2018 IMI Publications

  1. J.M. Ancochea Bermúdez, R. Campoamor Stursberg; Rigidity-preserving and cohomology-decreasing extensions of solvable rigid Lie algebras. Linear Multilinear Algebra 66 (2018), no. 3, 525–539 doi.org/10.1080/03081087.2017.1302404
  2. Ancochea Bermúdez, J.M., Campoamor-Stursberg, R., Oviaño García, F. New examples of rank one solvable real rigid Lie algebras possessing a nonvanishing Chevalley cohomology (2018) Applied Mathematics and Computation, 339, pp. 431-440. DOI link: https://doi.org/10.1016/j.amc.2018.07.036
  3. Clemente F. Arias, Miguel A. Herrero, Luis F. Echeverri, Gerardo E. Oleaga, José M. López. Bone remodeling: A tissue-level process emerging from cell-level molecular algorithms.
  4. R.M. Aron; L. Bernal-González; P. Jiménez-Rodríguez; G.A. Muñoz-Fernández; J.B. Seoane-Sepúlveda; On the size of special families of linear operators. Linear Algebra Appl. 544 (2018), 186-205. https://doi.org/10.1016/j.laa.2018.01.006
  5. E. Artal Bartolo, Pi. Cassou-Noguès, I. Luengo, and A. Melle-Hernández
    On the b-exponents of generic plane curve singularities , Journal of Singularities vol 18, (2018), pp 36-49
  6. D. Azagra, J. Ferrera, J. Gómez Gil. "The Morse-Sard Theorem revisited". The Quarterly Journal of Mathematicshttps://doi.org/10.1093/qmath/hay004
  7. Azagra, D., Ferrera, J., García-Bravo, M., Gómez-Gil, J. Subdifferentiable functions satisfy Lusin properties of class C1 or C2 (2018) Journal of Approximation Theory, 230, pp. 1-12. DOI: 10.1016/j.jat.2018.03.001
  8. Barge, H., Sanjurjo, J.M.R. Bifurcations and Attractor-Repeller Splittings of Non-Saddle Sets (2018) Journal of Dynamics and Differential Equations, 30 (1), pp. 257-272. DOI: 10.1007/s10884-017-9569-3
  9. A. Ballesteros, R. Campoamor Stursberg, E. Fernández Saiz, F.J. Herranz, J. de Lucas, Poisson–Hopf algebra deformations of Lie–Hamilton systems, J. Phys. A: Math. Theor. 51 (2018) 065202 doi.org/10.1088/1751-8121/aaa090
  10. Beer, G., Garrido, M.I., Meroño, A.S. Uniform Continuity and a New Bornology for a Metric Space (2018) Set-Valued and Variational Analysis, 26 (1), pp. 49-65. DOI: 10.1007/s11228-017-0429-4
  11. Bermúdez, J.M., Campoamor-Stursberg, R., Oviaño García, F. New examples of rank one solvable real rigid Lie algebras possessing a nonvanishing Chevalley cohomology (2018) Applied Mathematics and Computation, 339, pp. 431-440. DOI link: https://doi.org/10.1016/j.amc.2018.07.036
  12. Bernal-González, L., Bonilla, A., López-Salazar, J., Seoane-Sepúlveda, J.B. Boundary-Nonregular Functions in the Disc Algebra and in Holomorphic Lipschitz Spaces (2018) Mediterranean Journal of Mathematics, 15 (3), art. no. 114, . DOI: 10.1007/s00009-018-1160-6 
  13. Bernal-González, Luis; Conejero, J. Alberto; Costakis, George; Seoane-Sepúlveda, Juan B. Multiplicative structures of hypercyclic functions for convolution operators. J. Operator Theory 80 (2018), no. 1, 213–224. 
  14. Bernal-González, Luis; Conejero, J. Alberto; Murillo-Arcila, Marina; Seoane-Sepúlveda, Juan B.; Highly tempering infinite matrices. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 112 (2018), no. 2, 341-345.
  15. L. Bernal-González; J. López-Salazar; J.B. Seoane-Sepúlveda; On Weierstrass' monsters in the disc algebra. Bull. Belgian Math. Society - Simon Stevin, Vol. 25 (2), (2018).
