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ABSTRACT

Let Γ be the fundamental group of the complement of the torus knot of type
(m,n). This has a presentation Γ = 〈x, y |xm = yn〉. Using the geometric description
of the character variety X(Γ, G) of characters of representations of Γ into G =
SL(3,C), we determine explicitly its associated µ3-equivariant motive.

Dedicated to José Maŕıa Montesinos Amilibia, with our deepest admiration.

1. Introduction

Let Γ be a finitely presented group, and let G = SL(r,C). A representation of Γ in G is
a homomorphism ρ : Γ → G. Consider a presentation Γ = 〈x1, . . . , xk|r1, . . . , rs〉. Then
ρ is completely determined by the k-tuple (A1, . . . , Ak) = (ρ(x1), . . . , ρ(xk)) subject to
the relations rj(A1, . . . , Ak) = Id, 1 ≤ j ≤ s. The space of representations is

R(Γ, G) = Hom(Γ, G)

= {(A1, . . . , Ak) ∈ Gk | rj(A1, . . . , Ak) = Id, 1 ≤ j ≤ s} ⊂ Gk .

Therefore R(Γ, G) is an affine algebraic set.

We say that two representations ρ and ρ′ are equivalent if there exists P ∈ G such
that ρ′(g) = P−1ρ(g)P , for every g ∈ G. The moduli space of representations is defined
as the GIT quotient

M(Γ, G) = R(Γ, G)//G .

Recall that by definition of GIT quotient for an affine variety, if we write R(Γ, G) =
SpecA, then M(Γ, G) = SpecAG. For a representation ρ : Γ→ G, we define its character
as the map χρ : Γ→ C, χρ(g) = tr ρ(g). Note that two equivalent representations ρ and
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ρ′ have the same character. There is a character map χ : R(Γ, G)→ CΓ, ρ 7→ χρ, whose
image

X(Γ, G) = χ(R(Γ, G))

is called the character variety of Γ. The traces χρ span a subring B ⊂ AG, and X(Γ, G) =
SpecB. Actually, for G = SL(r,C), the ring of invariant polynomials is generated by
characters (see Chapter 1 in [12]), so the natural algebraic map

M(Γ, G)→ X(Γ, G)

is an isomorphism.

The character varieties for SL(2,C) have been extensively studied in the last three
decades [3, 4, 12]. Given a manifold M , the moduli of representations of π1(M) into
SL(2,C) contain information of the topology of M . This is specially relevant for 3-
dimensional manifolds [3], where the fundamental group and the geometrical properties
of the manifold are strongly related. This has been used to study knots K ⊂ S3, by
analysing the SL(2,C)-character variety of the fundamental group of the knot comple-
ment S3 − K (these are called knot groups). The case of SL(2,C)-representations of
the fundamental group of a surface has also been extensively analysed [5, 7, 11, 15], in
this situation focusing more on geometrical properties of the moduli space in itself (cf.
non-abelian Hodge theory).

However, much less is known of the character varieties for other groups, notably for
SL(r,C) with r ≥ 3. The character varieties for SL(3,C) for free groups have been
described in [9, 10]. In the case of 3-manifolds, little has been done. For knot groups,
the first case to analyse is clearly that of torus knots. These are defined as follows. Let
T 2 = S1×S1 be the 2-torus and consider the standard embedding T 2 ⊂ S3. Let m,n be
a pair of coprime positive integers. Identifying T 2 with the quotient R2/Z2, the image
of the straight line y = m

n x in T 2 defines the torus knot of type (m,n), which we shall
denote as Km,n ⊂ S3 (see [18, Chapter 3]). The SL(3,C)-character variety of the torus
knot K2,3 has been described in [6], and for the general torus knot Km.n it is given in
[17].

The fundamental group of the knot complement S3 −Km,n is the group

Γm,n = 〈x, y |xn = ym 〉 .

