversality and the bounds of the asymptotically holomorphic
sequence σk outside those balls.
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Proof. We start by constructing a sequence localized at a neighborhood of the
given points. First we modify J around pj to make it integrable. Choose one of
the points pj . Choose a surjective function s defined in a small neighborhood
U of pj satisfying that ker dα(pj) = ker ds(pj). Locally s must be understood
as a “vertical” coordinate. Define in U ×R the closed form ω = ds ∧ dt+ dα,
where t is the a coordinate for R (we are omitting the obvious pull-backs). It is
simple to check that ω is symplectic. We choose an almost complex structure
Js in U×R by pulling-back the one in D and extending it to the whole tangent
bundle by declaring Js( ∂∂s) = ∂

∂t .
Now trivialize, as in [5, 1], a neighborhood of U × R with a Darboux

chart ψ : U × (−ε, ε) → Cn+1 that is holomorphic at the origin and has a
compact variation of the ∂̄-part. We can also assume that ψ(U × {0}) is
tangent to Cn ×R ⊂ Cn+1 at the origin and its tangent spaces get away from
this horizontal subspace at a bounded rate. Moreover we can define a sequence
of charts ψk = k−1/2ψ that are Darboux charts for the symplectic structure
in Cn+1 given as kω0.

There is a holomorphic bundle with connection β = 1
4

∑
(zidz̄i − z̄idzi)

which pulls back to the bundle L in C (through all the previous identifications).
As in Lemma 3.6,

srefk = e−k|(z,t)|
2/4

is a holomorphic section of the bundle L⊗k. Note that srefk is real valued
considered as a function to C. This means that its argument is always zero.
Now we define the holomorphic section

sgood
k = eλ

2/4 · k1/2z1e
−k|(z,t)|2/4.

In Cn × R we have
sgood
k

|sgood
k |

=
z1
|z1|

.

Therefore, after pull-back, we get the bound required in (3) (the details are
just a sequence of tedious pull-backs in the style of [5]). Moreover, the section
sgood
k is A.H. thanks to the Gaussian decay of srefk . It is η-transverse to zero

on a ball Bgk(pj , λ) for some uniform η independent of λ, since if |sgood
k | < η

then k1/2|z1| < η and then

|∂sgood
k | = eλ

2/4 · (k1/2dz1)(1− k|z1|2/4)e−k|(z,t)|
2/4

is bigger than η. Also note that

(1) |sgood
k |Cr,gk ≤ C

outside the ball Bgk(pj , λ) for some uniform constant C independent of λ.
We repeat this process at each of the points pj , obtaining a section in a

neighborhood of each point. We perturb, as usual, in the rest of the man-
ifold with a perturbation of order δ small compared to λ. When we make
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a perturbation centered in a point xi at distance O(k1/6) of pj , we take as
reference section γiz1τ ref

k,x instead of τ ref
k,x, where z1 is the coordinate of the pre-

vious discussion that exists because the point is close to pj , and γi is chosen to
satisfy |γiz1(xi)| = 1. Such section is A.H. when considered in C and it allows
to construct a sequence of sections σk satisfying still that σk(pj) = 0. The
transversality and bounds obtained are independent of λ, outside the balls
Bgk(pj , λ) because of equation (1). This proves property (4).

It is simple to check that the perturbation does not destroy property (3)
in the balls. This is because we have chosen the sections z1τ ref

k,x at points close

to the balls and this perturbation vanishes whenever sgood
k does. �

4. Applications.

We now prove the two existence results stated in the introduction.

4.1. Existence of codimension 2 quasi-contact submanifolds. Let us
see how Theorem 3.3 implies very easily Theorem 1.4.

Proof of Theorem 1.4. Construct a hermitian line bundle P whose first
Chern class is β ∈ H2(M ; Z). Construct a sequence of Cr-A.H. and ε-
transverse sections sk of the bundles P ⊗ L⊗k using Theorem 3.3. The zero
sets Z(sk) are smooth codimension 2 submanifolds that are Poincaré dual to
[β + kω]. Moreover the transversality along D implies that D is transverse
to Z(sk) and in particular Dk(x) = Dx

⋂
TxZ(sk) = ker∇Dsk. To conclude

that Z(sk) is quasi-contact we just have to show that Dk(x) is a symplectic
subspace of Dx. For that we use the following lemma:

Lemma 4.1. [5] Given a map f : Cn → C, the subspace ker f is symplectic if
and only if |f1,0| > |f0,1|. �

In our case we have to check that |∂sk(x)|gk > |∂̄sk(x)|gk . This follows,
for k large, from the ε-transversality (|∇Dsk(x)| > ε), the bounds of the
sequence (|∂̄sk(x)|gk = O(k−1/2)) and the triangular inequality (|∂sk(x)| ≥
|∇Dsk(x)| − |∂̄sk(x)|).

