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ON THE NULLSTELLENSÄTZE FOR STEIN SPACES

AND C-ANALYTIC SETS

FRANCESCA ACQUISTAPACE, FABRIZIO BROGLIA, AND JOSÉ F. FERNANDO

Abstract. In this work we prove the real Nullstellensatz for the ring O(X)
of analytic functions on a C-analytic set X ⊂ Rn in terms of the saturation
of �Lojasiewicz’s radical in O(X): The ideal I(Z(a)) of the zero-set Z(a) of

an ideal a of O(X) coincides with the saturation L̃
√
a of �Lojasiewicz’s radical

L
√
a. If Z(a) has ‘good properties’ concerning Hilbert’s 17th Problem, then

I(Z(a)) = r̃
√
a where r

√
a stands for the real radical of a. The same holds

if we replace r
√
a with the real-analytic radical ra

√
a of a, which is a natural

generalization of the real radical ideal in the C-analytic setting. We revisit
the classical results concerning (Hilbert’s) Nullstellensatz in the framework of
(complex) Stein spaces.

Let a be a saturated ideal of O(Rn) and YRn the germ of the support of the
coherent sheaf that extends aORn to a suitable complex open neighborhood of
Rn. We study the relationship between a normal primary decomposition of a
and the decomposition of YRn as the union of its irreducible components. If
a := p is prime, then I(Z(p)) = p if and only if the (complex) dimension of
YRn coincides with the (real) dimension of Z(p).

Introduction

In this paper we characterize the ideals a of the algebra O(X) that have the
zero property where X is either a Stein space or a C-analytic set (also known as C-
analytic subset of Rn); see 1.1.2. Recall that an ideal a of O(X) has the zero property
if it coincides with the ideal I(Z(a)) of all analytic functions on X vanishing on
its zero-set Z(a). More generally, we approach the problem of determining the
ideal I(Z(a)) algebraically from an ideal a of O(X). These problems are commonly
known as Nullstellensätze. The complex and the real-analytic case have deserved
the attention of specialists in both matters for a long time.
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Our results are new for the general real case. Until now, all known results exist
only for two particular situations:

(1) compact analytic spaces [Jw,Rz] or
(2) analytic spaces of low dimensions [A,BP]: 0, 1 or 2.

For the complex case we extend the classical Forster’s Nullstellensatz by removing
the condition that the involved ideal a, for which one computes I(Z(a)), is closed.

The complex case. The main known results concerning the complex analytic
Nullstellensatz go back to the 1960s and are due to Forster [F] and Siu [S]. To
state the main results, we fix a Stein algebra O(X) := H0(X,OX), that is, the
algebra of global analytic sections on a (reduced) Stein space (X,OX). There are
crucial differences concerning the behavior of polynomial functions on an algebraic
variety and analytic functions on a Stein space. Besides that O(X) is neither
noetherian nor a unique factorization domain, two main obstructions appear to
get a Nullstellensatz. The first one arises because there are proper prime ideals
with empty zero-set while the second one appears because the ‘multiplicity’ of
an analytic function G ∈ O(X) vanishing (identically) on a discrete set can be
unbounded. Thus, if another analytic function F ∈ O(X) vanishes on the zero-set
of G with multiplicity 1, no power of F can belong to the ideal GO(X). Classical
examples of the previous situations, for which K denotes either R or C, are the
following:

Example 1. Let U be an ultrafilter of subsets of N containing all cofinite subsets.
For an analytic function F ∈ O(K) we denote the multiplicity of F at the point
z ∈ K with multz(F ). Put M(F,m) := {� ∈ N : mult�(F ) ≥ m}. Consider the
non-empty set

p := {F ∈ O(K) : M(F,m) ∈ U ∀m ≥ 0}.
Let us check that p is a prime ideal. Indeed, let F,G ∈ p. Then M(F,m) ∩

M(G,m) ⊂ M(F + G,m) because mult�(F + G) ≥ min{mult�(F ),mult�(G)}, so
M(F +G,m) ∈ U for all m ≥ 0. On the other hand, if F ∈ p and G ∈ O(K), then
mult�(FG) = mult�(F ) + mult�(G), so M(FG,m) ⊃ M(F,m) ∈ U for all m ≥ 0.

Suppose F1F2 ∈ p but F1, F2 �∈ p. Then there exist m1,m2 ≥ 0 such that

M(F1,m1),M(F2,m2) /∈ U.

Takem0 := max{m1,m2} and noteM(F1,m0),M(F2,m0) /∈ U; hence,M(F1,m0)∪
M(F2,m0) �∈ U. On the other hand,

M(F1,m0) ∪M(F2,m0) ⊃ M(F1F2, 2m0) ∈ U,

so also M(F1,m0) ∪M(F2,m0) ∈ U, which is a contradiction.
Thus, p is a prime ideal. Finally, observe Z(p) = ∅. For each k ≥ 1 let

Gk ∈ O(K) be an analytic function such that Z(Gk) = {� ∈ N : � ≥ k} and
mult�(Gk) = � for all � ≥ k. Since U contains all cofinite subsets, we deduce that
each Gk ∈ p, so Z(p) ⊂

⋂
k≥1 Z(Gk) = ∅.

Example 2. Let F,G ∈ O(K) be the analytic functions given by the following
infinite products:

F (z) :=
∏
n≥1

(
1− z

n2

)
and G(z) :=

∏
n≥1

(
1− z

n2

)n
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THE NULLSTELLENSÄTZE FOR STEIN SPACES AND C-ANALYTIC SETS 3901

for all z ∈ K. The zero-sets of F and G coincide with the set {n2 : n ≥ 1} and we
denote a = GO(K). If the classical Nullstellensatz held for O(K), there would exist
an integer m ≥ 0 and an analytic function H ∈ O(K) such that Fm = GH. Let us
compare multiplicities in the previous formula at the point (m+ 1)2: the left hand
side vanishes at the point (m + 1)2 with multiplicity m while the right hand side
vanishes at the point (m+ 1)2 with multiplicity ≥ m+ 1, which is a contradiction.
Thus, we conclude I(Z(a)) �=

√
a.

To control these difficulties, Forster showed first that the prime closed ideals
p of O(X) endowed with its usual Fréchet’s topology [GR, VIII.A] have the zero
property, that is, I(Z(p)) = p. Afterwards he proved that the closed ideals a of
O(X) admit (as in the noetherian case) a normal primary decomposition (see §1.3).
Of course, for a general normal primary decomposition there exist countably many
primary ideals qi.

In this context we extend Forster’s Nullstellensatz (see Section 2 for precise
statements) to the non-closed case as we state in the next result. Given an ideal b
of O(X), we denote its closure with respect to the usual Fréchet’s topology of O(X)
with b.

Theorem 1 (Nullstellensatz). Let (X,OX) be a Stein space and a ⊂ O(X) an
ideal. Then

I(Z(a)) =
√
a.

Equivalently, I(Z(a)) = a if and only if a is radical and closed.

We will show in Remark 1.4 that if a is a closed ideal with normal primary

decomposition a =
⋂

i∈I qi, we have
√
a =

⋂
i∈I

√
qi. Nevertheless, it may happen

that
√
a �

√
a because the radical of a closed ideal a need not be closed (see Section

2). However, the radical of a closed primary ideal q is still closed; see Lemma 1.1.

The real case. The situation in the real case is more demanding. We have similar
initial difficulties to the ones described in the complex analytic case. Examples 1
and 2 are generalized to the real case as follows.

Examples 3. (i) The ideal p in Example 1 is a real ideal, that is, if a sum of squares∑p
i=1 f

2
i in O(R) belongs to p, then each fi ∈ p. Indeed, assume f :=

∑p
i=1 f

2
i ∈ p.

Since
mult�(f) = 2min{mult�(f1), . . . ,mult�(fp)},

we deduce M(f, 2m) ⊂ M(fi,m) for all m ≥ 0 and i = 1, . . . , p. Thus, since each
M(f, 2m) ∈ U, we conclude M(fi,m) ∈ U for all m ≥ 0, that is, each fi ∈ p.
Therefore p is a real prime ideal with empty zero-set.

(ii) Concerning Example 2, let f, g ∈ O(R) be the corresponding analytic func-
tions defined by the formulas proposed there and let a := gO(R). We want to show
I(Z(a)) �= r

√
a where r

√
a is the real radical of a (see equation (I.2) below). Indeed,

let us prove f �∈ r
√
a. Otherwise there would exist an integer m ≥ 1 and analytic

functions h1, . . . , hp, h ∈ O(R) such that

f2m +

p∑
i=1

h2
i = gh.

Comparing the orders at both sides of the previous equality at the point (2m+1)2,
we obtain a contradiction.
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Consider a C-analytic subset X ⊂ Rn and let I(X) be the ideal of all (real)
analytic functions vanishing on X. The structure sheaf of X is the coherent sheaf
OX := ORn/I(X)ORn . Its ring of global analytic sections

O(X) := H0(X,OX) = O(Rn)/I(X)

can be seen as a subset of the Stein algebra O(X̃) of its complexification X̃ (under-
stood as a complex analytic set germ at X; see §1.1). We stress that X need not
be coherent as an analytic set. Recall also that Cartan proved in [C1, VIII.Thm.4,
p. 60] that if Y is a Stein space, the closure of an ideal b of O(Y ) coincides with its
saturation

b̃ := {F ∈ O(Y ) : Fz ∈ bOY,z ∀ z ∈ Y } = H0(Y, bOY ).

We endow O(X) with the topology induced by Fréchet’s topology of O(X̃) and the
saturation

ã := {f ∈ O(X) : fx ∈ aOX,x ∀x ∈ X} = H0(X, aOX)

of an ideal a of O(X) is by [dB2] again its closure. As de Bartolomeis proved in
[dB1, dB2], each saturated ideal a of O(X) (that is, such that a = ã) admits a
normal primary decomposition similar to the one devised by Forster in the complex
case. Note also that the previous definition of saturation coincides with the one
proposed by Whitney for ideals in the ring of smooth functions over a real smooth
manifold [M, II.1.3].

Before stating our main result, we introduce some terminology. Given f, g ∈
O(X), we say that f ≥ g if f(x) ≥ g(x) for all x ∈ X. Given an ideal a of O(X),
we define its �Lojasiewicz radical as

(I.1) �L
√
a := {g ∈ O(X) : ∃ f ∈ a, m ≥ 1 such that f − g2m ≥ 0}.

The notion of a �Lojasiewicz radical has been used by many authors to approach
different problems mainly related to rings of germs (see for instance [No], [D, p.
104], [K, 1.21] or [DM, §6]) but also in the global smooth case [ABN]. We say that
an ideal a of O(X) is convex if each g ∈ O(X) satisfying |g| ≤ f for some f ∈ a

belongs to a. In particular, �Lojasiewicz’s radical �L
√
a of an ideal a of O(X) is a

radical convex ideal. Our main result in this setting is the following.

Theorem 2 (Real Nullstellensatz). Let X ⊂ Rn be a C-analytic set and a an ideal
of the ring O(X). Then

I(Z(a)) = �̃L
√
a.

Equivalently, I(Z(a)) = a if and only if a is a convex, radical and saturated ideal.

If we compare the previous result to the real Nullstellensatz for the ring of poly-
nomial functions on a real algebraic variety, we observe that �Lojasiewicz’s radical
plays an analogous role to the one performed by the classical real radical. In our
context the real radical of an ideal a of O(X) is

(I.2) r
√
a :=

{
f ∈ O(X) : f2m +

p∑
k=1

a2k ∈ a and ai ∈ O(X), m, p ≥ 0
}
.

Recall that a is a real ideal if a = r
√
a.

It is natural to search relations between both radicals. This question forces us
to compare positive semidefinite analytic functions with sums of squares of ana-
lytic functions in close relation to Hilbert’s 17th Problem for the analytic setting

Licensed to AMSACCES029. Prepared on Mon Feb  1 06:44:06 EST 2016 for download from IP 147.96.217.50/130.44.104.100.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



THE NULLSTELLENSÄTZE FOR STEIN SPACES AND C-ANALYTIC SETS 3903

[ABFR3]. In Section 3 we see that both radicals coincide in the abstract setting of

the real spectrum of a ring A. In Section 5 we prove the equality �̃L
√
a = r̃

√
a for an

ideal a of O(X) with the property that every positive semidefinite analytic function
whose zero-set is Z := Z(a) can be represented as a (finite) sum of squares of mero-
morphic functions on X. Any C-analytic set Z ⊂ Rn with the previous property
will be called an H-set. Some examples of H-sets are the following: discrete sets
[BKS] and compact sets [Jw,Rz]. Moreover, if X is either an analytic curve or a
coherent analytic surface, every analytic subset of X is an H-set [ABFR1,ABFR2].