Therefore the character variety is described explicitly as

Xr = X(Γm,n,SL(r,C)) = {(A,B) ∈ SL(r,C)2 |An = Bm}//SL(r,C) (1.1)

Various geometrical properties of character varieties can be studied. Basic proper-
ties include connectedness, number of irreducible components, and the dimension. More
elaborated properties are the fundamental group or the Poincaré polynomials; such topo-
logical properties have been studied for the character varieties for surfaces via non-abelian
Hodge theory, which produces a homeomorphism of the moduli of representations with
the moduli space of Higgs bundles [7]. If one focuses on the algebro-geometric aspects
of character varieties, one can try to compute the motives, the Hodge numbers or the
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V. Muñoz and J. Sánchez SL(3,C)-character variety of torus knots

E-polynomials. For instance, for SL(3,C)-character varieties of torus knots, the motive
is given in [17].

Here, we shall give, using the result of [17], the µ3-equivariant motive of the SL(3,C)-
character varieties of torus knots. Note that the center of SL(r,C), consisting of the
matrices $ Id, where $ ∈ µr = {e2πik/r, k = 0, . . . , r − 1}, act on (1.1). Therefore the
motive of X(Γm,n,SL(r,C)) has a µr-action. This produces a µr-equivariant motive as
explained in Section 2. Our main result is:

Theorem 1.1 The µ3-equivariant motive of the SL(3,C)-character variety of the (m,n)-
torus knot is:

• If n,m ≡ 1, 5 (mod 6), then

hµ3(X3) =
[
P0 +

1

36
(m− 1)(m− 2)(n− 1)(n− 2)P1 +

1

6
(n− 1)(m− 1)(n+m− 4)P3+

+
1

4
(n− 1)(m− 1)P5

]
T+

+
[1

3
(m− 1) (n− 1) (n+m− 4)P3 +

1

18
(m− 2) (m− 1) (n− 2) (n− 1)P1

]
R

• If n ≡ 2, 4 (mod 6), m ≡ 1, 5 (mod 6), then

hµ3(X3) =
[
P0 +

1

36
(m− 1)(m− 2)(n− 1)(n− 2)P1 +

1

6
(n− 1)(m− 1)(n+m− 4)P3+

+
1

4
(n− 2)(m− 1)P5 +

1

2
(m− 1)P6

]
T+

+
[1

3
(m− 1) (n− 1) (n+m− 4)P3 +

1

18
(m− 2) (m− 1) (n− 2) (n− 1)P1

]
R

• If n ≡ 3 (mod 6), m ≡ 1, 5 (mod 6), then

hµ3(X3) =
[
P0 +

1

36
(m− 1)(m− 2)n(n− 3)P1 +

1

6
(m− 1)(m− 2)P2+

+
1

6
(m− 1)(mn+ n2 − 5n−m− 2)P3 + (m− 1)P4 +

1

4
(n− 1)(m− 1)P5

]
T+

+
[ 1

18
(m− 2)(m− 1)(n2 − 3n+ 3)P1 −

1

6
(m− 2)(m− 1)P2+

+
1

3
(m− 1)(n2 +mn− 5n−m+ 7)P3 − (m− 1)P4

]
R

• If n ≡ 0 (mod 6), m ≡ 1, 5 (mod 6), then

hµ3(X3) =
[
P0 +

1

36
(m− 1)(m− 2)n(n− 3)P1 +

1

6
(m− 1)(m− 2)P2+

+
1

6
(m− 1)(mn+ n2 − 5n−m− 2)P3 + (m− 1)P4+

+
1

4
(n− 2)(m− 1)P5 +

1

2
(m− 1)P6

]
T+

+
[ 1

18
(m− 2)(m− 1)(n2 − 3n+ 3)P1 −

1

6
(m− 2)(m− 1)P2+

+
1

3
(m− 1)(n2 +mn− 5n−m+ 7)P3 − (m− 1)P4

]
R
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V. Muñoz and J. Sánchez SL(3,C)-character variety of torus knots

• If n ≡ 2, 4 (mod 6), m ≡ 3 (mod 6), then

hµ3(X3) =
[
P0 +

1

36
m(m− 3)(n− 1)(n− 2)P1 +

1

6
(n− 1)(n− 2)P2+

+
1

6
(n− 1)(mn+m2 − n− 5m− 2)P3 + (n− 1)P4+

+
1

4
(n− 2)(m− 1)P5 +

1

2
(m− 1)P6

]
T+

+
[ 1

18
(n− 2)(n− 1)(m2 − 3m+ 3)P1 −

1

6
(n− 2)(n− 1)P2+

+
1

3
(n− 1)(m2 +mn− 5m− n+ 7)P3 − (n− 1)P4

]
R

where T is the trivial representation and R is the non-trivial two-dimensional rational
representation. Here, P0 = L2, P1 = L4+4L3−3L2−15L+12, P2 = L4+2L3−3L2−L+4,
P3 = L2 − 3L + 3, P4 = L2 − L + 1, P5 = L2 − 3L + 2, P6 = L2 − 2L + 1.