  16. Brú, A., Gómez-Castro, D., Vila, L., Brú, I., & Souto, J. C. (2018). Study of tumor growth indicates the existence of an “immunological threshold” separating states of pro- and antitumoral peritumoral inflammation. PLOS ONE, 13(11), e0202823. doi:10.1371/journal.pone.0202823
  17. Bustinduy, Alvaro; Giraldo, Luis. On vector fields with simply connected trajectories and one invariant line. JOURNAL OF DIFFERENTIAL EQUATIONS   Volumen: 264 (2018)  Número: 6  Páginas: 3933-3939
  18. H. J. Cabana; G. A. Muñoz-Fernández; J.B. Seoane-Sepúlveda; Connected polynomials and continuity. J. Math. Anal. Appl. 462 (2018), no. 1, 298-304
  19. C. Calvo, IY Tyukin, VA Makarov. Fast social-like learning of complex behaviors based on motor motifs. Physical Review E 97 (5), 052308, 2018
  20. Campoamor Stursberg, R.; An inverse problem in Lagrangian dynamics based on the preservation of symmetry groups: application to systems with a position-dependent mass. Acta Mech. 229 (2018), no. 1, 211–229 doi.org/10.1007/s00707-017-1956-7
  21. R. Campoamor Stursberg, Reduction by invariants and projection of linear representations of Lie algebras applied to the construction of nonlinear realizations. J. Math. Phys. 59 (2018), no. 3, 033502 doi.org/10.1063/1.4989890
  22. K. C. Ciesielski; J.L. Gámez-Merino; T. Natkaniec; J.B. Seoane-Sepúlveda; On functions that are almost continuous and perfectly everywhere surjective but not Jones. Lineability and additivity. Topology Appl. 235 (2018), 73-82. https://doi.org/10.1016/j.topol.2017.12.017
  23. Daners, Daniel; López-Gómez, Julián. Global dynamics of generalized logistic equations. Adv. Nonlinear Stud. 18 (2018), no. 2, 217–236
  24. J.I. Díaz, Correction to: On the ambiguous treatment of the Schrödinger equation for the infinite potential well and an alternative via singular potentials: the multi-dimensional case. SeMA Journal. September 2018, Volume 75, Issue 3, pp 563–568. https://doi.org/10.1007/s40324-018-0167-z
  25. J.I. Díaz and D. Gómez-Castro, A mathematical proof in nanocatalysis: better homogenized results in the diffusion of a chemical reactant through critically small reactive particles. In Progress in Industrial Mathematics at ECMI 2016, Springer International Publishing AG 2017, P. Quintela et al. (eds.), Book series: Mathematics in Industry 26, Print ISBN: 978-3-319-63081-6, Electronic ISBN: 978-3-319-63082-3, 2018, pp. 319--326. DOI link:https://doi.org/10.1007/978-3-319-63082-3_49
  26. Díaz, J. I., Gómez-Castro, D., Podolskiy, A. V., & Shaposhnikova, T. A. (2018). Homogenization of Boundary Value Problems in Plane Domains with Frequently Alternating Type of Nonlinear Boundary Conditions: Critical Case. Doklady Mathematics, 97(3), 271–276.
  27. J.I. Díaz, D. Gómez-Castro, A.V. Podolskii, T.A. Shaposhnikova.: Non existence of critical scales in the homogenization of the problem with p-Laplace diffusion and nonlinear reaction in the boundary of periodically distributed particles in n-dimensional domains when $p > n$. Rev. la Real Acad. Ciencias Exactas, Físicas y Nat. Ser. A. Matemáticas. 112.2 pp.331-340 (2018). doi:10.1007/s13398-017-0381-z
  28. J.I. Díaz, D. Gómez–Castro, J.M. Rakotoson and R. Temam, Linear diffusion with singular absorption potential and/or unbounded convective flow: the weighted space approach. Discrete and Continuous Dynamical Systems, Volume 38, Number 2 (2018), 509–546.