Since infinite (convergent) sums of squares of meromorphic functions make sense
in O(X) (see Section 1 and [ABF,ABFR3,BP]), we define the real-analytic radical
of an ideal a of O(X) as

(I.3) ra
√
a :=

{
f ∈ O(Rn) : f2m +

∑
k≥1

a2k ∈ a and ai ∈ O(Rn), m ≥ 0
}
.

We say that a is a real-analytic ideal if a = r
√
a.

The equality r̃a
√
a = �̃L

√
a holds for an ideal a of O(X) with the property that

every positive semidefinite analytic function whose zero-set is Z := Z(a) can be
represented as an infinite sum of squares of meromorphic functions on X. We call
those C-analytic sets with the previous property Ha-sets. An example of an Ha-set
is a locally finite union of disjoint compact analytic sets. Thus, if all connected
components of X are compact, then all C-analytic subsets of X are Ha-sets. The
following result collects all this information.

Theorem 3. Let X ⊂ Rn be a C-analytic set and a an ideal of O(X) such that
Z(a) is an H-set. Then

I(Z(a)) = r̃
√
a.

Equivalently, I(Z(a)) = a if and only if a is real and saturated. The previous
statements hold for an Ha-set Z(a) replacing ‘real’ by ‘real-analytic’.

The previous result applies if X is either an analytic curve, a coherent analytic
surface or a C-analytic set whose connected components are all compact, so the real
Nullstellensatz holds for such an X in terms of the real radical (or the real-analytic
radical).

In Section 6 we prove that the class of ideals of O(X) that have the zero property
enjoys the expected properties as it happens with the corresponding class in the
algebraic setting. More precisely, the following theorem holds:

Theorem 4. Let q ⊂ O(Rn) be a saturated primary ideal. Then the following
assertions are equivalent:

(i) I(Z(q)) =
√
q.

(ii) dim(ZC(q)) = dim(Z(q)).
(iii) There exists x ∈ Z(q) such that dim(Z(qORn,x)) = dim(Z(qOCn,x)).

As is well known, condition (iii) in Theorem 4 is equivalent to the existence
of a regular point y ∈ Z(q) for the ideal

√
q. Recall that y ∈ Z(q) is regular

for the ideal
√
q if dim(Z(q)y) = k and there exists fk+1, . . . , fn ∈ √

q such that
rk(∇fk+1(y), . . . ,∇fn(y)) = n− k. The two previous conditions imply that Z(q)∩
U = Z(fk+1, . . . , fn) ∩ U in a neighborhood U of x.
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Structure of the article. In Section 1 we state Forster’s and de Bartolomeis’ nor-
mal primary decompositions for saturated ideals and recall the meaning of infinite
sums of squares in the real-analytic setting. Section 2 is devoted to the complex
Nullstellensatz while the real Nullstellensatz is the content of Section 4. In Section
3 we see that �Lojasiewicz’s radical and the real radical coincide in the abstract set-
ting. We prove in Section 5 that an affirmative answer for Hilbert’s 17th Problem
implies that the saturations of �Lojasiewicz’s radical and the real radical coincide.
We also discuss certain properties concerning convex and quasi-real ideals. Finally,
we analyze the geometric meaning of the real Nullstellensatz for the ideal a in Sec-
tion 6. To that end, we compare the real dimension of the C-analytic set Z := Z(a)
and the complex dimension of the germ Z(a⊗ C).

1. Preliminaries on analytic geometry and saturated ideals

Although we deal with real-analytic functions, we make extended use of complex
analysis. In the following holomorphic functions refer to the complex case and
analytic functions to the real case. For further reading about holomorphic functions
we refer the reader to [GR].

1.1. General terminology. Denote the coordinates in Cn with z := (z1, . . . , zn)
where zi := xi +

√
−1yi. As usual xi := Re(zi) and yi := Im(zi) are respectively

the real and the imaginary parts of zi. Consider the conjugation σ : Cn → Cn, z �→
z := (z1, . . . , zn) of Cn, whose set of fixed points is Rn. A subset A ⊂ Cn is
invariant if σ(A) = A. Obviously, A ∩ σ(A) is the biggest invariant subset of A.
Let Ω ⊂ Cn be an invariant open set and F : Ω → C a holomorphic function. We
say that F is invariant if F (z) = (F ◦ σ)(z) for all z ∈ Ω. This implies that F
restricts to a (real) analytic function on Ω∩Rn. Conversely, if f is analytic on Rn,
it can be extended to an invariant holomorphic function F on some invariant open
neighborhood Ω of Rn. In general,

�(F ) : Ω → C, z �→ F (z)+(F◦σ)(z)
2 and �(F ) : Ω → C, z �→ F (z)−(F◦σ)(z)

2
√
−1

are the real and the imaginary parts of F , which satisfy F = �(F ) +
√
−1�(F ).

An analytic subsheaf F of OΩ is called invariant if for each open invariant subset
U ⊂ Ω and each F ∈ H0(U,F), the holomorphic function F ◦ σ ∈ F(U). If F is
an invariant sheaf on Ω and F1, . . . , Fr ∈ H0(Ω,F) generate Fz as an OΩ,z-module
for some z ∈ Ω, then also �(F1),�(F1), . . . ,�(Fr),�(Fr) generate Fz as an OΩ,z-
module.

We will use Z(·) to denote the zero-set of (·) and I(·) to denote the ideal of
functions vanishing identically on (·). For instance, if (X,OX) is either a Stein
space or a real coherent analytic space and S ⊂ O(X), the zero-set of S is

Z(S) := {x ∈ X : F (x) = 0 ∀F ∈ S}.

If Z ⊂ X, the ideal of Z is

I(Z) := {F ∈ O(X) : F (x) = 0 ∀x ∈ Z}.

For the sake of clearness we denote the elements of O(X) with capital letters if
(X,OX) is a Stein space and with small letters if (X,OX) is a real coherent analytic
space. If a property holds for both types of spaces, we keep capital letters.
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1.1.1. Complexification. If (X,OX) is a coherent (paracompact) real-analytic space,

there exists a (paracompact) complex analytic space (X̃,O
˜X) such that

(i) X ⊂ X̃ is a closed subset and O
˜X,x = OX,x ⊗ C for all x ∈ X.

(ii) There exists an antiholomorphic involution σ : X̃ → X̃ whose fixed locus
is X.

(iii) X has a fundamental system of invariant open Stein neighborhoods in X̃.

(iv) If X is reduced, then X̃ is also reduced.

The analytic space (X̃,O
˜X) is called a complexification of X. It holds that the

germ of (X̃,O
˜X) at X is unique up to an isomorphism. For further details see

[C2,To,WB].

1.1.2. C-analytic sets. The concept of C-analytic sets was introduced by Cartan
in [C2, §7,§10] and the theory of irreducible components of a C-analytic set was
developed by Whitney-Bruhat in [WB] (see also [N, §6]). We say that a subset
X ⊂ Rn is C-analytic if there exists a finite set S := {f1, . . . , fr} of real-analytic
functions fi on Rn such thatX = Z(S). This property is equivalent to the following:

(1) There exists a coherent ideal sheaf I on Rn such that X is the support of
I, that is, X is the set of the points of Rn where Ix �= ORn,x.

(2) There exist an open neighborhood Ω of Rn in Cn and a complex analytic
subset Z of Ω such that Z ∩ Rn = X.

Note that a coherent analytic set is C-analytic. The converse is not true in general
(e.g. Whitney’s umbrella).

A C-analytic set X ⊂ Rn endowed with its (coherent) structure sheaf OX =
ORn/I(X)ORn has a well-defined complexification exactly as above, except for the
second condition in 1.1.1(i), which may fail for the points of a C-analytic subset
Y ⊂ X of smaller dimension. From now on a (reduced) real-analytic space is a pair
(X,OX) constituted of a C-analytic set X ⊂ Rn and its structure sheaf OX .

1.2. Saturated and closed ideals. Let (X,OX) be either a Stein space or a
real-analytic space and a ⊂ O(X) an ideal. We consider its saturation

ã := {F ∈ O(X) : Fx ∈ aOX,x ∀x ∈ X}.
Of course, the ideal a is saturated if ã = a.

In the complex case ã coincides with the closure of a in O(X) endowed with its
usual Fréchet topology [C1, VIII.Thm.4, p. 60]. Thus, saturated ideals coincide
with closed ideals. If (X,OX) is a reduced Stein space, its Fréchet topology is
induced by a countable collection of the natural seminorms ‖ · ‖m := supKm

{| · |}
where {Km}m≥1 is an exhaustion of X by compact sets. Of course, this topology
does not depend on the chosen exhaustion [GR, VIII.A].

On the other hand, if (X,OX) is a real-analytic space, the inherited topology on
O(X) is induced by the following convergence: A sequence {fk}k≥1 of elements of

O(X) converges to f ∈ O(X) if there exist a complexification (X̃,O
˜X) of (X,OX)

and holomorphic extensions Fk of fk and F of f such that Fk converges to F in

H0(X̃,O
˜X) endowed with its Fréchet topology [dB1, §1.5]. With this topology O(X)

is a complete topological R-algebra.
The saturation arises ‘naturally’ when dealing with Nullstellensätze to manage

the existence of proper prime ideals and proper real prime ideals with empty zero-set
(see Examples 1 and 3 in the Introduction).
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1.3. Saturated primary ideals and normal primary decomposition. Let
(X,OX) be either a Stein space or a real-analytic space. One of the main properties
of the closed and saturated ideals of O(X) is that they enjoy a locally finite primary
decomposition. Before entering into further details, we recall some preliminary
definitions. Given a collection of ideals {ai}i∈I of O(X), we say that it is locally finite
if the family of their zero-sets {Z(ai)}i∈I is locally finite in X. A decomposition
a =

⋂
i∈I ai of an ideal a of O(X) is called irredundant if a �=

⋂
i∈K ai for each

proper subset K � I. Moreover, a primary decomposition a =
⋂

i∈I qi of an ideal a
of O(X) is called normal if it is locally finite, irredundant and the associated prime
ideals pi :=

√
qi are pairwise distinct. As usual, a primary ideal qj is called an

isolated primary component if pj is minimal among the primes {pi}i∈I . Otherwise,
qj is an immersed primary component.

Before we present the normal primary decomposition of saturated ideals due to
Forster, we recall some results concerning saturated primary ideals.

Lemma 1.1. Let q ⊂ O(X) be a primary ideal and F ∈ O(X). We have:

(i) If x ∈ Z(q), then F ∈ q if and only if Fx ∈ qOX,x.
(ii) q is saturated if and only if Z(q) �= ∅.
(iii) Z(q) is connected.

Proof. (i) See [F, §3.1.Lem.] and [dB1, 2.1.2]. In the statement of both results the
authors assume that the ideal q is saturated but this fact is only used to assure
Z(q) �= ∅.

(ii) The ‘only if’ implication is clear. For the converse, choose a point x ∈ Z(q)
and observe that by (i) q = {F ∈ O(X) : Fx ∈ qOX,x}; hence, q is the ‘saturation’
of a local ideal, so it is saturated.

(iii) If (X,OX) is a Stein space, the result follows from Theorem 2.1. If (X,OX)
is a real-analytic space, we recall a classical trick. Assume by contradiction that
Z(q) is not connected and let Y1, Y2 ⊂ Z(q) be two closed disjoint subsets such
that Z(q) = Y1 ∪ Y2. Observe in particular that q must be saturated. Let f ∈ q

be such that Z(q) = Z(f) (see Lemma 4.1 below) and g ∈ O(X) an analytic
function such that g is strictly positive on Y1 and strictly negative on Y2 (use
Whitney’s approximation lemma to construct g). Observe that Z(f2 + g2) = ∅,

so hi =
√
f2 + g2 + (−1)ig is an analytic function whose zero-set is Yi. Moreover,

h1h2 = f2 ∈ q. However, h1, h2 �∈ √
q because neither of them vanishes on Z(q),

which is a contradiction. Hence, Z(q) is connected. �

Lemma 1.2 ([F, §4.Hilfssatz 5] and [dB2, 2.2.10]). Let {ai}i∈I be a locally finite
family of saturated ideals of O(X) and p ⊂ O(X) a prime saturated ideal such that⋂

i∈I ai ⊂ p. Then there exists i ∈ I such that ai ⊂ p.

Now we recall the normal primary decomposition of saturated ideals of O(X).