(Note that we can swap n,m if necessary to be in one of the cases above.)

2. Equivariant motives

Let VarC be the category of quasi-projective complex varieties. We denote by K(VarC)
the Grothendieck ring of VarC. This is the abelian group generated by elements [Z], for
Z ∈ VarC, subject to the relation [Z] = [Z1] + [Z2] whenever Z can be decomposed as a
disjoint union Z = Z1 t Z2 of a closed and a Zariski open subset. There is a naturally
defined product in K(VarC) given by [Y ] · [Z] = [Y × Z]. We write L := [A1], where
A1 is the affine line, the Lefschetz object in K(VarC). Clearly Lk = [Ak]. Finally, let
SmVarC denote the category of smooth projective varieties over C. We consider the
ring Kbl(SmVarC) generated by the smooth projective varieties subject to the relations
[X] − [Y ] = [BlY (X)] − [E], where Y ⊂ X is a smooth subvariety, BlY (X) is the blow-
up of X along Y , and E is the exceptional divisor. By [2, Theorem 3.1], there is an
isomorphism

Kbl(SmVarC) ∼= K(VarC).

Now we move to the definition of Chow motives. Given a smooth projective variety
X, let CHd(X) denote the abelian group of Q-cycles on X, of codimension d, modulo
rational equivalence. If X,Y ∈ SmVarC, suppose that X is connected and dim(X) = d.
The group of correspondences (of degree 0) from X to Y is Corr(X,Y ) = CHd(X × Y ).
For varieties X,Y, Z ∈ SmVarC, the composition of correspondences

Corr(X,Y )⊗ Corr(Y,Z)→ Corr(X,Z)

is defined as

g ◦ f = pXZ∗(p
∗
XY (f) · p∗Y Z(g)),

where pXZ : X × Y × Z → X × Z is the projection, and similarly for pXY and pY Z .

Definition 2.1 The category of (effective Chow) motives is the categoryMot such that:
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• its objects are pairs (X, p) where X ∈ SmVarC, and p ∈ Corr(X,X) is an idempo-
tent (p = p ◦ p);

• if (X, p), (Y, q) are effective motives, then the morphisms are Hom((X, p), (Y, q)) =
q ◦ Corr(X,Y ) ◦ p.

There is a natural functor

h : SmVaropp
C →Mot (2.1)

such that, for a smooth projective variety X, h(X) = (X,∆X), where ∆X ∈ Corr(X,X)
is the graph of the identity IdX : X → X. We say that h(X) is the motive of X.

The category Mot is pseudo-abelian, where direct sums and tensor products are
defined by (X, p)⊕(Y, q) = (XtY, p+q) and (X, p)⊗(Y, q) = (X×Y, p∗X×X(p)·p∗Y×Y (q)).
In particular

h(X t Y ) = h(X)⊕ h(Y ),

h(X × Y ) = h(X)⊗ h(Y ).

This allows us to define K(Mot) as the abelian group generated by elements [M ], for
M ∈ Mot, subject to the relations [M ] = [M1] + [M2], when M = M1 ⊕M2. This is a
ring with the product [M1] · [M2] = [M1 ⊗M2].

In Mot, we have that 1 = h(pt) is the identity of the tensor product, so it is called
the unit motive. It is easily seen that there is an isomorphism 1 ∼= (P1,P1 × pt). Set
L = (P1, pt × P1), which is called the Lefschetz motive. Therefore h(P1) = 1 ⊕ L, and
more generally,

h(Pn) = 1⊕ L⊕ · · · ⊕ Ln.

Denote also by L ∈ K(Mot) the class of the Lefschetz motive L ∈Mot.

