2016 IMI Publications

49) C Calvo, V Gallego, A Selskii, VA Makarov. Learning connectivity structure in a chain of network motifs. Advanced Science Letters 22 (10), 2647-2651, 2016

48) S Lobov, V Kazantsev, VA Makarov. Spiking Neurons as Universal Building Blocks for Hybrid Systems. Advanced Science Letters 22 (10), 2633-2637, 2016

47) S Lobov, N Krilova, I Kastalskiy, V Kazantsev, VA Makarov. A human-computer interface based on electromyography command-proportional control. Proc. NEUROTECHNIX  2016, p. 57-64, DOI: 10.5220/0006033300570064, 2016

46) L. Álvarez, G. Díaz and J. I.Díaz, Some Qualitative Properties for Geometric Flows and its Euler Implicit Discretization. Nonlinear Analysis. Vol. 137 (2016), 43-76. DOI link: http://dx.doi.org/10.1016/j.na.2015.11.023

45) J. M. Ancochea Bermúdez, R. Campoamor-Stursberg, Cohomologically rigid Lie algebras with a nilradical of arbitrary characteristic sequence, Linear Alg. Appl. 488 (2016), 135-147. DOI link: http://dx.doi.org/10.1016/j.laa.2015.09.041

44) S. N. Antontsev and J. I. Díaz, Finite Speed of Propagation and Waiting Time for Local Solutions of Degenerate Equations in Viscoelastic Media or Heat Flows with Memory, Journal of Elliptic and Parabolic Equations, April 2016, Volume 2, Issue 1, pp 207–216. Preprint

43) G. Beer, M. I. Garrido, On the uniform approximation of Cauchy continuous functions. Topology Appl. 208 (2016) 1-9. Link: http://dx.doi.org/10.1016/j.topol.2016.04.017

42) N. El Berdan, J.I. Díaz and J.M. Rakotoson, The Uniform Hopf Inequality for discontinuous coefficients and optimal regularity in bmo for singular problems. J. Math. Anal. Appl. 437 (2016) 350–379. Preprint. Link: http://www.sciencedirect.com/science/article/pii/S0022247X15011385

41) C. Calvo, J. A. Villacorta-Atienza, V. I. Mironov, V. Gallego and V. A. Makarov, Waves in isotropic totalistic cellular automata: Application to real-time robot navigation, Advances in Complex Systems 19(4) 1650012-18, 2016.

40) R. Campoamor-Stursberg, Generating functions and existence of contact symmetries of third order scalar ordinary differential equations, Appl. Math. Comput. 273 (2016), 1179-1189. DOI link: http://dx.doi.org/10.1016/j.amc.2015.08.131

39) R. Campoamor-Stursberg, Perturbations of Lagrangian systems based on the preservation of subalgebras of Noether symmetries, Acta Mech. 227 (2016), 1941-1956. DOI: 10.1001/s00707-016-1624-6

38) R. Campoamor-Stursberg, Low Dimensional Vessiot-Guldberg-Lie algebras of second-Order Ordinary Differential Equations, Symmetry 8 (2016), 8030015. DOI link: http://dx.doi.org/10.3390/sym8030015

37) R. Campoamor-Stursberg,A functional realization of $\frak{sl}(3,\mathbb{R})$ providing minimal Vessiot--Guldberg--Lie algebras of nonlinear second-order ordinary differential equations as proper subalgebras, J. Math. Phys. 57 (2016), 063508. DOI link: http://dx.doi.org/10.1063/1.4954255

36) R. Campoamor-Stursberg: An alternative approach to systems of second-order ordinary differential equations with maximal symmetry. Realizations of $\frak{sl}(n+2,\mathbb{R})$ by special functions, Comm. Nonlinear Science Num. Simulation 37 (2016), 200-211. DOI link: http://dx.doi.org/10.1016/j.cnsns.2016.01.015

35) M. Crespo, B. Ivorra & Á. M. Ramos, Existence and Uniqueness of Solution of a Continuous Flow Bioreactor Model with Two Species. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 2016, 110: 357--377. DOI link: http://dx.doi.org/10.1007/s13398-015-0237-3. Full-text view-only version: https://rdcu.be/4s3u. Preprint: http://arxiv.org/abs/1410.4681

34) T. S. Cubitt, D. Pérez-García, M. M. Wolf, Undecidability of the spectral gap. Nature 528, 207 – 211. DOI link: http://dx.doi.org/10.1038/nature16059

33) G. De las Cuevas, T. S. Cubitt, J. I. Cirac, M. M. Wolf, D. Pérez-García: Fundamental limitations in the purifications of tensor networks. J. Math. Phys. 57, 071902 (2016). DOI link: http://dx.doi.org/10.1063/1.4954983

32) A. N. Dao and  J.I. Díaz, A gradient estimate to a degenerate parabolic equation with a singular absorption term: global and local quenching phenomena. J. Math. Anal. Appl. 437 (2016) 445–473. Link: http://www.sciencedirect.com/science/article/pii/S0022247X15011324

31) A. N. Dao, J.I. Díaz and P. Sauvy, Quenching phenomenon of singular parabolic problems with L1 initial data, Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 136, pp. 1-16. Preprint

30) G. Díaz & J. I. Díaz, Partially flat surfaces solving k-Hessian perturbed equations. En A Mathematical Tribute to Professor José María Montesinos Amilibia. (2016), 265-293, ISBN: 978-84-608-1684-3.