Proposition 1.3 ([F, §5] and [dB1, Thm. 2.3.6]). Let a ⊂ O(X) be a saturated
ideal of O(X). Then a admits a normal primary decomposition a =

⋂
i qi such that

all primary ideals qi are saturated. Moreover, the prime ideals pi :=
√
qi and the

primary isolated components are uniquely determined by a and do not depend on
the normal primary decomposition of a.

Remark 1.4. Let us briefly show that if a ⊂ O(X) is a saturated ideal of O(X) and
a =

⋂
i qi is a normal primary decomposition (such that all primary ideals qi are
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saturated), then

(1.1)
√̃
a =

⋂
i∈I

√
qi.

Indeed, by Lemma 1.1(ii) each
√
qi is a prime saturated ideal. On the other hand,

for each x ∈ X there exists a finite set Jx ⊂ I such that

(1.2) qiOX,x = OX,x (and so
√
qiOX,x = OX,x) ∀i �∈ Jx.

In order to prove (1.1), let us show first

(1.3)
( ⋂

i∈I

√
qi

)
OX,x =

√
aOX,x.

By (1.2) and the finiteness of Jx it holds that

√
aOX,x ⊂

( ⋂
i∈I

√
qi

)
OX,x ⊂

⋂
i∈I

(
√
qiOX,x)

=
⋂
i∈Jx

(
√
qiOX,x) =

( ⋂
i∈Jx

√
qi

)
OX,x =

√( ⋂
i∈Jx

qi

)
OX,x =: bOX,x.

To show (1.3), it is enough to check bOX,x ⊂
√
aOX,x. By [dB1, Theorem 2.2.2(i)]

or [F, Satz 6] it holds that
⋃

i∈I\Jx
Z(qi) = Z(

⋂
i∈I\Jx

qi), so there exists h ∈⋂
i∈I\Jx

qi such that h(x) �= 0. If fx ∈ bOX,x, we have

fxhx ∈
( ⋂

i∈I

qi

)
OX,x =

√
aOX,x.

As hx is a unit of OX,x, we conclude fx ∈
√
aOX,x, as claimed.

Finally, as
⋂

i∈I qi is a closed ideal, it holds that

√̃
a = H0(X,

√
aOX) = H0

(
X,

( ⋂
i∈I

√
qi

)
OX

)
=

⋂
i∈I

√
qi,

as required. �
As the reader can straightforwardly check, the normal primary decompositions

enjoy the good behavior one can expect when dealing with radical, real and real-
analytic ideals.

Corollary 1.5. Let a ⊂ O(X) be a saturated ideal and a =
⋂

i qi a normal primary
decomposition of a. We have:

(i) If a is radical, then each qi is prime and the normal primary decomposition
is unique.

(ii) If a is a real (resp. real-analytic) ideal, every qi is a real (resp. real-analytic)
prime ideal and the normal primary decomposition is unique.

1.4. Infinite sum of squares. Let (X,OX) be a real-analytic space. Following the
propositions in [ABFR3, 1.3] for a real-analytic manifold, we say that an element
f ∈ O(X) is an infinite sum of squares of meromorphic functions on X if there
exists a non-zero divisor g ∈ O(X) such that g2f is an absolutely convergent series∑

k≥1 f
2
k in O(X), that is, there exist a complexification (X̃,O

˜X) of (X,OX) and

holomorphic extensions Fk of fk, F of f and G of g such that G2F =
∑

k≥1 F
2
k and∑

k≥1 F
2
k is an absolutely convergent series with respect to the Fréchet topology of
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H0(X̃,O
˜X). In other words, for each compact setK ⊂ X̃ the series

∑
k≥1 supK |F 2

k |
is convergent. For further details see [ABF,ABFR3,Fe].

2. The complex analytic Hilbert’s Nullstellensatz

The purpose of this section is to prove Theorem 1. We recall Forster’s results
about the Nullstellensatz for Stein algebras when dealing with closed ideals.

Theorem 2.1 (Closed primary case). Let (X,OX) be a Stein space and q ⊂ O(X)
a closed primary ideal. Then

I(Z(q)) =
√
q.

Moreover,

(i) There exists a positive integer m ≥ 1 such that (
√
q)m ⊂ q.

(ii) If p ⊂ O(X) is a closed prime ideal, then I(Z(p)) = p.

Theorem 2.2 (Closed general case). Let (X,OX) be a Stein space and a ⊂ O(X)
a closed ideal. Consider a normal primary decomposition a =

⋂
i∈I qi of a. For

each i ∈ I, define

h(qi, a) := inf
{
k ∈ N : F k ∈ qi, ∀F ∈

√
a

}
,

h(qi) := inf{k ∈ N : F k ∈ qi, ∀F ∈ √
qi},

h(a) := inf
{
k ∈ N : F k ∈ a, ∀F ∈

√
a

}
.

Then we have

(i) h(a) = supi∈I{h(qi, a)};
(ii)

√
a is closed if and only if h(a) < +∞;

(iii) if a does not have immersed primary components, h(a) = supi∈I{h(qi)};
(iv) I(Z(a)) =

√
a if and only if h(a) < +∞ and if such is the case, then√

a
h(a) ⊂ a.

To extend the Nullstellensatz to the non-closed case, we need the following char-
acterization of the saturation of an ideal. Namely,

Definition and Lemma 2.3. Let (X,OX) be either a Stein space or a real-analytic
space and a an ideal of O(X). Define

C1(a) := {G ∈ O(X) : ∀K ⊂ X compact ∃H ∈ O(X)

such that Z(H) ∩K = ∅ and HG ∈ a},
C2(a) := {G ∈ O(X) : ∀x ∈ X ∃H ∈ H0(X,OX)

such that H(x) �= 0 and HG ∈ a}.
Then ã = C1(a) = C2(a).

Proof. As the chain of inclusions C1(a) ⊂ C2(a) ⊂ ã is clear, it only remains to
check ã ⊂ C1(a).

We begin with the complex case. Let K ⊂ X be a compact set. As (X,OX)
is a Stein space, we may assume that K is holomorphically convex [GR, VII.A].
Since aOX is a coherent sheaf, we deduce by Cartan’s Theorem A [C2] that there
exists an open neighborhood Ω of K in X and A1, . . . , Ar ∈ O(X) such that aOX,x

is generated as an OX,x-module by A1,x, . . . , Ar,x for all x ∈ Ω. By [F, §2.Satz 3]
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THE NULLSTELLENSÄTZE FOR STEIN SPACES AND C-ANALYTIC SETS 3909

and Cartan’s Theorem B the finitely generated ideal g := (A1, . . . , Ar)O(X) is
saturated. By [F, §2.Satz 3] the ideal

(g : ã) := {H ∈ O(X) : H ã ⊂ g}
is saturated. Since aOX,x = ãOX,x for all x ∈ X, we deduce (g : ã)OX,x = OX,x for
all x ∈ Ω, that is, it is generated by 1 at any point of Ω. After shrinking Ω, we may
assume that it is an Oka–Weil neighborhood of K and that H0(Ω, (g : ã)OX) =
H0(Ω,OX) (see [GR, VII.A.Prop.3 & VIII.A.Prop.6]). By [GR, VIII.A.Thm.11]
there exists a holomorphic function H ∈ H0(X, (g : ã)OX) = (g : ã) that is close to
1 in K. Thus, Z(H) ∩K = ∅ and H ã ⊂ g ⊂ a. Therefore, we conclude ã ⊂ C1(a).

We consider the real case next. By [C2, Prop.2 & 5] the sheaf of ideals aOX can
be extended to a coherent sheaf of ideals F on an open Stein neighborhood Ω of Rn

in Cn. Hence the inclusion ã ⊂ C1(a) follows similarly to the one of the complex
case and we leave the concrete details to the reader. �

Remarks 2.4. Let a ⊂ b be ideals of O(X) and define Ri(a) := Ci(
√
a) for i = 1, 2.

Then

(i) Ci(a) ⊂ Ci(b) and Ri(a) ⊂ Ri(b).
(ii) Ci(Ci(a)) = Ci(a) and Ri(Ri(a)) = Ri(a).

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let us prove

I(Z(a)) = R1(a) = R2(a) =
√̃
a.

Clearly, R1(a) ⊂ R2(a) ⊂
√̃
a ⊂ I(Z(a)). Thus, it remains to prove the inclusion

I(Z(a)) ⊂ R1(a).

Assume first that a is a closed ideal and let K be a compact subset of X.
Since (X,OX) is a Stein space, we may assume that K is holomorphically convex
[GR, VII.A]. Let a =

⋂
i∈I qi be a normal primary decomposition of a. As K is

compact and {qi}i∈I is locally finite, the set J := {i ∈ I : Z(qi)∩K �= ∅} is finite.
Let a1 :=

⋂
i∈J qi and a2 :=

⋂
i �∈J qi; clearly, a = a1 ∩ a2.

Since K ⊂ X \
⋃

i �∈J Z(qi) and K is holomorphically convex, there exists by

[GR, VII.A.Prop.3] an Oka–Weil neighborhood U of K in X \
⋃

i �∈J Z(qi). By

[GR, VIII.A.Thm.11] there exists a holomorphic function H ∈ a2 = H0(X, a2OX)
that is close to 1 on K. On the other hand, since I(Z(qi)) =

√
q
i
for all i and there

exists mi ≥ 1 such that (
√
q
i
)mi ⊂ pi (see Theorem 2.1), we find m ≥ 1 such that

(
√
a1)

m ⊂ a1. Moreover, since J is a finite set, we obtain

I(Z(a)) = I(Z(a2 ∩ a1)) = I
(
Z(a2) ∩

⋂
i∈J

qi

)
= I(Z(a2)) ∩

⋂
i∈J

I(Z(qi))

= I(Z(a2)) ∩
⋂
i∈J

√
qi = I(Z(a2)) ∩

√
a1.

If G ∈ I(Z(a)), then (HG)m ∈ a2a1 ⊂ a2 ∩ a1 = a, that is, HG ∈
√
a and so

I(Z(a)) ⊂ R1(a).
For the general case, we proceed as follows. By Lemma 2.3 it holds that

ã = C1(a) ⊂ C1(
√
a) = R1(a)
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and by Remarks 2.4 we get

I(Z(a)) = I(Z(ã)) = R1(ã) ⊂ R1(R1(a)) = R1(a) =
√̃
a,

as required. �

Remark 2.5. If q is a primary ideal of O(X), then by Lemma 1.1

√̃
q =

{√
q if q is saturated,

H0(X,
√
qOX) otherwise.

Examples 2.6. (i) There are saturated ideals a of O(X) whose radical
√
a is not

saturated. Consider the Stein space (C,OC) and for each k ≥ 1 let F,G ∈ O(C) be
holomorphic functions whose respective zero-sets are N and such that multn(F ) = n
and multn(G) = 1 for all n ∈ N. Observe that the ideal a of O(C) generated by F is
saturated because it is principal. However, its radical

√
a is not saturated because

G ∈
√̃
a \

√
a.

(ii) Conversely, there are non-saturated ideals of O(X) whose radical
√
a is sat-

urated. Consider the Stein space (C,OC) and for each k ≥ 1 let Fk ∈ O(C) be a
holomorphic function whose zero-set is N and such that

multn(Fk) :=

{
1 if n < k,

2 if n ≥ k.

Let a be the ideal of O(C) generated by the functions Fk. Let also G ∈ O(C) be a
holomorphic function whose zero-set is N and such that multn(G) = 1 for all n ∈ N.
Notice that G2 = F1 ∈ a and

√
a = GO(C) = ã �= a.

3. The real Nullstellensatz in terms of �Lojasiewicz’s radical

We present some results relating �Lojasiewicz’s radical to the real radical in the
abstract setting (see also [FG]).

3.1. The real radical in the abstract setting. We begin by recalling some
properties concerning classical Cauchy-Schwarz’s inequality and Lagrange’s equal-
ity. Cauchy-Schwarz’s inequality says that in an Euclidean space (E, 〈·, ·〉) it holds
|〈x, y〉| ≤ ‖x‖‖y‖ or equivalently 〈x, y〉2 ≤ ‖x‖2‖y‖2 for every couple of vectors
x, y ∈ E. For Rn with its usual inner product we have

(x1y1+· · ·+xnyn)
2 ≤ (x2

1+· · ·+x2
n)(y

2
1+. . .+y2n) ∀ (x1, . . . , xn), (y1, . . . , yn) ∈ Rn.