In [13] it is shown that the motive of the blow-up of a smooth projective variety X

along a codimension r smooth subvariety Y is h(BlY (X)) = h(X)⊕
(⊕r−1

i=1 (h(Y )⊗ Li)
)

,

being thus compatible with the relation defining Kbl(SmVarC). So the map h in (2.1)
descends to Kbl(SmVarC)→ K(Mot), hence defining a ring homomorphism

χ : K(VarC)→ K(Mot). (2.2)

When X is smooth and projective, we have

χ([X]) = [h(X)],

so we can think of the map χ as the natural extension of the notion of motives to all
quasi-projective varieties. Notice that χ(L) = L, which justifies the use of the same
notation for the Lefschetz object and the Lefschetz motive.

Let G be a finite group. We have the category VarGC of quasi-projective complex vari-
eties with a G-action, and the category SmVarGC of smooth projective complex varieties
endowed with a G-action. As before, we have well-defined Grothendieck rings K(VarGC )
and Kbl(SmVarGC ), which are isomorphic [2].
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Let X be a smooth projective variety with an action of a finite group G. Let CHd
C(X×

X) = CHd(X ×X)⊗ C denote the Chow ring with complex coefficients. The action of
G on X defines a morphism

ϕ : C[G] −→ CHd
C(X ×X),

given by g 7→ Γg. By a theorem of Maschke [8, XVIII, Thm, 1.2], the group ring
C[G] is semisimple. Every semisimple ring R admit a decomposition in simple rings
R =

∏s
i=1Ri, where Ri = R · ei. Such ei ∈ R are the idempotents of Ri and ei · ej = 0

for i 6= j. Furthermore, the sum of these elements is

1 = e1 + e2 + · · ·+ es. (2.3)

In our case,

C[G] =

s∏
i=1

C[G] · ei (2.4)

where e2
i = ei and ei · ej = 0 whenever i 6= j. If we let pi = ϕ(ei) ∈ CHd

C(X ×X), then
p2
i = pi and pi ·pj = 0 for i 6= j. The equality (2.3) gives the decomposition of the motive
h(X) of the variety

h(X) =
s⊕
i=1

(X, pi).

Definition 2.2 We define the equivariant motive of X as

hG(X) :=
∑

(X, pi)ei ∈ K(Mot)⊗ C[G].

This means that hG(X) is the image of
∑
ei ⊗ ei ∈ C[G] ⊗ C[G] under the natural

map ϕ⊗ Id : C[G]⊗ C[G]→ CHd
C(X ×X)⊗ C[G].

The proof of [13] can be carried out for a smooth projective variety X endowed
with a G-action and a smooth subvariety Y ⊂ X which is G-invariant. This gives

that hG(BlY (X)) = hG(X)⊕
(⊕r−1

i=1 (hG(Y )⊗ Li)
)

. Thus the map hG in Definition 2.2

descends to a map

K(VarGC ) = Kbl(SmVarGC )→ K(Mot)⊗ C[G].

The proof of this fact follows the same arguments presented in [13], taking into account
the equivariance of the Chern classes xk of the projective bundle E → Y , where E
denotes the exceptional divisor of BlY X, and hence the classes pi commute with xk.

The idempotents ei are associated in a one-to-one way to the irreducible representa-
tions of G. For an irreducible representation Ri, let χi be its character. Then

ei =
1

|G|
∑
g∈G

χi(g)g,

so hi(X) = (X, pi), where

pi =
1

|G|
∑
g∈G

χi(g)Γg.
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For the trivial representation R1, we recover the quotient motive of X/G by the result
in [1],

h(X/G) = h1(X) =

X, 1

|G|
∑
g∈G

Γg

 . (2.5)

This holds for smooth projective varieties by [1], hence it holds for all quasi-projective
varieties since K(VarGC ) = Kbl(SmVarGC ).

Finally, from h(X) =
∑
hi(X) the equivariant motive recovers the usual motive of a

quasi-projective variety.

Now we analyse the case of a cyclic group G = Cr of order r.

Lemma 2.1 Let ξ be an r-th primitive root of unity and let g be a generator for the
group Cr. Then, the decomposition (2.4) is

C[Cr] =

r−1⊕
a=0

C ea, where the projectors are ea =
1

r

r−1∑
k=0

(ξag)k .

Proof. First, we compute the product ea · eb. By definition

ea · eb =
1

r2

(
r−1∑
i=0

(ξag)i

)r−1∑
j=0

(ξbg)j


=

1

r2

r−1∑
c=0

∑
i+j≡c
(mod r)

ξai+bjgi+j =
1

r2

r−1∑
c=0

gc
∑
i+j≡c
(mod r)

ξai+bj .