29) J. I. Díaz, D. Gómez - Castro, On the Effectiveness of Wastewater Cylindrical Reactors: an Analysis Through Steiner Symmetrization. Pure Appl. Geophys. 173, 923–935 (2016). doi:10.1007/s00024-015-1124-8

28) J. I. Díaz, D. Gómez - Castro, A.V. Podol'skii, T.A. Shaposhnikova, Homogenization of the p-Laplace operator with nonlinear boundary condition on critical size particles: identifying the strange term for some non smooth and multivalued kinetics. Doklady Mathematics, 2016, Vol. 94, No. 1, pp. 387–392. Published in Russian in Doklady Akademii Nauk, 2016, Vol. 469, No. 2, pp. 148–153. Preprint

27) J. I. Díaz, D. Gómez - Castro, C. Timofte, The effectiveness factor of reaction-diffusion equations: homogeneization and existence of optimal pellet shapes, Journal of Elliptic and Parabolic Equations, April 2016, Volume 2, Issue 1, pp 119–129. Preprint

26) J. I. Díaz, T. Pirantozzi, L. Vázquez, On the finite time extinction phenomenon for some nonlinear fractional evolution equations, Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 239, pp. 1-13. Preprint

25) L. F. Escudero, S. Muñoz, A survey-based approach for designing the lines of a rapid transit network. Discrete Applied Mathematics 210 (2016) 14–34. DOI link: http://dx.doi.org/10.1016/j.dam.2015.11.006

24) E. Fernández-Carrión, B. Ivorra, B. Martínez-López, Á. M. Ramos & J. M. Sánchez-Vizcaíno, Implementation and validation of an economic module in the Be-FAST model to predict costs generated by livestock disease epidemics: Application to classical swine fever epidemics in Spain. Preventive Veterinary Medicine. Vol. 126 (2016), 66-73. DOI link: http://dx.doi.org/doi:10.1016/j.prevetmed.2016.01.015

23) R. Flores, E. Molina, J. Tejada, Assessment of groups in a network organization based on the Shapley group value. Decision Support Systems, 83, 97-105. (2016)

22) F.J. Gallego, M. González y B.P. Purnaprajna, Deformations of canonical double covers, J. Algebra, Vol. 463 (2016), pp 23-32. DOI link: https://doi.org/10.1016/j.jalgebra.2016.06.009

21) F.J. Gallego, M. González y B.P. Purnaprajna, Deformations of canonical triple covers, J. Algebra, Vol. 463 (2016), pp 1-9. DOI link: https://doi.org/10.1016/j.jalgebra.2016.06.015

20) M. I. Garrido; A. S. Meroño, Two classes of metric spaces. Appl. Gen. Topol.  17 (2016) 57-70. DOI link: http://dx.doi.org/10.4995/agt.2016.4401 

19) M. I. Garrido, A. S. Meroño, On paracompactness, completeness nad boundedness in uniform spaces. Topology Appl. 203 (2016) 98-107. DOI link: http://dx.doi.org/10.1016/j.topol.2015.12.079

18) I. M. Gómez-Chacón, F. Botana, J. Escribano, M. A. Abanades, Concepto de Lugar Geométrico. Génesis de Utilización Personal y Profesional con Distintas Herramientas. Bolema [online]. 2016, vol.30, n.54, pp.67-94. ISSN 0103-636X. DOI link: http://dx.doi.org/10.1590/1980-4415v30n54a04.