For instance, we can prove the previous inequality using the following polynomial
identity in Z[x, y] := Z[x1, . . . , xn; y1, . . . , yn]:

(LE)
( n∑

i=1

x2i

)( n∑
j=1

y2j

)
−

( n∑
k=1

xkyk

)2

=

n∑
i,j=1

x2i y
2
j −

n∑
i,j=1

xiyixjyj

=

n∑
i,j=1
i �=j

x2i y
2
j − 2

n∑
i,j=1
i<j

xiyixjyj =

n∑
i,j=1
i<j

(xiyj − xjyi)
2,
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which is known as Lagrange’s equality. Thus, if A is a (unitary commutative) ring
and a1, . . . , an, b1, . . . , bn ∈ A, it holds that

(CS)
( n∑

i=1

a2i

)( n∑
j=1

b2j

)
−

( n∑
k=1

akbk

)2

=

n∑
i,j=1
i<j

(aibj − ajbi)
2

is a finite sum of squares. On the other hand, we say that an element a ∈ A of a
real ring A is non-negative and we write a ≥ 0 if it belongs to all prime cones of
A. We prove the following result, which presents the real radical in relation with
�Lojasiewicz’s inequality.

Lemma 3.1. Let A be a real ring and a an ideal of A. Then

(3.1) r
√
a = {a ∈ A : ∃ b ∈ a, m ≥ 1 such that b− a2m ≥ 0}.

Moreover, if a := (f1, . . . , fr)A and f := f2
1 + · · ·+ f2

r , then

(3.2) r
√
a = {a ∈ A : ∃m ≥ 1, σ ∈ ΣA2 such that σf − a2m ≥ 0}.

Proof. Denote the set on the right hand side of equality (3.1) with b and let us
check r

√
a = b. Take a ∈ r

√
a. There exist a1, . . . , ar ∈ A and m ≥ 1 such that

a2m ≤ a2m +

r∑
i=1

a2i =: b ∈ a;

hence, a ∈ b.
Conversely, take now a ∈ b and let b ∈ a and m ≥ 1 be such that b − a2m ≥ 0.

Observe that there does not exist a prime cone α in A such that −b + a2m ∈ a

and b − a2m �∈ supp(α). Thus, by the abstract Positivstellensatz [BCR, 4.4.1]
there exist sums of squares σ1, σ2 in A and a positive integer � ≥ 1 such that
σ1 + (−b+ a2m)σ2 + (−b+ a2m)2� = 0. Therefore

(−b+ a2m)2� + σ1 + a2mσ2 = bσ2 ∈ a;

hence, −b+ a2m ∈ r
√
a. As b ∈ a ⊂ r

√
a and the latter is a radical ideal, we conclude

a ∈ r
√
a, as required.

If a = (f1, . . . , fr)A, it is clear that the set on the right hand side of equality (3.2)
is contained in r

√
a. Conversely, let a ∈ r

√
a. There exist b ∈ a and � ≥ 1 such that

b− a2� ≥ 0. Since b ∈ a, there exist g1, . . . , gr ∈ A such that b = g1f1 + · · ·+ grfr.
By 3.1(CS) we get b2 ≤ fσ where σ = g21 + · · · + g2r ∈ ΣA2. On the other hand,
since b− a2� ≥ 0, we have

b+ a2� = (b− a2�) + 2a2� ≥ 0, so b2 − a4� = (b+ a2�)(b− a2�) ≥ 0;

hence, if we write m := 2�, we obtain fσ − a2m = (fσ − b2) + (b2 − a2m) ≥ 0, as
required. �

3.2. �Lojasiewicz’s inequality and the real radical. Recall that in the poly-
nomial case and in the local analytic setting Artin-Lang’s Theorem relates the
abstract positivity of an element in the corresponding ring with its geometric pos-
itivity. More precisely,

3.2.1. Polynomial case. Let R be a real closed field and X ⊂ Rn an algebraic set.
Denote the ring of polynomial functions on X with R[X] := R[x]/I(X) where
R[x] := R[x1, . . . , xn] and I(X) = {g ∈ R[x] : g(x) = 0 ∀x ∈ X}. An element
f ∈ R[X] is ≥ 0 if and only if f(x) ≥ 0 for all x ∈ X.
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3.2.2. Local analytic case. Let On := R{x} := R{x1, . . . , xn} and Xa ⊂ Rn
a be an

analytic germ at a point a ∈ Rn. Denote the ring of analytic function germs on Xa

with O(Xa) := R{x − a}/I(Xa) where I(Xa) := {ga ∈ R{x − a} : Xa ⊂ Z(ga)}.
An element fa ∈ O(Xa) is ≥ 0 if and only if there exist representatives X of Xa

and f of fa defined on X such that f(x) ≥ 0 for all x ∈ X.

We recall the well-known real Nullstellensätze in terms of the real radical.

Theorem 3.2 (Real Nullstellensätze). Let A denote either R[X] for an algebraic
set X or O(Xa) for an analytic germ Xa ⊂ Rn

a and let a be an ideal of A. Then
I(Z(a)) = r

√
a.

Now we use �Lojasiewicz’s inequality in order to prove that in the ring of poly-
nomials and the ring of germs the real radical coincides with �Lojasiewicz’s radical.
Since in the algebraic and the local analytic cases the geometric objects can be
represented as the zero-set of a single positive semidefinite equation, it is enough
to consider the cases X := Rn and Xa := Rn

0 .

Lemma 3.3 (�Lojasiewicz’s inequality). Let A denote either R[x] or On and let
f, g ∈ A be such that Z(f) ⊂ Z(g). Then there exist integers m, � ≥ 0 and a
constant C > 0 such that g2m ≤ C(1+ ‖x‖2)�|f |. In particular, if A = On, we may
take � = 0.

For the proof of �Lojasiewicz’s inequality in the polynomial case use [BCR, 2.6.2
& 2.6.6]. For the local analytic case we refer the reader to [BM, 6.4]. As a straight-
forward consequence of �Lojasiewicz’s inequality we obtain the following descriptions
of the real radical in the geometric settings we are considering. Namely,

Corollary 3.4. Let A denote either R[X] for an algebraic set X or O(Xa) for an
analytic germ Xa ⊂ Rn

a . Let a be an ideal of A and f ∈ A a positive semidefinite
element such that Z(f) = Z(a). Then

I(Z(a)) = {g ∈ A : ∃m, � ≥ 0, C > 0 such that C(1 + ‖x‖2)�f − g2m ≥ 0}.
In particular, if A = O(Xa), we may take � = 0.

4. Real Nullstellensatz in the real-analytic setting

Let X ⊂ Rn be a C-analytic set endowed with its sheaf OX and let a ⊂ O(X) be
an ideal. If a is finitely generated by f1, . . . , fr ∈ a, we have seen in Lemma 3.1 how
to manage the function f :=

∑r
i=1 f

2
i in the definition of �Lojasiewicz’s radical; see

equation (I.2). The following result provides an analogous tool for the case when a

is not finitely generated.

Lemma 4.1 (Crespina Lemma). Let a be an ideal of O(Rn). Then there exists
f ∈ ã such that

(i) f is an infinite sum of squares in O(Rn) and Z(f) = Z(a).
(ii) For each g ∈ ã there exists a unit u ∈ O(Rn) such that g2 ≤ fu.

Proof. By [C2, Prop.2 & 5] the sheaf of ideals aORn can be extended to a coherent
invariant sheaf of ideals I on an invariant open Stein neighborhood Ω of Rn in
Cn. Let {L�}�≥1 be an exhaustion of Ω by compact sets. As I is invariant and
coherent, we deduce by Cartan’s Theorem A that there exists a countable collection
of invariant holomorphic sections {Gj}j≥1 ⊂ H0(Ω, I) such that for each � ≥ 1 there
exists j(�) so that for each z ∈ L� the germs G1,z, . . . , Gj(�),z generate the ideal Iz.
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For k ≥ 1 define μk := maxLk
{|Gk|2} + 1 and γk := 1/

√
2kμk. Consider the

series F :=
∑

k≥1 γ
2
kG

2
k, which converges uniformly on the compact subsets of Ω.

Indeed, let L ⊂ Ω be a compact set and observe that there exists an index k0 ≥ 1
such that L ⊂ Lk for all k ≥ k0. Moreover, for each z ∈ L we have γ2

k|Gk(z)|2 ≤ 1
2k

if k ≥ k0, so ∣∣∣ ∑
k≥k0

γ2
kG

2
k(z)

∣∣∣ ≤ ∑
k≥k0

γ2
k|Gk(z)|2 ≤

∑
k≥k0

1

2k
≤ 1

for each z ∈ L. Denote Sm :=
∑m

k=1 γ
2
kG

2
k ∈ H0(Ω, I); hence, F :=

∑
k≥1 γ

2
kG

2
k =

limm→∞ Sm in the Fréchet topology of H0(Ω, I). As H0(Ω, I) is a closed ideal of
H0(Ω,OΩ) by [C1, VIII.Thm.4, p. 60], we conclude F ∈ H0(Ω, I), so f := F |Rn ∈ ã.
For each k ≥ 1 denote fk := (γkGk)|X and write f =

∑
k≥1 f

2
k . It holds that

Z(f) = Z(a). Indeed,

Z(f) =
⋂
k≥1

Z(fk) =
⋂
k≥1

(Z(Gk)∩Rn) =
( ⋂

k≥1

Z(Gk)
)
∩Rn = supp(I)∩Rn = Z(a).

Now let g ∈ ã and x ∈ Rn. By the choice of the Gk’s and since gx ∈ aORn,x, there
exist a1,x, . . . , ar,x ∈ ORn,x (r depends on x) such that gx = a1,xf1,x+ · · ·+ar,xfr,x.
Thus, by Section 3.1(CS)

g2x ≤
( r∑

i=1

f2
i

)
x

( r∑
i=1

a2i,x

)
≤ fxMx

where Mx is a positive real number such that
∑r

i=1 a
2
i,x ≤ Mx.

Next, pick a compact set K ⊂ Rn and choose a constant MK > 0 such that
g2|K ≤ f |KMK . Fix an exhaustion {Km}m≥1 of X by compact sets and let u ∈
O(Rn) be a strictly positive analytic function such that MKm

≤ u|Km\Km−1
for all

m ≥ 1. Then g2 ≤ fu, as required. �

Remark 4.2. Observe that in general f ∈ ã \ a. Indeed, let a ⊂ O(X) be a proper
ideal such that Z(a) = ∅ (see for instance Example 1 in the Introduction). Then
there does not exist any f ∈ a such that Z(f) = Z(a) because otherwise a = O(X).

Proposition 4.3. Let X be a C-analytic set in Rn and f, g ∈ O(X) such that
Z(f) ⊂ Z(g). Let K ⊂ X be a compact set. Then there exist an integer m ≥ 1 and
an analytic function h ∈ O(X) such that |h| < 1, Z(h) ∩K = ∅ and |f | ≥ (hg)2m.

Proof. The proof of this result is contained in [ABS], so we sketch the proof referring
to the concrete statements in [ABS]. By [ABS, Cor. 2.3] there exist a proper C-
analytic subset Y1 ⊂ Y := Z(f) such that K ∩ Y1 = ∅, an integer m and an open
neighborhood U of Y \ Y1 contained in X \ Y1 such that

(4.1) g2m < |f | on U \ Y.

We may assume U := {f2 − g4m > 0}. Consider the global semianalytic set
S := {f2 − g4m < 0} and its closure S in X. As U is open and S ∩ U = ∅, we get
S ∩ U = ∅; hence,

Y ∩ S ⊂ Y \ U ⊂ Y1.

By [ABS, Thm. 2.5] there exists a positive semidefinite equation h0 of Y1 such that

(4.2) h0 < |f | on S \ Y1
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and h0 < 1 in X. Write T := {f2 − g4m = 0}; clearly,
(4.3) X \ Y = (S \ Y ) ∪ (U \ Y ) ∪ (T \ Y ).

As the non-negative functions h0,
|g|

1+g2 and 1
1+g2 are strictly smaller than 1 on X,

one deduces using equations (4.1), (4.2) and (4.3)(
h0

g

1 + g2

)2m

< |f |

on X \ Y . Thus, taking h := h0

1+g2 , we are done. �

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Following the notation of Definition 2.3, consider the ideals

L1(a) := C1(
�L
√
a) and L2(a) := C2(

�L
√
a).

By Lemma 2.3 we have L1(a) = L2(a) = �̃L
√
a. As

�L
√
b̃ ⊂ �̃L

√
b for each ideal b of

O(X) (obviously, we do not have equality in general), one deduces by Remarks 2.4

(ii) that Li(Li(a)) = Li(a) for i = 1, 2. We want to show I(Z(a)) = �̃L
√
a. Clearly

�̃L
√
a ⊂ I(Z(a)), so it is enough to prove the inclusion I(Z(a)) ⊂ L1(a).
Assume first that a is a saturated ideal. By Lemma 4.1 there exists a positive

semidefinite f ∈ a such that Z(f) = Z(a). Let g ∈ I(Z(a)) and K ⊂ X be a
compact set. By Proposition 4.3 there exist an integer m ≥ 1 and an analytic
function h ∈ O(X) such that Z(h) ∩ K = ∅ and f ≥ (hg)2m, that is, hg ∈ �L

√
a.