To finish we have to study the homology groups of Z(sk). The result
written in the statement follows if we are able to find a Morse function fk
in C − Z(sk) such that all the critical points have index at least n − 1. The
natural choice is fk = |sk|2. From there, the proof follows word by word the
one given in the contact case [12]. �

4.2. Existence of open books. The complex line C has an open book de-
composition B, where the binding is the origin and the leaves are the rays
emanating from it. The strategy to put an open book decomposition in C
is to construct an asymptotically holomorphic section τk of L⊗k in general
position with respect to B. A condition of transversality for the section will
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assure that the pull-back of B is an open book for C. Note that the binding
B is going to be the zero set of τk and by Theorem 1.4, this is a codimension
2 quasi-contact submanifold.

We must remark that the following proof follows closely the one described
by Giroux and Mohsen [10, 11] in the contact case.

Proof of Theorem 1.6. We start with an exact quasi-contact manifold
(C, dα) and perturb our primitive α by adding to it a small exact 1-form df in
order to make the zeroes of α isolated and transverse. We denote these zeroes
by {pj}j=1,...,r.

We apply Theorem 3.8 choosing the zeroes p1, . . . , pr as the set of points
in the statement. We will fix later the constant λ. We get a sequence of
sections sk which is asymptotically holomorphic and transverse. Since L is
topologically trivial, actually sk are smooth functions on C. We define the
binding B ⊂ C as the zero set B = Z(sk). By Theorem 1.4, B is a codimension
2 quasi-contact submanifold of C. Now we want to show that the map

φk : C − Z(sk) → S1

p 7→ sk
|sk|

is an open book satisfying all the required properties.
First, note that we have in Z(sk) that ∇Dsk has a small right inverse.

Moreover we have |∇∇sk|gk = O(1). Therefore applying the implicit function
theorem to the set

U = {x ∈ C : |sk(x)| ≤ ρ},
with ρ > 0 small enough (independent of k, though) and to sk we get that U
is diffeomorphic to a subset of Z(sk)×R2. Also, after this transformation, φk
becomes the standard projection map from Z(sk) × (R2 − {0}) to S1. Note
that ρ depends only on η and C ′H and therefore it is independent of λ.

Now let us see that there is a vector field X controlling the open books
that we obtain. Define X by the condition of being the dual of α through g
and normalized so that it has unit length. Recall that the connection 1-form
on L⊗k is given by −ikα, so

∇sk = dsk − ikαsk.

Now the asymptotically holomorphic condition on sk implies first that |∇sk|gk =
O(1). Therefore, in metric g, we have

dsk(X)− ikα(X)sk = ∇Xsk = O(k1/2).

Now, let p ∈ C be a point satisfying that |sk(p)| > ρ. Suppose first that p is
in one of the balls Bgk(pj , λ). Then by property (3) of Theorem 3.8 we get
that φk is surjective. Suppose now that the point satisfies |sk(p)| > ρ and it is
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not in any of the balls. Therefore there is a uniform constant c > 0 such that
|α| ≥ ck−1/2λ at p, measured in the metric g. Therefore

|ikα(X)sk| ≥ ck1/2λρ.

On the other hand we have

dsk(X) = ikα(X)sk +O(k1/2)

where the second term is smaller than the first one, if we take λ big enough.
This is because the second term does not depend on λ according to property
(4) of Theorem 3.8. Now we compute

dφk
φk

(X) =
skds̄k − s̄kdsk

|sk|2
(X) = −2ikα(X) +O(k1/2).

This implies that, for k large, |dφk(X)| > 0 at p.
Now we have to extend X to the interior of the balls Bgk(pj , λ). For this we

consider the vector field Xj dual to the 1-form idφkφk defined in Bgk(pj , λ)−B.
We interpolate (linearly) between X and Xj in a small annulus. This gives a
vector field, that we call X again, which satisfies dφk(X) > 0 in C −U . With
this gradient like X we perturb α (with exact forms) inside the balls to make
X transverse to it.

Finally, it is simple to deform X in a neighborhood of Z(sk) of gk-radius
ρ by using the transversal form Z(sk) × (R2 − {0}) obtained before, in order
to get another transverse field which is gradient-like for φk and transverse to
α.

To finish we need to study the topology of a single leaf. The argument
is very similar to the one given in the proof of Theorem 1.4. We fix a leaf
Lθ = φ−1

k (θ), θ ∈ S1. Recall that at any p ∈ Lθ, the tangent space to the leaf
is ker dφk(p). We consider the function fk = |sk|2 restricted to Lθ. We shall
conclude once we show that all the critical points have index greater or equal
to n − 1. We assume that the critical points are generic, i.e., the function
fk is Morse (in the leaf). This can be achieved by a small perturbation of sk
(preserving the estimated transversality and the asymptotic holomorphicity of
the sequence). We may also assume that the critical points of fk are isolated
in the leaf and at such points the tangent space to the leaf is symplectic.