We focus on the sum
∑

i+j=c ξ
ai+bj . If a 6= b, this sum is zero, since the sequence {ai+bj

(mod r)}i+j=c is nothing but {0, 1, . . . , r− 1}. Thus, ea · eb = 0 if a 6= b. The case a = b,
the sum is non-zero and it is r · (ξa)c, and we conclude that ea · ea = ea. �

In Lemma 2.1, the element corresponding to the trivial representation is e0 = 1
r

∑
gk.

So h0(X) = h(X/Cr). Suppose that we are in the situation

ha(X) = hb(X), when gcd(r, a) = gcd(r, b). (2.6)

Then we can recover the equivariant motive from the quotients X/〈gd〉, for d|r. We start
with the case that r is prime. Then h1(X) = . . . = hr−1(X). Hence

hCr(X) = h0(X)e0 + h1(X)(e1 + . . .+ er−1), (2.7)

where

h0(X) = h(X/Cr),

h1(X) =
1

r − 1
(h(X)− h(X/Cr)).
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If r is not prime, then

hCr(X) = h0(X)e0 +
∑
d|r

hd(X)

 ∑
1≤l≤r/d−1
gcd(l,r/d)=1

eld

 .

To determine hCr(X) we need as many equations as divisors of r. These are provided
by the following result.

Lemma 2.2 For any d|r, we have
r/d−1∑
k=0

hkd(X) = h(X/〈gr/d〉).

Proof. Let ξ be an r-th primitive root of the unity and let g ∈ G be a generator of the
group Cr. Then,

r/d−1∑
k=0

ekd =
1

r

r/d−1∑
k=0

r−1∑
i=0

(
ξkdg

)i
=

1

r

r/d−1∑
k=0

r−1∑
i=0

ξkdigi =
1

r

r−1∑
i=0

gi
r/d−1∑
k=0

ξkdi

The sum
∑r/d−1

k=0 ξkdi is zero if and only if di is multiple of r, that is, i = r
d b for some

integer number b. Then, the sum becomes

r/d−1∑
k=0

ekd =
1

d

d−1∑
b=0

g
r
d
b .

Now take the image under ϕ : C[Cr]→ CHd
C(X ×X). This produces the motive(

X,
1

d

d−1∑
b=0

Γ
g
r
d

b

)
= h(X/〈gr/d〉).

The result follows. �

3. Character varieties of torus knots

Let
Γm,n = 〈x, y |xn = ym 〉

be the torus knot group, and consider the character varieties for SL(r,C) and PGL(r,C) =
SL(r,C)/µr,

Xr = X(Γm,n,SL(r,C)),

X̄r = X(Γm,n,PGL(r,C)),

By [17, Section 4], we have that µr acts on Xr via $ ·(A,B) = ($mA,$nB), $ ∈ µr,
and

X̄r ∼= Xr/µr .

7
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Let us see that Condition (2.6) is satisfied for this action. Take a, b such that
gcd(a, r) = gcd(b, r) = d. Then there is a Galois automorphism σ : C → C such
that σ(ξb) = ξa, where ξ = e2πi/r. We let σ act on Xr: this means that σ acts on all
entries of the matrices A and B. Then σ : Xr → Xr interchanges the action of g to the
action of σ(g) = gp, where p is defined by ξbp = ξa, i.e. b

dp ≡
a
d (mod r

d) (the integer p is
coprime to r). Therefore (Xr, pa) ∼= (Xr, σ(pa)) = (Xr, pb), since

σ(pa) =
1

r

r−1∑
k=0

(ξaσ(g))k =
1

r

r−1∑
k=0

(ξagp)k =
1

r

r−1∑
k=0

(
ξbpgp

)k
=

1

r

r−1∑
k=0

(ξbg)k = pb.

We have the following result for SL(2,C)-character varieties.

Theorem 3.1 The µ2-equivariant motive hµ2(X2) is equal to
(L + 1

4(n− 1)(m− 1)(L− 2))T + 1
4(n− 1)(m− 1)(L− 2))N, n,m odd.