Thus, g ∈ L1(a), so I(Z(a)) ⊂ L1(a).
For the general case we proceed as follows. By Lemma 2.3 we obtain ã = C1(a) ⊂

C1(
�L
√
a) = L1(a); hence,

I(Z(a)) = I(Z(ã)) = L1(ã) = L1(C1(a)) ⊂ L1(C1(
�L
√
a)) = L1(L1(a)) = L1(a),

as required. The second part of the statement follows readily from Lemma 4.1. �

Remark 4.4. We use the notation of the previous proof. If a is saturated and f ∈ a

satisfies Z(a) = Z(f), then

I(Z(a)) = I(Z(f2)) = L1(f
2O(X)) = L2(f

2O(X)).

The previous equality can be understood as the counterpart of Lemma 3.1 and
Corollary 3.4 in the C-analytic setting.

4.1. Convex ideals. We introduce this concept to relate �Lojasiewicz’s radical with
the classical radical. An ideal a of O(X) is convex if each g ∈ O(X) satisfying |g| ≤ f
for some f ∈ a belongs to a. In particular, �Lojasiewicz’s radical is a radical convex
ideal. Moreover, we define the convex hull g(a) of an ideal a of O(X) by

g(a) := {g ∈ O(X) : ∃f ∈ a such that |g| ≤ f}.
Notice that g(a) is the smallest convex ideal of O(X) that contains a and �L

√
a =√

g(a).

Remark 4.5. If a is a convex ideal of the ring O(X), then its radical
√
a is also a

convex ideal of this ring.
Indeed, let f ∈

√
a and g ∈ O(X) be such that |g| ≤ f . Let m ≥ 1 be such that

fm ∈ a. Clearly, |gm| ≤ fm, so gm ∈ a and g ∈
√
a.
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Examples 4.6. (i) There exist saturated ideals a of O(X) whose �Lojasiewicz radical
�L
√
a is not saturated and there exist non-saturated ideals of O(X) whose �Lojasiewicz

radical �L
√
a is saturated. Consider the Examples 2.6 after substituting C by R.

(ii) There exist convex saturated ideals that are not radical. Take

a := (x2, xy, y2)O(R2).

(iii) There exist radical saturated ideals that are not convex. Let a :=
(x2 + y2)O(R2).

(iv) There exist convex radical ideals that are not saturated. Indeed, let f1, f2 ∈
O(R) be such that Z(f1) = Z(f2) = N and mult�(f1) = � and mult�(f2) = 1 for all

� ≥ 1. Let a := �L
√
f2
1O(R3), which is a radical convex ideal of O(R). However, it is

not saturated.
Otherwise we obtain a = I(Z(a)) by Theorem 2, so f2 ∈ a. Thus, there exist

m ≥ 1 and a ∈ O(R) such that h := af2
1 − f2m

2 ≥ 0. As h ≥ 0, for each � ≥ 1 it
holds that

2� ≤ mult�(a) + 2mult�(f1) = mult�(af
2
1 ) = mult�(h+ f2m

2 )

= min{mult�(h), 2mmult�(f2)} = min{mult�(h), 2m} ≤ 2m,

which is a contradiction. Therefore a is not saturated.

Corollary 4.7. Let X ⊂ Rn be a C-analytic set and a a convex saturated ideal of
O(X). Let a =

⋂
i∈I qi be a normal primary decomposition of a and J the collection

of the indices corresponding to the isolated primary components of a. Then

(i) If i0 ∈ J ,
√
qi0 is a convex saturated prime ideal.

(ii) �̃L
√
a =

⋂
j∈J

√
qj =

√̃
a.

Proof. (i) By Lemma 1.1(ii) we know that
√
qi0 is a prime saturated ideal (because

so is qi0). We claim: There exists hi0 ∈
⋂

j �=i0
qj \

√
qi0 . Otherwise, by Lemma

1.2 there exists j �= i0 such that qi ⊂ qi0 ; hence,
√
qj ⊂ √

qi0 and by the mini-
mality of

√
qi0 we deduce

√
qj =

√
qi0 , which contradicts the fact that the primary

decomposition is normal.
Fix hi0 ∈

⋂
j �=i0

qj\
√
qi0 and let g ∈ O(X) be such that |g| ≤ f for some f ∈ √

qi0 .

Then f2k ∈ qi0 for some k ≥ 1, so (fhi0)
2k ∈

⋂
i∈I qi = a. As |(ghi0)

2k| ≤ (fhi0)
2k

and a is convex, we deduce (ghi0)
2k ∈ a ⊂ qi0 , so ghi0 ∈ √

qi0 . As hi0 �∈ √
qi0 and√

qi0 is a prime ideal, we conclude g ∈ √
qi0 .

(ii) By Theorem 2 and Remark 1.4 we conclude

�̃L
√
a = I(Z(a)) =

⋂
j∈J

I(Z(qj)) =
⋂
j∈J

√
qj =

⋂
i∈I

√
qi =

√̃
a,

as required. �

Examples 4.8. (i) The primary ideal q := (x2, y2)O(R2) is not convex while
√
q =

(x, y)O(R2) = I(Z(q)) is convex. The functions f := x2 + y2 ∈ q and g := xy ∈
O(R2) satisfy |g| ≤ f but g �∈ q. Thus, q is not convex.

(ii) Under the hypotheses of Corollary 4.7 the corresponding result is no longer
true if

√
qi0 is the radical of an immersed primary component of a. Let a := q1∩q2 =

(z3(x2 + y2), z4)O(R3) be the intersection of the primary ideals q1 := z3O(R3) and
q2 := (x2 + y2, z4)O(R3). Observe that

√
q1 �

√
q2. Let us check that a is convex

while q2 is not convex.
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Indeed, if f ∈ a is positive semidefinite, then z4 divides f . If g ∈ O(R3) satisfies
|g| ≤ f , then z4 divides g, so g ∈ a; hence, a is convex. However, q2 is not convex
because x2 ≤ x2 + y2 but x2 �∈ q2.

By Theorem 2 the equality I(Z(a)) =
√̃

g(a) holds for each ideal a of O(X)
where X ⊂ Rn is a C-analytic set. The last part of this section will be dedicated
to determine how the operations ·̃,

√
· and g(·) commute.

Lemma 4.9. Let X ⊂ Rn be a C-analytic set and a an ideal of O(X). Then

(i) If a is convex, ã is also convex.

(ii) There exists f ∈ ã such that (g̃(ã))2 ⊂ g(fO(X)) ⊂ g(ã). In particular,√
g̃(ã) =

√
g(fO(X)) =

√
g(ã) =

�L
√
ã.

Proof. (i) Let g ∈ O(X) and f ∈ ã be such that |g| ≤ f . Let K ⊂ X be a compact
set. By Lemma 2.3 there exists h ∈ O(X) such that Z(h)∩K = ∅ and h2f ∈ a. As
|h2g| ≤ h2f and a is convex, we deduce h2g ∈ a. By Lemma 2.3 we obtain g ∈ ã,
so ã is convex.

(ii) As O(X) = O(Rn)/I(X), there exists an ideal b of O(Rn) that contains
I(X) such that a = b/I(X). For the sake of clearness we denote the elements

of O(X) = O(Rn)/I(X) with ĥ := h + I(X). By Lemma 4.1 there exists f ∈ b̃

such that for each a ∈ b̃ there exists a unit u ∈ O(Rn) satisfying a2 ≤ fu; hence,

â2 ≤ f̂ û.

Pick ĝ ∈ g̃(ã) and let K ⊂ X be a compact set. Then there exists a function

ĥK ∈ O(X) such that Z(ĥK) ∩K = ∅ and ĥK ĝ ∈ g(ã); hence, there exists âK ∈ ã

such that |ĥK ĝ| ≤ âK .
Let uK ∈ O(Rn) be a unit such that a2K ≤ fuK and let MK > 0 be such that

ĝ2|K ≤ f̂ |KMK (recall that |ĥK ĝ| ≤ âK and Z(ĥK) ∩K = ∅). Fix an exhaustion
{Km}m≥1 of X by compact sets and let û ∈ O(X) be a strictly positive analytic

function such that MKm
≤ û|Km\Km−1

for all m ≥ 1. Then ĝ2 ≤ f̂ û; hence,

ĝ2 ∈ g(f̂O(X)).

To finish observe the following: If ĝ1, ĝ2 ∈ g̃(ã), then there exist strictly positive

analytic functions û1, û2 ∈ O(X) such that ĝ2i ≤ f̂ û2
i for i = 1, 2; hence, |ĝ1ĝ2| ≤

ĝ21 + ĝ22 ≤ f̂(û2
1 + û2

2), so ĝ1ĝ2 ∈ g(f̂O(X)). Thus, (g̃(ã))2 ⊂ g(fO(X)), as required.
�

Remark 4.10. If we are working in the framework of convex saturated ideals, an
analogous result to Theorem 2.2 when substituting ‘Stein space’ by ‘C-analytic set’
and ‘closed ideal’ by ‘convex saturated ideal’ holds. The proof runs analogously to
the one of Theorem 2.2 ([F, §5.Satz 9]) and we leave the concrete details to the
reader.

5. The real-analytic radical and the real Nullstellensatz

In this section we prove Theorem 3, that is, we relate the real Nullstellensatz
with the classical real radical by means of the representation of positive semidefinite
functions as sums of squares of meromorphic functions. We begin by recalling the
definition of H-sets and Ha-sets and presenting some properties.
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Definition 5.1. A C-analytic set Z ⊂ Rn is an H-set if each positive semidefinite
analytic function f ∈ O(Rn) whose zero-set is Z can be represented as a finite sum
of squares of meromorphic functions on Rn. More generally, we say that Z is an
Ha-set if such representation may involve infinitely many squares.

The following properties are stated and proved for Ha-sets but many of them
work analogously for H-sets.

Remarks 5.2. (i) Let Y ⊂ Z ⊂ Rn be C-analytic sets. If Z is an Ha-set, then Y is
also an Ha-set.

Indeed, let f ∈ O(Rn) be a positive semidefinite analytic function such that
Z(f) = Y . Let now g ∈ O(Rn) be an analytic function such that Z(g) = Z.
Observe that h := g2f is positive semidefinite and Z(h) = Z; hence, h is a sum of
squares of meromorphic functions on Rn, so the same happens for f . Thus, Y is
an Ha-set.

(ii) If Z ⊂ Rn is an Ha-set, the same holds for each global irreducible component
of Z.

(iii) Let Z ⊂ Rn be a C-analytic set. Then Z is an Ha-set if and only if there
exists a positive semidefinite f ∈ O(Rn) such that Z(f) = Z and each h ∈ O(Rn)
with Z(h) = Z and 0 ≤ h ≤ f is a sum of squares of meromorphic functions on Rn.

Proof. The ‘only if’ implication is clear. Conversely, assume there exists a positive
semidefinite analytic equation f of Z with the property in the statement and let
g ∈ O(Rn) be another positive equation of Z. Observe

f −
( f√

1 + fg

)2

g = f
(
1− fg

1 + fg

)
≥ 0 and Z

(( f√
1 + fg

)2

g
)
= Z.

Thus, 0 ≤ h := ( f√
1+fg

)2g ≤ f and h is by hypothesis a sum of squares of mero-

morphic functions on Rn, so the same happens with g. Thus, Z is an Ha-set. �

(iv) By [Jw,Rz] each compact C-analytic subset of Rn is an H-set. Therefore,
by [ABFR3, 1.9] each C-analytic set Z whose connected components are compact
is an Ha-set.

(v) Let Z be a C-analytic set. By [ABF, 1.2] we obtain that Z is an Ha-set if
and only if each global irreducible function f ∈ O(Rn) with Z(f) ⊂ Z is a sum of
squares of meromorphic functions on Rn.

(vi) Hilbert’s 17th Problem in its more general formulation involving infinite
sums of squares has a positive answer for O(Rn) if and only if all connected C-
analytic subsets of Rn of dimensions 1 ≤ d ≤ n− 2 are Ha-sets. Recall that given
a C-analytic set Z ⊂ Rn of codimension ≥ 2, there exists by [De] an irreducible
analytic function f ∈ O(Rn) whose zero-set is Z.