17) C. E. González-Guillén, C. H. Jiménez, C. Palazuelos and I. Villanueva, Sampling Quantum Nonlocal Correlations with High Probability. Communications in Mathematical Physics, May 2016, Volume 344, Issue 1, pp. 141–154. Link: http://link.springer.com/article/10.1007%2Fs00220-016-2625-8

16) C. E. González-Guillén, C. Palazuelos and I. Villanueva, Euclidean Distance Between Haar Orthogonal and Gaussian Matrices. Journal of Theoretical Probability (2016), pp. 1-26. Link: http://link.springer.com/article/10.1007%2Fs10959-016-0712-6

15) A. Hernando, R. Maestre Martínez, E. Roanes Lozano, A natural language for implementing algebraically Expert Systems. Ref. revista: Mathematics and Computers in Simulation (en SCI-JCR). Clave: A. Volumen: 129. Páginas, inicial: 31, final: 49 (2016), Amsterdam-Lausanne-New York-Oxford-Shannon-Tokio. ISSN: 0378-4754. DOI: 10.1016/j.matcom.2016.04.006. Link: http://www.sciencedirect.com/science/article/pii/S0378475416300350

14) B. Ivorra, J. López Redondo, Á. M. Ramos & J. G. Santiago, Design sensitivity and mixing uniformity of a micro-fuidic mixer. Physics of Fluids. ISSN: 1070-6631. 28, 012005 (2016). DOI link: http://dx.doi.org/10.1063/1.4939006. Preprint

13) J. López-Gómez, Global bifurcation for Fredholm operators. En A Mathematical Tribute to Professor José María Montesions Amilibia (M. Castrillón, E. Martín-Peinador,  J. M. Rodríguez-Sanjurjo and J. M. Ruiz eds.), pp. 437-451, Departamento de Geometría y Topología, UCM, Madrid, 2016.

12) J. López-Gómez, Global Bifurcation for Fredholm operators, Rend. Istit. Mat. Univ. Trieste 48 (2016), 539-564.

11) J. López-Gómez and P. H. Rabinowitz, The effects of spatial heterogeneities on some multiplicity results, Disc. Cont. Dyn. Syst. A 36 (2016), 941-952.

10) A. Luzón, M. A. Morón, F. Prieto-Martínez, Pascal's triangle, Stirling numbers and the Euler characteristic. A mathematical tribute to Professor José María Montesinos Amilibia, 453–462, Dep. Geom. Topol. Fac. Cien. Mat. UCM, Madrid, 2016.

9) A. Luzón, D. Merlini, M. A. Morón, L. F. Prieto-Martinez, R. Sprugnoli, Some inverse limit approaches to the Riordan group. Linear Algebra Appl. 491 (2016), 239-262. https://doi.org/10.1016/j.laa.2015.07.028

8) A. Luzón, M. A. Morón, J. L. Ramírez, Double parameter recurrences for polynomials in bi-infinite Riordan matrices and some derived identities. Linear Algebra Appl. 511 (2016), 237-258. https://doi.org/10.1016/j.laa.2016.09.020

7) V. A. Makarov, C. Calvo, V. Gallego and A. Selskii, Synchronization of heteroclinic circuits through learning in chains of neural motifs, IFAC-PapersOnLine 49(14), 80–83, 2016.

6) E. Martín-Peinador; V. Tarieladze, Mackey topology on locally convex spaces and on locally quasi-convex groups. Similarities and historical remarks. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 110 (2016), no. 2, 667–679. 54C40 (46E25).

5) E. Martín-Peinador; M. Bruguera Padró, Compact Hausdorff group topologies for the additive group of real numbers. En A mathematical tribute to Professor José María Montesinos Amilibia, 491–497, Dep. Geom. Topol. Fac. Cien. Mat. UCM, Madrid, 2016. 54H11.

4) G. Martín-Vázquez, N. Benito, V. A. Makarov, O. Herreras & J. Makarova, Diversity of LFPs Activated in Different Target Regions by a Common CA3 Input (2016) Cerebral Cortex, 26 (10), pp. 4082-4100. DOI link:http://dx.doi.org/10.1093/cercor/bhv211

3) Á. M. Ramos, On the well-posedness of a mathematical model for lithium-ion batteries. Applied Mathematical Modelling. Vol. 40, 115-125, 2016. DOI link: http://dx.doi.org/10.1016/j.apm.2015.05.006. Preprint: http://arxiv.org/abs/1506.00605

2) Á. M. Ramos, B. Ivorra, E. Fernández-Carrión, B. Martínez-López,  D. Ngom & J. M. Sánchez-Vizcaíno, Be-CoDiS and Be-FAST: Mathematical models to predict the spread of human and livestock diseases with real data. Application to the 2014-15 Ebola Virus Disease epidemic and livestock diseases. En Microbes in the spotlight: recent progress in the understanding of beneficial and harmful microorganisms. BrownWalker Press. Editor: A. Méndez-Vilas, 2016. ISBN-10: 1-62734-612-0, ISBN-13: 978-1-62734-612-2, pages 422-426, BrownWalker Press. Link: http://www.universal-publishers.com/book.php?method=ISBN&book=1627346120

1) A. Selskii and V. A. Makarov, Synchronization of heteroclinic circuits through learning in coupled neural networks, Regular and Chaotic Dynamics 21(1), 97-106, 2016.