Now we proceed as follows. We compute the derivative of the function fk
to get

(2) ∂fk = 〈∂sk, sk〉+ 〈sk, ∂̄sk〉.

At a critical point x ∈ Lθ, we have d(fk|Lθ)(x) = 0. In particular, denoting
Nx = Dx

⋂
TxLθ, we know that restricted to Nx, we have ∂fk = 0. We claim

that
|dfk(x)| = O(k−1/2)
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for all the subspace Dx. We already know this in Nx. Denote by 〈vx〉 the
(Riemannian) orthogonal subspace to Nx in Dx. We choose vx to be unitary
in gk-norm. Observe that Jvx ∈ Nx, since Jvx is in Dx and it is orthogonal
to vx. In particular, dJvxfk = 0. By equation (2), this implies that

|〈∂Jvxsk, sk〉| = |〈sk, ∂̄Jvxsk〉| = O(k−1/2).

So |∂Jvxsk| = |i∂vxsk| = O(k−1/2) and hence

dvxsk = ∂vxsk + ∂̄vxsk = O(k−1/2),

always measured in gk-norm. Finally, this implies that

dvxfk = O(k−1/2),

as claimed.
Since fk is a real valued function, we have that |∂vxfk(x)| = |∂̄vxfk(x)| =

O(k−1/2). By equation (2) we get at the critical point |〈∂sk, sk〉| = |〈sk, ∂̄sk〉| =
O(k−1/2). Also since ∂sk(x) is very small on Dx, the η-transversality guaran-
tees that |sk(x)| > η. This implies that |∂sk|gk = O(k−1/2).

Another derivative will yield

∂̄∂fk = 〈∂̄∂sk, sk〉+ 〈∂sk, ∂sk〉+ 〈sk, ∂∂̄sk〉+ 〈∂̄sk, ∂̄sk〉 =

= 〈∂̄∂sk, sk〉+O(k−1/2),

where the term O(k−1/2) is measured in gk-norm.
Now recall that ∂̄∂ + ∂∂̄ is the part (1, 1) of the curvature of the bundle

L⊗k. So we have

∂̄∂fk = −(ikdα)|sk|2 − 〈∂∂̄sk, sk〉+O(k−1/2) =

= −(ikdα)|sk|2 +O(k−1/2),

at x, for any pair of tangent vectors in Dx ∩ TxLθ. Note that kdα is O(1) in
gk-norm.

We have that ∇fk(x) = 0 on Dx ∩ TxLθ ∩ J(Dx ∩ TxLθ). Therefore an
easy computation yields that

−2i∂̄∂fk(u, Ju) = Hfk(u) +Hfk(Ju)

at the point x, for vectors u ∈ Dx ∩ TxLθ and where Hfk is the Hessian of fk
in the directions of Dx.

Now suppose that the index of the critical point x is less than or equal
to n− 2, i.e., that there is a subspace V ⊂ TxLθ in which the Hessian Hfk is
positive, such that its dimension is greater or equal to n+ 2. Then V ∩Dx is
a subspace of Dx of dimension n+ 1 at least. Therefore V ∩Dx ∩ J(V ∩Dx)
has dimension at least 2. Let u be a non-zero vector in this intersection. Then
Hfk(u) +Hfk(Ju) is positive whereas −2i∂̄∂fk(u, Ju) = −2kdα(u, Ju)|sk|2 +
O(k−1/2) is negative. This is a contradiction.
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Hence the index of the critical point is at least n − 1. Therefore the leaf
Lθ is homotopy equivalent to an (n+ 1)-dimensional CW-complex. �

5. Further speculations

Theorem 1.6 is a first step in a characterization of the relations between
contact and almost contact manifolds. We recall that, according to [10, 11],
an open book decomposition recovers a contact structure whenever the leaf is
Stein and the monodromy (map generated by the return 1 map of the gradient
of φk) is a symplectomorphism. According to a theorem of Eliashberg [7], given
a 2n-dimensional open manifold with the homotopy type of a n-dimensional
skeleton and satisfying an extra homotopical assumption, it is always possible
to construct a Stein structure in the manifold. The problem is so to understand
the conditions in which the leaves in Theorem 1.6 become homotopic to an
n-dimensional skeleton and then approximate the monodromy map of the
open book by a symplectomorphism. The classical results about existence of
open books [14, 20, 19] are far away from providing a method to control the
monodromy map, though. They provide a method of controlling the topology
of the leaf, but nothing is said about the monodromy map.

However, in our case the monodromy map is in a sense more controlled. To
go further we will need to understand the behavior of 1-parametric families of
open books decompositions. This has already been studied in the holomorphic
situation [11].
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