(L + 1
4(n− 2)(m− 1)(L− 2) + 1

2(m− 1)(L− 1))T+

+(1
4(n− 2)(m− 1)(L− 2)− 1

2(m− 1)(L− 1))N,
n even, m odd.

where T is the trivial representation and N is the non-trivial one.

Proof. The character variety X2 is described in [14] by finding a set of equations
satisfied by the traces of the matrices of the images by the representation. In [16] the
same variety X2 is described by a geometric method based on the study of eigenvectors
and eigenvalues of the matrices. The variety X2 consists of the following irreducible
components: one component consisting of reducible representations, isomorphic to C;
and (n−1)(m−1)/2 components forming the irreducible locus, each of them isomorphic
to C− {0, 1}. Therefore the motive is [X2] = L + 1

2(n− 1)(m− 1)(L− 2).

As described in [17], the PGL(2,C)-character variety X̄2 consists of: one component
consisting of reducible representations, isomorphic to C; [n−1

2 ][m−1
2 ] components of the

irreducible locus, each of them isomorphic to C− {0, 1}; and if n is even and m is odd,
(m− 1)/2 components of the irreducible locus, each of them isomorphic to C∗ (the case
m even and n odd is analogous). Note that we can always assume, by swapping n,m if
necessary, that m is odd. Therefore we have that for m,n odd, [X̄2] = L+ 1

4(n− 1)(m−
1)(L−2). For n even andm odd, we have [X̄2] = L+1

4(n−2)(m−1)(L−2)+1
2(m−1)(L−1).

By (2.7),
hµ2(X2) = [X̄2]T + ([X2]− [X̄2])N ,

where T is the trivial representation, and N is the non-trivial representation (T = e0

and N = e1 in the notation of Section 2). The result follows. �

Now we move to the description of the SL(3,C)-character variety X3. The following
description appears in [17, Sections 8 and 10].

Proposition 3.2 The components of X3 are the following:

• The component of totally reducible representations, isomorphic to C2.

8
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• [n−1
2 ][m−1

2 ] components of partially reducible representations, each isomorphic to
(C− {0, 1})× C∗.

• If n is even, there are (m− 1)/2 extra components of partially reducible represen-
tations, each isomorphic to {(u, v) ∈ C2|v 6= 0, v 6= u2}. (The case m even and n
odd is analogous.)

• 1
12(n−1)(n−2)(m−1)(m−2) componens of irreducible representations, of maximal
dimension 4, which are isomorphic to M/(T ×C∗ T ), where M⊂ GL(3,C) are the
stable points for the (T ×C∗ T )-action (here T are the diagonal matrices acting by
multiplication on GL(3,C) on the left and on the right).

• 1
2(n − 1)(m − 1)(n + m − 4) components of irreducible representations, each iso-
morphic to (C∗)2 − {x+ y = 1}.

From here, we can read off the motive of the character variety X3 (cf. [17, Theorem
8.3]):

[X3] =
1

12
(n− 1)(n− 2)(m− 1)(m− 2)(L4 + 4L3 − 3L2 − 15L + 12)

+ L2 +
1

4
(n− 1)(m− 1)(L2 − 3L + 2)

+
1

2
(n− 1)(m− 1)(n+m− 4)(L2 − 3L + 3), m, n odd,

[X3] =
1

12
(n− 1)(n− 2)(m− 1)(m− 2)(L4 + 4L3 − 3L2 − 15L + 12)

+ L2 +
1

4
(n− 2)(m− 1)(L2 − 3L + 2) +

1

2
(m− 1)(L2 − 2L + 1)

+
1

2
(n− 1)(m− 1)(n+m− 4)(L2 − 3L + 3), n even,m odd.

Now we describe the PGL(3,C)-character varieties X̄3.

Proposition 3.3 The components of the PGL(3,C)-character variety X̄3 are:

• The component of totally reducible representations, which is isomorphic to C2/µ3
∼=

{(x, y, z) ∈ C3 | x y = z3}.

• [n−1
2 ][m−1

2 ] components of partially reducible representations, each isomorphic to
(C− {0, 1})× C∗.

• When n is even, there are (m − 1)/2 additional components of partially reducible
representations, each isomorphic to {(u, v) ∈ C2|v 6= 0, v 6= u2}.