  30. Díaz, J. I., Gómez-Castro, D., & Vázquez, J. L.. The fractional Schrödinger equation with general nonnegative potentials. The weighted space approach. Nonlinear Analysis, Volume 177, Part A, 2018, Pages 325-360. https://doi.org/10.1016/j.na.2018.05.001
  31. E. Fernández-Carrión, B. Ivorra, A.M. Ramos, B. Martínez-López, C. Aguilar-Vega and J.M. Sánchez-Vizcaíno.; An advection-deposition-survival model to assess the risk of introduction of vector-borne diseases through the wind: application to bluetongue outbreaks in Spain. PLoS ONE, ISSN: 1072-6691, 13(3): e0194573 (2018). https://doi.org/10.1371/journal.pone.0194573
  32. E. Fernández-Carrión, B. Martínez-López, B. Ivorra, A.M. Ramos and J.M. Sánchez-Vizcaíno,
    Evaluación del riesgo de propagación de epidemias ganaderas mediante simulación matemática, Pensamiento Matemático, ISSN-e [2174-0410], 2018, Vol VIII, N. 2. pp. 43--54. http://www2.caminos.upm.es/Departamentos/matematicas/revistapm/

  33. J.M. Ferrer, F.J. Martín-Campo, M.T. Ortuño, A.J. Pedraza, G. Tirado, B. Vitoriano. Multi-criteria optimization for last mile distribution of disaster relief aid: Test cases and applications. European Journal of Operational Research (EJOR) ISSN: 0377-2217 Volumen: 269 Páginas, inicial: 501 final: 515 2018. DOI: 10.1016/j.ejor.2018.02.043
  34. Garrido, M.I., Meroño, A.S. The Samuel realcompactification (2018) Topology and its Applications, 241, pp. 150-161. DOI: 10.1016/j.topol.2018.03.033
  35. M.A. Gómez Villegas, & B. González-Pérez (2018)  Multiple Hypothesis Tests: A Bayesian Approach. In The Mathematics of the Uncertain--A tribute to Pedro Gil. New York: Springer. 2018, pp 195-207.
  36. González-Guillén, C.E., Palazuelos, C., Villanueva, I. Euclidean Distance Between Haar Orthogonal and Gaussian Matrices (2018) Journal of Theoretical Probability, 31 (1), pp. 93-118. DOI: 10.1007/s10959-016-0712-6
  37. Gorban A.N., Makarov V.A., and Tyukin I.Y. “The unreasonable effectiveness of small neural ensembles in high-dimensional brain”, Physics of Life Reviews, DOI: 10.1016/j.plrev.2018.09.005, 2018. https://www.sciencedirect.com/science/article/pii/S1571064518301106
  38. Gusein-Zade, S.M., Luengo, I. & Melle-Hernández, A. Power structure over the Grothendieck ring of maps. Rev Mat Complut (2018) 31: 595. https://doi.org/10.1007/s13163-018-0263-8
  39. SM Gusein-Zade, I. Luengo, A Melle-Hernández, The universal Euler characteristic of V-manifolds , Functional Analysis and its Applications, vol 52, September (2018), Issue 4, pp. 297--307. https://link.springer.com/article/10.1007/s10688-018-0239-y
  40. Pavel Drákek and Jesús Hernández. Quasilinear eigenvalue problems with singular weights for the p-Laplacian. Annali di Matemática Pura ed Applicata. 2018
  41. A. Hernando, E. Roanes Lozano, A recommender system for train routing: when concatenating two minimum length paths is not the minimum length path,
    Applied Mathematics and Computation, ISSN: 0096-3003, Vol. 319, pp. 486-498, 2018,
    DOI: doi.org/10.1016/j.amc.2017.05.043
  42. B. Ivorra, Application of the Laminar Navier-Stokes Equations for Solving 2D and 3D Pathfinding Problems with Static and Dynamic Spatial Constraints: Implementation and Validation in Comsol Multiphysics. Journal of Scientific Computing (Impact factor: 1.899, 29/255 en "Mathematics, Applied", JCR 2016), 2018, Volume 74, Issue 2, pp. 1163-1187.
  43. B. Ivorra, M. Crespo, J.L. Redondo, A.M. Ramos, P. Martínez and J.G. Santiago, Modeling and Optimization Applied to the Design of Fast Hydrodynamic Focusing Microfluidic Mixer for Protein Folding. In Progress in Industrial Mathematics at ECMI 2016, Springer International Publishing AG 2017, P. Quintela et al. (eds.), Book series: Mathematics in Industry 26, Print ISBN: 978-3-319-63081-6, Electronic ISBN: 978-3-319-63082-3, 2018, pp. 640--655. DOI link: https://doi.org/10.1007/978-3-319-63082-3_98
  44. B. Ivorra, M.R. Ferrández, M. Crespo, J.L. Redondo, A.M. Ramos, P.M. Ortigosa y J.G Santiago, Modeling and Optimization Applied to the Design of Fast Hydrodynamic Focusing
    Microfluidic Mixer for Protein Folding. Journal of Mathematics in Industry, 8: 4, pp: 1--17. https://doi.org/10.1186/s13362-018-0046-3
  45. Junge, M., Palazuelos, C., Villanueva, I. Classical versus quantum communication in XOR games (2018) Quantum Information Processing, 17 (5), art. no. 117, . DOI: 10.1007/s11128-018-1883-0
  46. Llorente, Marta; Mera, M. Eugenia; Morán, Manuel. On the packing measure of the Sierpinski gasket. Nonlinearity 31 (2018), no. 6, 2571–2589.