In [ABFR3, Lem. 4.1] we developed a procedure to move the remainder Z(b) \
Z(f) of the zero-set of the denominator b in a representation of a positive semi-
definite analytic function f as a sum of squares of meromorphic functions while
f was kept invariant (up to multiplication by a unit u ∈ O(Rn)). This tool was
crucial to eliminate the remainder Z(b) \ Z(f). The following result, in analogy
to [ABFR3, Lem. 4.1], is used in the proof of Theorem 3 to perturb the complex
part of the zero-set Z(B) of a holomorphic extension B of b while f is again kept
invariant (up to multiplication by a unit u ∈ O(Rn)). This is the clue to prove in
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Theorem 3 that if p is a real saturated prime ideal whose zero-set is an H-set, then
I(Z(p)) = p.

Lemma 5.3 (Perturbing denominators). Let b, f ∈ O(Rn) be non-constant analytic
functions. Let Ω be an invariant open neighborhood Ω of Rn in Cn to which both b, f
extend to holomorphic functions B,F . Let Z ⊂ Ω be a complex analytic set such that
Zx0

�⊂ Z(F )x0
for some x0 ∈ Z(f). Then there exists an analytic diffeomorphism

ϕ : Rn → Rn such that:

(i) f ◦ ϕ = fu for some unit u ∈ O(Rn).
(ii) Zx0

�⊂ Z(B0)x0
where B0 : Ω0 → C is the holomorphic extension of b0 :=

b ◦ ϕ to a small enough open neighborhood Ω0 ⊂ Ω of Rn in Cn.

Proof. We may assume that b can be extended to a holomorphic function B on Ω
and Zx0

⊂ Z(B)x0
because otherwise we choose ϕ = id and are done. The proof is

conducted in two steps:

Step 1. We construct a family of analytic diffeomorphisms φλ : Rn → Rn depend-
ing on a parameter λ ∈ [−1, 1]n that satisfy condition (i) in the statement.

Fix a strictly positive analytic function ε ∈ O(Rn) and for each tuple λ :=
(λ1, . . . , λn) ∈ [−1, 1]n consider the analytic map

φλ : Rn → Rn, x �→ x+ f2(x)ε(x)λ.

We choose ε small enough in such a way that φλ is by [H, 2.1.6, 2.5.1] an analytic
diffeomorphism for each λ ∈ [−1, 1]n. Since the function

f0 : Rn × Rn × R → R, (x, y, t) �→ f(x+ ty)− f(x)

vanishes identically on the set Rn × Rn × {0}, there exists an analytic h ∈
O(Rn × Rn × R) such that f0 = ht. Thus,

(5.1) f ◦ φλ(x) = f(x) + f(x)2ε(x)h(x, λ, f(x)2ε(x)) = f(x)uλ(x)

where uλ(x) := 1 + f(x)ε(x)h(x, λ, f(x)2ε(x)). Note that Z(f ◦ φλ) ⊂ Z(f), so
Z(f ◦ φλ) = Z(f).

Indeed, if x ∈ Rn satisfies f ◦ φλ(x) = 0, then y := φλ(x) ∈ Z(f). Since φλ is
bijective and φλ(y) = y (because f(y) = 0), we deduce x = y ∈ Z(f).

By its definition uλ is a unit in a neighborhood of Z(f) and does not vanish
outside Z(f) = Z(f ◦ φλ) (see equation (5.1)), so we conclude that uλ is a unit in
O(Rn) for all λ ∈ [−1, 1]n. Therefore the diffeomorphisms φλ satisfy condition (i)
for all λ ∈ [−1, 1]n.

Step 2. We find now λ0 ∈ [−1, 1]n such that ϕ := φλ0
also satisfies condition (ii).

Consider the family of diffeomorphisms φλ as the analytic map

φ : Rn × [−1, 1]n → Rn, (x, λ) �→ φλ(x).

After shrinking Ω, we may assume that ε, b can be extended holomorphically to
E,B ∈ O(Ω) and Ω is connected. Thus, φ can be extended to the holomorphic map

Φ : Ω× Cn → Cn, (z, μ) �→ z + F 2(z)E(z)μ.

Let U := Φ−1(Ω) and consider the holomorphic function

B ◦ Φ : U → C, (w, μ) �→ B ◦ Φ(w, μ) = B ◦ Φμ(w).
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Fix a polydisc Δ0 ×Δ1 ⊂ Ω× Cn of center (x0, 0) and radius 0 < ρ < 1 contained
in U . Then it holds:
(5.3.1) The map (B ◦Φ)w : Δ1 → C, μ �→ (B ◦Φ)(w, μ) is not identically zero for
each w ∈ Δ0.

Otherwise there exists w ∈ Δ0 such that

(B ◦ Φ)w(μ) := B ◦ Φ(w, μ) = B(w + F 2(w)E(w)μ)

is identically zero on the polydisc Δ1. By the Identity Principle we deduce that B
is identically zero, which contradicts the hypothesis that b is not constant.

Since Zx0
�⊂ Z(F )x0

, by the complex curve selection lemma there exists a com-
plex analytic curve γ : Dδ → Z (defined on the disc Dδ) such that γ(Dδ) ⊂ Δ0,
γ(0) = x0 and γ(s) �∈ Z(F ) for all s �= 0. Consider the holomorphic function

G : Dδ ×Δ1 → C, (s, μ) �→ (B ◦ Φ)(γ(s), μ).
We know by (5.3.1) that the holomorphic function Gs : Δ1 → C, μ �→ G(s, μ) is not
identically zero for each s ∈ Dδ. Choose now a sequence {sk}k ⊂ Dδ converging to
0 and observe that for each k the set Wk := (Δ1∩Rn)\Z(Gsk) = [−ρ, ρ]n \Z(Gsk)
is open and dense in Δ1 ∩ Rn = [−ρ, ρ]n because each Z(Gsk) is a proper analytic
subset of Δ1. By Baire’s Theorem the intersection W :=

⋂
k≥1Wk is dense in

Δ1 ∩ Rn and we choose λ0 ∈ W .
If b0 := b ◦ φλ0

, then B0 := B ◦ Φλ0
is its holomorphic extension to Ω where

Φλ0
: Ω → Cn, z �→ Φ(z, λ0). By the choice of λ0 we have B0 ◦ γ(sk) �= 0 for all

k ≥ 1; hence B0 ◦ γ is not identically zero on Dδ, so the germ (B0 ◦ γ)0 �= 0. We
conclude Zx0

�⊂ Z(B0)x0
, as required. �

Once this is proved, we approach the proof of Theorem 3 when Z(a) is an Ha-set.
The proof is similar if Z(a) is an H-set.

Proof of Theorem 3. The proof is conducted in several steps:

Step 1. Assume first that a = p is a saturated and real-analytic prime ideal
whose zero-set is an Ha-set. Since O(X) = O(Rn)/I(X), we may assume by the
correspondence theorem for ideals that p is a saturated real prime ideal of O(Rn).
Observe that the ‘only if’ implication is clear since I(Z(p)) is real-analytic and
saturated. For the converse, we proceed as follows. By [C2, Prop.2 & 5] the sheaf of
ideals pORn can be extended to a coherent sheaf of ideals I on an invariant connected
open Stein neighborhood Ω of Rn in Cn. Recall that Ix = pORn,x ⊗C = pOCn,x for
all x ∈ Rn and that as p is saturated, p = H0(Rn, pORn). Denote the support in Ω
of I with Z := {z ∈ Ω : Iz �= OCn,z}. Let us check: b := H0(Ω, I) is a prime closed
ideal of O(Ω) such that Z(b) = Z.

To prove the primality of b, pick F1, F2 ∈ O(Ω) such that F1F2 ∈ b. We write
Fi := �(Fi) +

√
−1�(Fi) and observe

(�(F1)
2 + �(F1)

2)(�(F2)
2 + �(F2)

2) = F1F2(F1 ◦ σ)(F2 ◦ σ) ∈ b.

We deduce

(�(F1)
2 + �(F1)

2)|Rn(�(F2)
2 + �(F2)

2)|Rn ∈ H0(Rn, pORn) = p.

As p is a real prime ideal, we may assume �(F1)|Rn ,�(F1)|Rn ∈ p, so �(F1),�(F1) ∈
b; hence, F1 = �(F1)+

√
−1�(F1) ∈ b. Thus, b is prime. Of course, as ∅ �= Z(p) ⊂

Z(b), we deduce by Lemma 1.1 that b is closed. The equality Z(b) = Z holds
because Z is the support of the coherent sheaf of ideals I.

Licensed to AMSACCES029. Prepared on Mon Feb  1 06:44:06 EST 2016 for download from IP 147.96.217.50/130.44.104.100.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



3920 F. ACQUISTAPACE, F. BROGLIA, AND J. F. FERNANDO

Suppose now by contradiction that there exists a function g ∈ I(Z(p))\p. After
shrinking Ω if necessary, we may assume that g can be extended to a holomorphic
function G on Ω. We claim: There exists a point x0 ∈ Rn such that Zx0

�⊂ Z(G)x0

while Z(p) ⊂ Z(g).
Indeed, if Zx ⊂ Z(G)x for each x ∈ Rn, we may assume Z ⊂ Z(G) after shrinking

Ω if necessary; hence, G ∈ I(Z) = I(Z(b)) = b because b is a closed prime ideal
of O(Ω). Thus, g ∈ p, which is a contradiction. Consequently there exists x0 ∈ Rn

such that Zx0
�⊂ Z(G)x0

.
By Lemma 4.1 and Proposition 4.3 there exist f ∈ p̃ = p with Z(f) = Z(p),

h ∈ O(Rn) and m ≥ 1 such that h(x0) �= 0 and f0 := f −h2g2m ≥ 0. As h(x0) �= 0,
we have h �∈ p. Substitute f0 by f1 := f − h2

1g
2m where h1 := h√

1+h2g2m
in order

to have Z(f1) = Z(f), which is an Ha-set.
Indeed, as h1 ≤ h, it holds that f1 ≥ 0. Since f − h2g2m ≥ 0 and so f ≥ 0, we

have

Z(f1) = Z((f − h2g2m) + (fh2g2m))

= Z(f − h2g2m) ∩ Z(fh2g2m) = Z(f) ∩ Z(hg) = Z(f).

Since Z(p) = Z(f1) is an Ha-set, there exists a not identically zero b ∈ O(Rn) such
that b2f1 =

∑
i≥1 a

2
i for some ai ∈ O(Rn).

After shrinking Ω, f1, h1 can be extended to holomorphic functions F1, H1 : Ω →
C. In order to apply Lemma 5.3 to b, f1, Z and Ω we show first that Zx0

�⊂ Z(F1)x0
.

Otherwise, as F ∈ b and H1(x0) �= 0,

Zx0
⊂ Z(F )x0

∩ Z(F1)x0
⊂ Z(F − F1)x0

= Z(H2
1G

2m)x0
= Z(H1)x0

∪ Z(G)x0
= Z(G)x0

,

which is a contradiction.
By Lemma 5.3 there exists an analytic diffeomorphism ϕ : Rn → Rn such that:

(i) f1 ◦ ϕ = f1u for some unit u ∈ O(Rn).
(ii) Zx0

�⊂ Z(B1)x0
where B1 : Ω0 → C is the holomorphic extension of b1 :=

b ◦ ϕ to a small enough open neighborhood Ω0 ⊂ Ω of Rn in Cn.

Let v ∈ O(Rn) be a strictly positive unit such that v2 = u−1; then

b21f = b21h
2
1g

2m + b21f1 = b21h
2
1g

2m +
∑
i≥1

((ai ◦ ϕ)v)2.

Observe that since Zx0
�⊂ Z(B1)x0

, we have b1 �∈ p. As f ∈ p and p is a real-
analytic ideal, we deduce b1h1g

m ∈ p, which contradicts the fact that b1, h1, g �∈ p.
We conclude I(Z(p)) = p, as required.

Step 2. Now assume that a is a saturated real-analytic ideal of O(X) whose zero-
set is an Ha-set. By Proposition 1.3 and Corollary 1.5 a admits a normal primary
decomposition a =

⋂
i qi, such that all ideals qi are saturated real-analytic prime

ideals. As Z(a) =
⋃

i Z(qi) is an Ha-set, we deduce by Remark 5.2(i) that each
Z(qi) is an Ha-set. By Step 1 the equality I(Z(qi)) = qi holds for each i. Thus,

I(Z(a)) = Z
( ⋃

i∈I

Z(qi)
)
=

⋂
i∈I

I(Z(qi)) =
⋂
i∈I

qi = a.