• When m,n 6∈ 3Z, there are the following components of irreducible representations:

– (n− 1)(m− 1)(n+m− 4)/6 components isomorphic to (C∗)2 − {x+ y = 1}
– and (m− 1)(m− 2)(n− 1)(n− 2)/36 components of maximal dimension iso-

morphic to M/(T ×C∗ T ).
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• When n ∈ 3Z, there are the following components of irreducible representations:

– (m−1)(mn+n2−5n−m+2)/6 components isomorphic to (C∗)2−{x+y = 1},
– m− 1 components isomorphic to {(x, y, z) ∈ C3 | x y = z3, x+ y + 3z 6= 1},
– (m− 1)(m− 2)n(n− 3)/36 components of maximal dimension isomorphic to
M/(T ×C∗ T ),

– and (m−1)(m−2)/6 components of maximal dimension isomorphic toM/(T×C∗

T o µ3), where µ3 acts by cyclic permutation of columns in M.

The case m ∈ 3Z is symmetric.

The motive of the character variety X̄3 is as follows (see [17, Corollary 10.3]):

• If n,m ≡ 1, 5 (mod 6), then [X̄3] = P0 + 1
36(m− 1)(m− 2)(n− 1)(n− 2)P1 + 1

6(n−
1)(m− 1)(n+m− 4)P3 + 1

4(n− 1)(m− 1)P5.

• If n ≡ 2, 4 (mod 6), m ≡ 1, 5 (mod 6), then [X̄3] = P0 + 1
36(m − 1)(m − 2)(n −

1)(n− 2)P1 + 1
6(n− 1)(m− 1)(n+m− 4)P3 + 1

4(n− 2)(m− 1)P5 + 1
2(m− 1)P6.

• If n ≡ 3 (mod 6), m ≡ 1, 5 (mod 6), then [X̄3] = P0 + 1
36(m−1)(m−2)n(n−3)P1 +

1
6(m−1)(m−2)P2+ 1

6(m−1)(mn+n2−5n−m−2)P3+(m−1)P4+ 1
4(n−1)(m−1)P5.

• If n ≡ 0 (mod 6), m ≡ 1, 5 (mod 6), then [X̄3] = P0 + 1
36(m − 1)(m − 2)n(n −

3)P1 + 1
6(m − 1)(m − 2)P2 + 1

6(m − 1)(mn + n2 − 5n −m − 2)P3 + (m − 1)P4 +
1
4(n− 2)(m− 1)P5 + 1

2(m− 1)P6.

• If n ≡ 2, 4 (mod 6), m ≡ 3 (mod 6), then [X̄3] = P0 + 1
36m(m − 3)(n − 1)(n −

2)P1 + 1
6(n− 1)(n− 2)P2 + 1

6(n− 1)(mn+m2−n− 5m− 2)P3 + (n− 1)P4 + 1
4(n−

2)(m− 1)P5 + 1
2(m− 1)P6.

Here P0 = L2, P1 = L4+4L3−3L2−15L+12, P2 = L4+2L3−3L2−L+4, P3 = L2−3L+3,
P4 = L2 − L + 1, P5 = L2 − 3L + 2, P6 = L2 − 2L + 1.

Now, to compute the µ3-equivariant motive, we use (2.7):

hµ3(X3) = [X̄3]T +
1

2
([X3]− [X̄3])(R1 +R2)

where T is the trivial representation of µ3 and R1, R2 are the non-trivial representations
(T corresponds to e0 and R1, R2 correspond to e1, e2). Note that R1, R2 are representa-
tions defined over C, but R1 +R2 is a representation defined over the rationals. Theorem
1.1 follows from this.
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[11] M. Logares, V. Muñoz and P. Newstead, Hodge polynomials of SL(2,C)-character varieties
for curves of small genus, Rev. Mat. Complut. 26 (2013), 635–703.

[12] A. Lubotzky and A. Magid, Varieties of representations of finitely generated groups, Mem.
Amer. Math. Soc. 58, 1985.

[13] Y. Manin, Correspondences, motifs and monoidal transformations, Math. USSR Sb. 6
(1968), 439–470.

[14] J. Mart́ın-Morales and A-M. Oller-Marcén, On the varieties of representations and characters
of a family of one-relator subgroups, Topol. Appl. 156 (2009), 2376–2389.
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