  47. Lobov, S., Krilova, N., Kastalskiy, I., Kazantsev, V., Makarov, V.A. Latent factors limiting the performance of sEMG-interfaces (2018) Sensors (Switzerland), 18 (4), art. no. 1122, . DOI: 10.3390/s18041122
  48. López-Gómez, J., Maire, L.Multiplicity of large solutions for quasi-monotone pulse-type nonlinearities (2018) Journal of Mathematical Analysis and Applications, 459 (1), pp. 490-505. DOI: 10.1016/j.jmaa.2017.10.029
  49. Martín-Peinador, Elena; Pérez Valdés, Víctor; A class of topological groups which do not admit normal compatible locally quasi-convex topologies. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2018, Volume 112, Issue 3, pp 867–876. DOI: 10.1007/s13398-018-0507-y
  50. Mejia-Argueta, C., Gaytán, J., Caballero, R., Molina, J. and Vitoriano, B. (2018), Multicriteria optimization approach to deploy humanitarian logistic operations integrally during floods. Intl. Trans. in Op. Res., 25: 1053–1079. doi:10.1111/itor.12508
  51. R. Morales, M.A. Gómez Villegas; La predicción macroeconómica: Un breve repaso histórico. En "Historia de la probabilidad y de la estadística IX". pp. 257-308. Editado por la UNED. ISBN: 978-84-362-7369-4
  52. D. Ngom, B. Ivorra and A.M. Ramos, Stability analysis of a compartmental SEIHRD model for the Ebola Virus Disease. In Mathematical Methods and Models in Biosciences, Series: Texts in Biomathematics. ISBN 978-619-7451-00-9 (print), 978-619-7451-01-6 (online), ISSN: 2603-3046, 2018, pp. 44--56. Book DOI link: http://dx.doi.org/10.11145/texts.2018.017, Paper DOI link: http://dx.doi.org/10.11145/texts.2017.12.165.
  53. A.M. Ramos and J.M. Rey,  Matemáticas Básicas para el acceso a la Universidad (3 edición). Ediciones Pirámide (Grupo ANAYA), 2017. ISBN: 978-84-368-3710-0. ISBN (e-book): 978-84-368-3711-7

    libro3       libro1         libro2

  54. Pilar Romero, Gonzalo Barderas, Javier Mejuto. Equilibrium positions on stationary orbits and planetary principal inertia axis orientations for the Solar System. Advances in Space Research Volume 61, Issue 9, pp. 2472-2481. 2018
  55. C. Roncero Clemente, E. Roanes Lozano, A multi-criteria computer package for power transformer fault detection and diagnosis, Applied Mathematics and Computation, ISSN: 0096-3003, Vol. 319, pp. 153-164, 2018 (online 28-II-2017), DOI: 10.1016/j.amc.2017.02.024
  56. Shamsin, M., Krilova, N., Bazhanova, M., Kazantsev, V., Makarov, V.A., Lobov, S. Supervised and unsupervised learning in processing myographic patterns (2018) Journal of Physics: Conference Series, 1117 (1), art. no. 012008, . DOI: 10.1088/1742-6596/1117/1/012008
  57. Tapia, C.C., Villacorta-Atienza, J.A., Kastalskiy, I., Díez-Hermano, S., Sánchez-Jimenez, A., Makarov, V.A. Cognitive Neural Network Driving DoF-Scalable Limbs in Time-Evolving Situations (2018) Proceedings of the International Joint Conference on Neural Networks, 2018-July, art. no. 8489562, . DOI: 10.1109/IJCNN.2018.8489562
  58. IY Tyukin, AN Gorban, C Calvo, J Makarova, VA Makarov. High-dimensional brain. A tool for encoding and rapid learning of memories by single neurons. Bulletin of Mathematical Biology, DOI: 10.1007/s11538-018-0415-5, 2018