Step 3. Next we approach the general case, that is, a is an ideal of O(X) whose

zero-set is an Ha-set. Since I(Z(a)) = I(Z( r̃a
√
a)), it is enough to check, in view
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of the previous case, that r̃a
√
a is a real-analytic ideal. Indeed, let

∑
k≥1 a

2
k ∈ r̃a

√
a

and K ⊂ X be a compact set. By Lemma 2.3 there exists h ∈ O(X) such that
Z(h) ∩ K = ∅ and h

∑
k≥1 a

2
k ∈ ra

√
a; hence,

∑
k≥1(hak)

2 ∈ ra
√
a. As ra

√
a is real-

analytic, we deduce that each hak ∈ ra
√
a. This happens for all compact sets K ⊂ X,

so we deduce by Lemma 2.3 that each ak ∈ r̃a
√
a. Thus, r̃a

√
a is a real-analytic ideal,

as required. �
Remarks 5.4. Let a ⊂ O(X) be an ideal. Then

(i) a ⊂ ra
√
a ⊂ �L

√
a.

(ii) If Z(a) is an Ha-set, we have r̃a
√
a = �̃L

√
a = I(Z(a)). However, we can only

assure ra
√
a = �L

√
a if ra

√
a is in addition saturated.

(iii) Let f ∈ O(Rn) be an analytic function that is an infinite sum of squares of
meromorphic functions on Rn. Then the ideal a := fO(Rn) is not real-analytic.

Indeed, by [ABFR3, 4.1] there exist h0, hk ∈ O(Rn) such that Z(h0) ⊂ Z(f) and
h2
0f =

∑
k≥1 h

2
k. Let m ≥ 0 be the greatest integer such that fm divides each hk for

k ≥ 1. We write h2
0f = f2m

∑
k≥1 h

′
k
2
for some h′

k ∈ O(Rn); hence, fm divides h0

and we have h′2
0 f

2m+1 = f2m
∑

k≥1 h
′
k
2
for some h′

0 ∈ O(Rn). When simplifying,

we obtain h′
0
2
f =

∑
k≥1 h

′
k
2
. Assume by contradiction that a is real-analytic. Then

f divides h′
k for all k ≥ 1, which is a contradiction.

5.1. Quasi-real ideals. We introduce the next concepts to relate the real and
the real-analytic radicals with the classical one. We saw that each convex ideal a
verifies

√
a = �L

√
a. The type of ideals that play a similar role with respect to the

real radical are defined as follows [AL,GT,BP].

Definition and Lemma 5.5. Let (X,OX) be a real coherent reduced analytic
space and a an ideal of O(X). We define the square root of a by

2
√
a :=

{
f ∈ O(X) : ∃ ai ∈ O(X) such that f2 +

∑
k≥1

a2k ∈ a

}
.

Then 2
√
a is an ideal, a ⊂ 2

√
a ⊂ ra

√
a and ra

√
a =

√
2
√
a =

⋃
k≥1

2k
√
a where 2k

√
a :=

2

√
2k−1√

a for k ≥ 2. Moreover, a is a real-analytic ideal if and only if a = 2
√
a.

Proof. The only non-trivial point to prove that 2
√
a is an ideal is to check that it

is closed under addition. This follows from the following classical trick that we
recall here for the sake of completeness. Indeed, suppose that f2 +

∑
k≥1 a

2
k, g

2 +∑
k≥1 b

2
k ∈ a. Thus,

(f + g)2 + (f − g)2 + 2
( ∑

k≥1

a2k +
∑
k≥1

b2k

)
= 2

(
f2 + g2 +

∑
k≥1

a2k +
∑
k≥1

b2k

)
∈ a,

so f + g ∈ 2
√
a.

To prove the equality ra
√
a =

⋃
k≥1

2k
√
a, it is enough to show ra

√
a ⊂

⋃
k≥1

2k
√
a.

Indeed, if f ∈ ra
√
a, there exist m ≥ 1 and ak ∈ O(X) such that f2m +

∑
k≥1 a

2
k ∈ a.

We may assume 2m = 2r, so f2r +
∑

k≥1 a
2
k ∈ a. Therefore, f2r−1 ∈ 2

√
a; hence,

f ∈ 2r
√
a.

We show next that a is radical if a = 2
√
a. Indeed, if fm ∈ a, we may assume

m = 2r. Consequently, f2r−1 ∈ 2
√
a = a and proceeding inductively, we deduce

f ∈ a.
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Thus, if a = 2
√
a, then ra

√
a =

√
2
√
a =

√
a = a. The converse is immediate. �

We explore now the relations between the convex hull and the square root of an
ideal a of O(X) whose zero-set Z(a) is an Ha-set (analogous statements hold when
Z(a) is an H-set). Consider the ideal

(5.2) r2(a) := {g ∈ O(X) : ∃ b ∈ O(X) such that Z(b) ⊂ Z(g) and bg ∈ 2
√
a}.

Remarks 5.6. Let a be an ideal of O(X) whose zero-set Z(a) is an Ha-set. Then

(i) In view of Theorem 3 and Lemma 5.5 we have I(Z(a)) = r̃a
√
a =

√̃
2
√
a.

(ii) Moreover, ( 2
√
a)2 ⊂ g(a) ⊂ r2(ã).

For the first inclusion pick f, g ∈ 2
√
a. We have to show fg ∈ g(a). Observe

fg = 1
2 ((f+g)2−f2−g2). Thus, it is enough to prove that if f ∈ 2

√
a, then f2 ∈ g(a).

Indeed, if f ∈ 2
√
a, there exists ak ∈ O(X) such that f2 ≤ f2 +

∑
k≥1 a

2
k ∈ a. Thus,

f2 ∈ g(a).
For the second inclusion we proceed as follows. Let g ∈ g(a). By Lemma 4.1

there exist a non-negative f ∈ ã and m ≥ 1 such that Z(f) = Z(a) and f − g2 ≥ 0.
Observe Z(f) ⊂ Z(g) and taking f ′ := 2f ∈ a instead of f , we may assume
Z(f) = Z(f − g2). Indeed,

Z(f ′ − g2) = Z(f + (f − g2)) = Z(f) ∩ Z(f − g2) = Z(f) ∩ Z(g2) = Z(f ′).

Now, since Z(a) is an Ha-set, we deduce by [ABFR3, 4.1] that there exist m ≥ 1
and b, ak ∈ O(X) such that Z(b) ⊂ Z(f − g2) = Z(f) and b2(f − g2) =

∑
k≥1 a

2
k.

Thus, (bg)2 +
∑

k≥1 a
2
k = b2f ∈ ã, so bg ∈ 2

√
ã, that is, g ∈ r2(ã).

(iii) By Theorem 2 and the previous remark �L
√
a =

√
g(a) ⊂

√
r2(ã) ⊂ �̃L

√
a.

We present next some relations between the square root and the convex hull of
an ideal.

Lemma 5.7. Let X ⊂ Rn be a C-analytic set and a an ideal of O(X) whose zero-set
Z(a) is an Ha-set. Then

(i) If a is convex, then 2
√
a is also convex.

(ii) ( 2̃
√
a)4 ⊂ (g̃(a))2 ⊂ g(a) ⊂ r2(ã).

Proof. (i) Let g ∈ O(X) and f ∈ 2
√
a be such that |g| ≤ f ; hence g2 ≤ f2. As

f ∈ 2
√
a, there exist ak ∈ O(X) such that f2 +

∑
k≥1 a

2
k ∈ a. Since

g2 +
∑
k≥1

a2k ≤ f2 +
∑
k≥1

a2k

and a is convex, we deduce g2 +
∑

k≥1 a
2
k ∈ a; hence, g ∈ 2

√
a.

(ii) follows straightforwardly from Lemma 4.9, Remarks 5.6 and the fact that

(b̃)2 ⊂ b̃2 for each ideal b of O(X). �

One can unify the notions of convex hull g(a) and square root 2
√
a of an ideal a of

O(X) under the following general concept. A similar definition concerning defining
ideals appears in [GT].

Definition 5.8. Let (X,OX) be a real coherent reduced analytic space. We say
that an ideal a of O(X) is quasi-real if its radical

√
a is a real-analytic ideal.
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Corollary 5.9. Let X ⊂ Rn be a C-analytic set and a a quasi-real saturated ideal of
O(X). Let a =

⋂
i∈I qi be a normal primary decomposition of a and J the collection

of indices corresponding to the isolated primary components of a. Then

(i) If i0 ∈ J ,
√
qi0 is a convex saturated prime ideal.

(ii) If Z(a) is an Ha-set, r̃a
√
a =

⋂
j∈J

√
qj =

√̃
a.

Proof. (i) Let hi0 ∈
⋂

j �=i0
qj\

√
qi0 (see the proof of Corollary 4.7). We have to prove

that
√
qi0 is a real-analytic ideal. Let ak ∈ O(Rn) be such that f =

∑
k≥1 a

2
k ∈ √

qi0 .
Then there exists m ≥ 1 such that fm ∈ qi0 . Consequently there exists for each k
a sum of squares σk in O(Rm) such that a2mk +σk ∈ qi0 ; hence, h

2
i0
a2mk +h2

i0
σk ∈ a.

As a is quasi-radical, hi0a
m
k ∈ qi0 . Since hi0 �∈ √

qi0 , there exists � ≥ 1 such that

am�
k ∈ qi0 , so ak ∈ √

qi0 . Thus,
√
qi0 is a real ideal, so qi0 is quasi-radical.

(ii) By Theorem 3 and Remark 1.4 we conclude

r̃a
√
a = I(Z(a)) =

⋂
j∈J

I(Z(qj)) =
⋂
j∈J

√
qj =

⋂
i∈I

√
qi =

√̃
a,

as required. �

Remarks 5.10. (i) Under the hypotheses of Corollary 5.9 the corresponding result
is no longer true if

√
qi0 is the radical of an immersed radical component of a. Use

Example 4.8(ii).
(ii) If we work in the framework of quasi-real saturated ideals, it holds an analo-

gous result to Theorem 2.2 when substituting ‘Stein space’ by ‘C-analytic set’ and
‘closed ideal’ by ‘quasi-real saturated ideal of O(X) whose zero-set is either anH-set
or an Ha-set’. The proof runs analogously to the one of Theorem 2.2 ([F, §5.Satz
9]).

6. Real Nullstellensätze and complex analytic germs at Rn

6.1. Saturated primary ideals and complex analytic germs at Rn. The
results we present for X = Rn can be extended to an arbitrary C-analytic set via
the correspondence theorem for ideals.

Definition 6.1. Let a ⊂ O(Rn) be a saturated ideal. We extend the coherent sheaf
aOX to a coherent sheaf of ideals F on an invariant open Stein neighborhood Ω of
Rn in Cn. The analytic germ YRn at Rn of the support Y := supp(F) will be called
the complex zero-set ZC(a) of a.

Lemma 6.2. Let q ⊂ O(Rn) be a primary saturated ideal. Then f ∈ p :=
√
q if and

only if there exists an open neighborhood Ω of Rn in Cn, a holomorphic extension
F of f to Ω and a representative Y of ZC(q) in Ω such that Y ⊂ Z(F ). In other
words, f ∈ p :=

√
q if and only if F vanishes identically on ZC(q).

Proof. The ‘only if’ implication follows from the following facts:

(1) if q is saturated, then p is also saturated and
(2) f ∈ I(Z(q)) implies that F vanishes identically on ZC(q).

For the ‘if’ implication let Y be a representative of ZC(q) on a suitable complex
neighborhood of Rn in Cn such that Y ⊂ Z(F ). Pick a point

x ∈ Z(q) = ZC(q) ∩ Rn = Y ∩ Rn ⊂ Z(F ) ∩ Rn = Z(f).
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Since Y ⊂ Z(F ), we have Fx ∈ I(Z(Yx)) = I(Z(qxOCn,x)) =
√
qxOCn,x. Thus,

there exists m ≥ 1 such that Fm
x ∈ qxOCn,x. By Lemma 1.1 we have fm =

(F |Rn)m ∈ q, so f ∈ p. �

Remarks 6.3. (i) Let a1, a2 be two saturated ideals of O(X) such that a1 ⊂ a2.
Then

ZC(a2) ⊂ ZC(a1).

(ii) Let q1, q2 be two saturated primary ideals of O(X) such that ZC(q2) ⊂
ZC(q1). Then √

q1 ⊂ √
q2.

Lemma 6.4. Let q ⊂ O(Rn) be a primary saturated ideal. Then there exists an
irreducible analytic germ ZRn such that ZC(q) = ZRn ∪ σ(ZRn). In particular, if
ZC(q) is invariant, then it is also irreducible.

Proof. We extend the coherent sheaf qOX to a coherent sheaf of ideals F on a
contractible invariant open Stein neighborhood Ω of Rn in Cn and denote Y :=
supp(F). Recall ZC(q) = YRn . Consider the subring A(Ω) of H0(Ω,OCn) of all
invariant holomorphic functions on Ω. Observe that the restriction homomorphism
ϕ : A(Ω) → O(Rn), F �→ F |Rn is injective. Since q is a primary, p :=

√
q is prime,

so P := ϕ−1(p) is also prime.
As Z(p) = Z(q) �= ∅, it holds that Z(P) �= ∅. By Cartan’s Theorem A and

using that q is saturated, we deduce after shrinking Ω that YRn = Z(P)Rn and
Y = Z(P).

Let YRn =
⋃

i∈I Zi,Rn be the decomposition of YRn as the union of its irre-
ducible components. Pick one of them and for simplicity denote it with ZRn . By
[WB, Cor.2, p. 151] (and its proof) we may assume that there exists an irreducible
analytic set Z in Ω whose germ in Rn is precisely ZRn . Notice that Z and σ(Z)
are (eventually equal) irreducible components of Y because ZRn is an irreducible
component of the invariant germ YRn . Assume Y �= Z ∪ σ(Z) and let T be the
union of all other irreducible components of Y . Clearly, T is invariant. Choose now
invariant F,G ∈ H0(Ω,OCn) such that

• Z ∪ σ(Z) ⊂ Z(F ) but T �⊂ Z(F ),
• T ⊂ Z(G) but Z ∪ σ(Z) �⊂ Z(G).

Therefore the invariant holomorphic function FG vanishes on Y .
Let x ∈ Z(p) = Y ∩Rn and observe that we obtain by the complex local analytic

Nullstellensatz

I(Yx) = I(Z(Fx)) = I(Z(qxOCn,x)) =
√

qxOCn,x.

Thus, there exists m ≥ 1 such that (FG)mx ∈ qxOCn,x. By Lemma 1.1 (FG)m ∈ q,
so FG ∈ p ∩ A(Ω) = P. As P is prime, we may assume F ∈ P; hence, T ⊂
Y = Z(P) ⊂ Z(F ), which is a contradiction. Consequently Y = Z ∪ σ(Z), so
YRn = ZRn ∪ σ(ZRn), as required. �

Lemma 6.5. Let a ⊂ O(Rn) be a saturated ideal, a =
⋂

i∈I qi a normal primary
decomposition of a and J ⊂ I the collection of indices corresponding to the isolated
primary components of a. Then ZC(a) =

⋃
j∈J ZC(qj) and for each j ∈ J there

exists an irreducible component Zj,Rn of ZC(a) such that ZC(qj) = Zj,Rn ∪σ(Zj,Rn).
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Proof. Observe first

ZC(a) ∩ Rn = Z(a) =
⋃
i∈I

Z(qi) =
⋃
j∈J

Z(qj) =
⋃
j∈J

ZC(qj) ∩ Rn.

Fix x ∈ Z ∩ Rn and observe ZC(a)x = Z(aOCn,x). Let qi1 , . . . , qir be the primary
ideals of our normal primary decomposition whose zero-sets contain x. We may
assume that qi1 , . . . , qis are those primary ideals among qi1 , . . . , qir , which are in
addition isolated. Observe

ZC(a)x = Z(aOCn,x) = Z
( r⋂

�=1

qi�OCn,x

)
=

r⋃
�=1

Z(
√
qi�OCn,x)

=

s⋃
�=1

Z(
√
qi�OCn,x) =

s⋃
�=1

Z(qi�OCn,x) =

s⋃
�=1

ZC(qi�)x =
⋃
j∈J

ZC(qj)x;

hence, ZC(a) =
⋃

j∈J ZC(qj).

For each ZC(qj) there exists by Lemma 6.4 an irreducible analytic germ Zj,Rn

at Rn such that ZC(qj) = Zj,Rn ∪ σ(Zj,Rn); hence, ZC(a) =
⋃

j∈J Zj,Rn ∪ σ(Zj,Rn).
By Remark 6.3 and the fact that the primary ideals qj are isolated, we deduce
Zj,Rn �⊂ Zj′,Rn ∪ σ(Zj′,Rn) if j �= j′. Thus, for each j ∈ J the germs Zj,Rn and
σ(Zj,Rn) are irreducible components of ZC(a). �

Now we are ready to prove Theorem 4.

Proof of Theorem 4. By Lemma 6.4 there exists an irreducible analytic germ ZRn

such that ZC(q) = ZRn ∪ σ(ZRn). Now we prove the following implications.
(i) =⇒ (ii) As I(Z(q)) =

√
q, we deduce by [WB, p. 154] that ZC(

√
q) = ZC(q)

is the germ of the ‘complexification’ of Z(
√
q) = Z(q) at Rn. Since the dimension

of the ‘complexification’ of Z(q) coincides with its dimension [WB, §8. Prop.12],
we deduce dim(ZC(q)) = dim(Z(q)).

(ii) =⇒ (i) Let YRn be the germ of the ‘complexification’ of Z(q) at Rn. By
[WB, p. 154] we have YRn ⊂ ZRn ∩ σ(ZRn). Since ZRn is irreducible, we get that
either ZRn = σ(ZRn) or dim(ZRn ∩ σ(ZRn)) < dim(ZRn). But this is impossible
because then

dim(Z(q)) = dim(YRn) ≤ dim(ZRn ∩ σ(ZRn))

< dim(ZRn) ≤ dim(ZC(q)) = dim(Z(q)),

which is a contradiction. Thus, ZC(q) = ZRn and

dim(Z(q)) = dim(YRn) ≤ dim(ZRn) = dim(ZC(q)) = dim(Z(q));

hence, dim(YRn) = dim(ZRn) and as ZRn is irreducible, YRn = ZRn . Thus, by
Lemma 6.2 we have f ∈ √

q if and only if there exists an open neighborhood Ω
of Rn in Cn, a holomorphic extension F of f to Ω and a complex analytic subset
T ⊂ Z(F ) in Ω such that TRn = ZC(q) = ZRn .

On the other hand, by [WB, p. 154] we have that g ∈ I(Z(q)) if and only if
there exists an open neighborhood Ω of Rn in Cn, a holomorphic extension G of g
to Ω and a complex analytic subset S ⊂ Z(G) in Ω such that SRn = YRn .

We conclude I(Z(q)) =
√
q because ZRn = YRn .

(ii) =⇒ (iii) is straightforward.
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(iii) =⇒ (ii) Let (Ω, Z) be such that Ω is an open invariant neighborhood of Rn

in Cn and Z is an irreducible representative of ZRn in Ω (see [WB, Cor.2, p. 151]).
The irreducibility of Z guarantees that it is pure dimensional; hence, so is Z∪σ(Z).
We have

dim(Z(q)) ≥ dim(Z(q)x) = dim(Z(qORn,x)) = dim(Z(qOCn,x))

= dim(Zx ∪ σ(Z)x) = dim(ZRn ∪ σ(ZRn)) = dim(ZC(q)) ≥ dim(Z(q);

hence, dim(ZC(q)) = dim(Z(q)), as required. �

We finish this section with some arithmetic considerations.

Definition 6.6. A finite set F := {f1, . . . , fm} ⊂ O(Rn) is sharp if

dim(ZC(f1, . . . , fm)) = n−m.

Remarks 6.7. (i) Let F := {f1, . . . , fm} ⊂ O(Rn). For each � = 1, . . . ,m the (finitely
generated) ideal b� = (f1, . . . , f�)O(X) is saturated, so it admits a normal primary
decomposition b� =

⋂
j∈J�

qj�. Then it holds that: F is a sharp family if and only if

f� does not belong to any of the minimal prime ideals of the family {√qj,�−1}j∈J�−1

for each � = 2, . . . ,m.
Let Ω be an open neighborhood of Rn in Cn, on which each fi admits a holo-

morphic extension Fi. Recall the following well-known consequence of the Identity
Principle:
(6.7.1) If Y is an irreducible complex analytic subset of Ω, then Y is pure dimen-
sional and if F ∈ H0(Ω,OCn), then either Y ⊂ Z(F ) or dim(Y ∩Z(F )) < dim(Y ).

Thus, shrinking the open set Ω in each step, it follows from (6.7.1) that

dim(ZC(f1, . . . , fm)) ≥ n−m.

By Lemmas 6.4, 6.5 and (6.7.1) it holds that dim(ZC(f1, . . . , fm)) = n − m if
and only if f� does not belong to any of the minimal prime ideals of the family
{√qj,�−1}j∈J�−1

for each � = 2, . . . ,m. As this kind of argument is standard, we
leave the concrete details to the reader [C2, footnote 9, pp. 96-97].

(ii) If a ⊂ O(Rn) is an ideal, we have

sup{card(F) : F ⊂ a is sharp} = n− dim(ZC(a)) ≤ n− dim(Z(a)).

If q is a primary ideal of O(Rn), we obtain by Theorem 4

I(Z(q)) =
√
q if and only if sup{card(F) : F ⊂ q is sharp} = n− dim(Z(q)).

(iii) If p ⊂ O(Rn) is a saturated prime ideal, p is principal if and only if
dim(ZC(p)) = n− 1.

The ‘only if’ implication is clear, so let us assume dim(ZC(p)) = n−1. By Lemma
6.4 there exists an irreducible analytic germ ZRn such that ZC(p) = ZRn ∪ σ(ZRn).
We extend the coherent sheaf pOX to a coherent sheaf of ideals F on a contractible
invariant open Stein neighborhood Ω of Rn in Cn. By [WB, Cor.2, p. 151] (and
its proof) we may assume that there exists an irreducible analytic set Z in Ω of
dimension n − 1 whose germ in Rn is precisely ZRn . We may assume that Z
and σ(Z) are the (eventually equal) irreducible components of supp(F). Let IZ
be the (coherent) sheaf of ideals of Z in Ω. As IZ is locally principal (because
dim(Z) = n− 1) and Ω is contractible, IZ is globally principal. Let F ∈ H0(Ω, IZ)
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be a global generator of IZ , that is, IZ = FOΩ; hence, we also have Iσ(Z) = F ◦ σOΩ.
If Z is invariant, we may assume that F is in addition invariant. Define

G :=

{
F if Z is invariant,

F · F ◦ σ otherwise.

By Lemma 6.4 it holds that g := G|Rn ∈ p. At this point it is straightforward to
check that g generates p and consequently p is principal. �

Lemma 6.8. Let q ⊂ O(Rn) be a primary saturated ideal. Then q is a principal
ideal if and only if

√
q is a principal ideal.

Proof. For the ‘if’ implication, assume that
√
q is a principal ideal generated by

f ∈ O(Rn). One can check that q is generated by fk where

k := min{m ≥ 1 : fm ∈ q}.

Conversely, assume that q is generated by f ∈ O(Rn). By [Ca, Prop.3] there
exists h ∈ O(Rn) such that hxOx =

√
fxOx for each point x ∈ Rn. We claim√

q = hO(Rn).

Indeed, if g ∈ √
q =

√
fO(Rn), the germ gx ∈

√
fxOx = hxOx for each x ∈ Rn,

so g ∈ hO(Rn). Now we prove h ∈ √
q. Pick a point x ∈ Z(q). As hxOx =

√
fxOx,

we find an integer m such that hm
x ∈ fxOx = qOx. Since q is a saturated primary

ideal, Lemma 1.1 implies hm ∈ q, as required. �

Remark 6.9. A primary saturated ideal q ⊂ O(Rn) is principal if and only if
dim(ZC(q)) = n− 1.

Corollary 6.10. Let q ⊂ O(Rn) be a primary saturated ideal. We have

(i) If dim(Z(q)) = n− 1, then I(Z(q)) =
√
q.

(ii) If dim(Z(q)) = n− 2, then I(Z(q)) =
√
q if and only if q is not principal.

Proof. (i) follows from Theorem 4 because

n− 1 = dim(Z(q)) ≤ dim(ZC(q)) ≤ n− 1.

(ii) Assume first I(Z(q)) =
√
q. Then

n− 2 = dim(Z(q)) = dim(ZC(q)) = n− sup{card(F) : F ⊂ a is sharp};

hence, q is not principal. Conversely, if q is not principal, we have by Remark 6.9

n− 2 = dim(Z(q)) ≤ dim(ZC(q)) ≤ n− 2

and by Theorem 4 we conclude I(Z(q)) =
√
q. �
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analytiques-réels (French), Comment. Math. Helv. 33 (1959), 132–160. MR0102094
(21 #889)
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